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Abstract

Selfridge asked to investigate the pairs (m,n) of natural numbers for which 2m −
2n divides xm − xn for all integers x. This question was answered by different
mathematicians independently by showing that there are only finitely many such
pairs. In the literature, various generalizations of this question have been studied
already. Let R be the ring of integers of a number field K and Mn(R) be the ring
of all n × n matrices over R. In the current article, we suggest a new kind of
generalization to Selfridge’s question in the case of Mn(R).

1. Introduction

This article is devoted to a generalization of a question asked by Selfridge. Once

he observed that 22 − 2 divides n2 − n, 222 − 22 divides n2
2 − n2 and 22

22 − 22
2

divides n2
22 − n22 for all n ∈ N. Motivated by this example, he asked the question:

for what pairs of natural numbers m and n does (2m − 2n) divide (xm − xn) for

all integers x? We do not know at what point in time he asked this question, but

it was published in the book “Unsolved Problems in Number Theory” by Richard

Guy (see [3], problem B47). In 1974, Ruderman posed a similar problem.

Question 1 (Ruderman [8]). Suppose thatm > n > 0 are integers such that 2m−2n

divides 3m − 3n. Show that 2m − 2n divides xm − xn for all natural numbers x.

This famous question is called ‘Ruderman’s problem’ in the literature and is still

open. Selfridge’s problem was answered for the first time by Pomerance [9] in 1977

by combining results of Schinzel [12] and Velez [10]. Q. Sun and M. Zhang [13] also

answered Selfridge’s question. Actually, there are fourteen such pairs which are the

solution of Selfridge’s question and the set of solutions is

S = {(1, 0), (2, 1), (3, 1), (4, 2), (5, 1), (5, 3), (6, 2), (7, 3), (8, 2), (8, 4), (9, 3), (14, 2),

(15, 3), (16, 4)}.
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In 2011, Ram Murty and Kumar Murty [5] proved that there are only finitely

many m and n for which the hypothesis in Question 1 holds. Hence a positive

solution to it will also lead to the answer to Selfridge’s question.

Once Selfridge’s question is answered thoroughly, a natural question arises: what

happens if we replace ‘2’ by ‘3’ or, more generally, by some other integer other than

± 1. Bose [1] considered the question of finding solutions of bm−bn dividing am−an
for all non-zero integer a, where m and n are positive integers with m > n and b

is an integer satisfying (bm − bn) 6= 0. He proved that the above congruence has a

solution if and only if b = 2 and, in this case, solutions are precisely the members of S

defined above. Rundle [11] also examined two types of generalizations of Selfridge’s

problem.

Now, a natural question crops up in our mind: what happens if there are three or

more terms in Selfridge’s problem? More precisely, what are the tuples (m1, . . . ,mk)

with positive entries such that for a given polynomial f(x) =
∑k
i=1 aix

mi ∈ Z[x]

and given integer b, f(b) divides f(m) ∀ m ∈ Z, under reasonable conditions.

The arguments used to answer Selfridge’s question were elementary and will not

suffice to answer this question as already pointed out by Bose (see [1]). However,

the notion of the fixed divisor of a polynomial can be used to get rid of this impasse.

We first give a general definition of this notion (see Rajkumar, Reddy and Semwal,

[7]).

Definition 1. Let A be a ring and f(x) ∈ A[x] be a polynomial in n variables.

Given S ⊆ An, the fixed divisor of f over S, denoted by d(S, f), is defined as the

ideal of A generated by the values taken by f on S.

In the case of Z or a unique factorization domain (UFD), we manipulate Defini-

tion 1 as follows and this definition is more useful than the above definition in this

case.

Definition 2. For a polynomial f(x) ∈ Z[x], its fixed divisor over Z is defined as

d(Z, f) = gcd{f(a) : a ∈ Z}.

Now we paraphrase how this notion is helpful in the study of Selfridge’s question.

Observe that for a given a ∈ Z\{±1}, (am − an) divides (xm − xn) for all x ∈ Z if

and only if (am − an) divides d(Z, fm,n), where fm,n = xm − xn. Hence, we must

have |am−an| ≤ d(Z, fm,n). Now, if we can show that with finitely many exceptions

we always have

|am − an| > d(Z, fm,n),

then it will lead to the conclusion that there could be only finitely many pairs, which

are the solutions. Vajaitu and Zaharescu [14]) used this argument to generalize

Selfridge’s question.
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In 1999, Vajaitu and Zaharescu [14] generalized Selfridge’s question in a number

ring and proved the following result.

Theorem 1 (Vajaitu and Zaharescu [14]). Let R be a number ring of an algebraic

number field and let a1, a2, . . . , ak and b be non-zero elements of R. If b be a non-

unit, then there are only finitely many k-tuples (n1, n2, . . . , nk) ∈ Nk satisfying the

following simultaneously:

k∑
i=1

aib
ni divides

k∑
i=1

aix
ni
i for all x ∈ R

and ∑
i∈S

aib
ni 6= 0 for all S ⊆ {1, 2, . . . , k}.

Vajaitu and Zaharescu also strengthened the conclusion of Theorem 1 for the

ring of integers in a specific number field.

Theorem 2 (Vajaitu and Zaharescu [14]). Let R be the ring of rational integers Z
or the ring of integers in an imaginary quadratic number field and let a1, a2, . . . , ak
and b be non-zero elements of R. Then there are only finitely many elements in

R for which there exist k-tuples (n1, n2, . . . , nk) ∈ Nk, not all zero, satisfying the

following simultaneously:

k∑
i=1

aib
ni divides

k∑
i=1

aix
ni for all x ∈ R

and ∑
i∈S

aib
ni 6= 0 for all S ⊆ {1, 2, . . . , k}.

Theorem 1 generalizes Selfridge’s question to the case of a number ring. In 2004,

Choi and Zaharescu [2] generalized Theorem 1 in the case of n-variables.

Theorem 3 (Choi and Zaharescu [2]). Let R be the ring of integers in an alge-

braic number field and let b1, b2, . . . , bn be non-zero non-unit elements of R. Let

ai1,...,in ∈ R, 1 ≤ i1 ≤ k1, . . . , 1 ≤ in ≤ kn, then there are only finitely many

n-tuples (m1,m2, . . . ,mn) ∈ Nk1 × Nk2 × · · · × Nkn satisfying the following simul-

taneously:

k1∑
i1=1

· · ·
kn∑
in=1

ai1,...,inb
m1i1
1 · · · bmnin

n divides

k1∑
i1=1

· · ·
kn∑
in=1

ai1,...,inx
m1i1
1 · · ·xmnin

n

for all x ∈ Rn where mj = (mj1, . . . ,mjkj ) and∑
(i1,...,in)∈S

ai1,...,inb
m1i1
1 · · · bmnin

n 6= 0
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for all non-empty S ⊆ {1, 2, . . . , k1} × · · · × {1, 2, . . . , kn}.

Choi and Zaharescu also generalized Theorem 2 in this setting. We write the

statement for the sake of completeness.

Theorem 4 (Choi and Zaharescu [2]). Let R be the ring of rational integers Z
or the ring of integers in an imaginary quadratic number field. Fix n and choose

non-zero elements ai1,...,in ∈ R for all 1 ≤ i1 ≤ k1, . . . , 1 ≤ in ≤ kn. Then there

are only finitely many n-tuples (b1, b2, . . . , bn) with bj ∈ R, j = 1, . . . , n, for which

there exists (m1,m2, . . . ,mn) ∈ Nk1 × Nk2 × · · · × Nkn with none of the tuples

(m1,m2, . . . ,mn) having all the components equal to zero, satisfying the following,

simultaneously

k1∑
i1=1

· · ·
kn∑
in=1

ai1,...,inb
m1i1
1 · · · bmnin

n divides

k1∑
i1=1

· · ·
kn∑
in=1

ai1,...,inx
m1i1
1 · · ·xmnin

n

for all x ∈ Rn where mj = (mj1, . . . ,mjkj ) and∑
(i1,...,in)∈S

ai1,...,inb
m1i1
1 · · · bmnin

n 6= 0

for all non-empty S ⊆ {1, 2, . . . , k1} × · · · × {1, 2, . . . , kn}.

In this article, we consider a generalization of Theorem 1, Theorem 2, Theorem

3 and Theorem 4 in the case when the ring under consideration is that of n × n
matrices over a number ring. We denote by Mn(A), the ring of n×n matrices over

the given ring A. We use the notion of the fixed divisor of a polynomial as our

main tool in the generalization. In the case of the ring of the matrices over a ring,

a reasonable definition of the fixed divisor of a polynomial is suggested by Prasad,

Rajkumar and Reddy ([6], Section 7) with suitable justifications.

Definition 3. For a polynomial f ∈ Mn(A)[x], its fixed divisor over Mn(A) (or

d(Mn(A), f)) is defined as the ideal in A generated by all the entries of f(C) ∀ C ∈
Mn(A).

Observe that here the fixed divisor is not considered as an ideal of the ring Mn(A)

as usual. This definition is helpful in the study of fixed divisors and related topics.

For a given matrix M ∈Mn(K), where K is any number field, recall that the norm

‖M‖ =

 n∑
i,j

|mij |2


1
2

makes the space (Mn(K), ‖ · ‖) a Banach algebra. The spectral radius ρ(M) of M

is defined as the largest absolute value of its eigenvalues. We suggest the following

generalization of Selfridge’s question.
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Question 2. Let A1, A2, . . . , Ak, B be non-zero matrices in Mn(R) and B satisfy

the following

(A.1) The ideal generated by B is not the whole ring.

(A.2) Either ρ(B∗B) > n or ρ((B∗B)−1) > n, where B∗ is the conjugate transpose

of B.

(A.3) Σi∈SAiB
mi 6= 0 ∀ S ⊆ {1, 2, . . . , k}.

Then, for how many tuples (m1,m2, . . . ,mk) ∈ Nk, does the ideal generated by∑k
i=1AiB

mi contain the ideal generated by {
∑k
i=1AiC

mi : C ∈Mn(R)}?

We know that each ideal of Mn(A) is of the form Mn(I) for some ideal I ⊆ A.

Also, for each I ⊆ A, Mn(I) is an ideal of Mn(A). For the given ideals I and

J of A, the condition Mn(I) ⊆ Mn(J) is equivalent to saying that I ⊆ J. For a

matrix M ∈Mn(A), we denote the ideal generated by all the entries of M in A by

IM . Hence, we have to find the number of tuples (m1,m2, . . . ,mk) ∈ Nk, for which

If(B) ⊇ d(Mn(A), f) where f =
∑k
i=1Aix

mi .

The structure of the paper is as follows. In Section 2, we give bounds for fixed

divisors by combining the arguments of Vajaitu and Zaharescu and fixed divisors.

Indeed, our work is motivated by the work of Vajaitu and Zaharescu. In Section 3,

we answer Question 2 by proving Theorem 5 and Theorem 6. Finally, in Section 4,

we suggest a further generalization of our theorems in the case of several variables

when the underlying ring is still Mn(R).

2. Bounds for Fixed Divisors

We fix the notations for the whole paper. Let N denote the set of natural numbers

as usual. For a given tuple m = (m1,m2, . . . , mk) ∈ Nk, m denotes the maximum

of mi where i = 1, 2, . . . , k. The norm of an ideal I ⊆ R, where R is a number ring,

is denoted by N(I) and is the cardinality of the residue class ring R/I. The norm

of an element a ∈ R is the norm of the ideal generated by the element, which is the

same as
∏
σ∈G σ(a), where G is the set of all embeddings from R to C (see Marcus

[4]).

To prove our main theorem, we need several lemmas. With all the notations as

in Question 2, we prove the following lemma, in which we consider the case when

ρ(B∗B) > n. The other case can be handled by considering B−1.

Lemma 1. Let m = (m1, . . . ,mk) ∈ Nk and m be the supremum of the components

of m. Under the assumption A.3 above, there exist constants c and d, independent

to m such that

‖
k∑
i=1

AiB
mi‖ ≥ c|d|m.



INTEGERS: 21 (2021) 6

Proof. We claim that ‖
∑k
i=1AiB

mi−m‖ ≥ c, for a constant c. Denoting the differ-

ence m−mi by ni for i = 1, 2, . . . , k, we have to show ‖
∑k
i=1AiB

−ni‖ ≥ c. If this

is false then there would exist a sequence (n1,r, n2,r, . . . , nk,r) of natural numbers

with min {n1,r, n2,r, . . . , nk,r} = 0 for each r, such that when r tends to infinity,

‖
∑k
i=1AiB

−ni,r‖ tends to zero. Let A ⊆ {1, 2, . . . , k} be the largest subset such

that for each r ∈ A there exists a natural number br and an infinite sequence M such

that ni,r = br for each r ∈ A and i ∈M . Then, we have the following inequality:

‖
k∑
i=1

AiB
−ni,r‖ ≤ ‖

∑
i∈A

AiB
−bi‖+ ‖

∑
i∈Ac

AiB
−ni,r‖. (1)

Here Ac denotes the complement of A with respect to the set {1, 2, . . . , k}. The

second term in Equation (1) can be bounded as follows:

‖
∑
i∈Ac

AiB
−ni,r‖ ≤

∑
i∈Ac

‖Ai‖‖B−ni,r‖.

Recall that for any matrix M ∈Mn(K), we have

‖M‖ ≤
√
nρ(M∗M).

Since ρ(B∗B) > n, the quantity

‖B−ni,r‖ ≤ ‖B−1‖ni,r ≤
(√

nρ((B∗B)−1)
)ni,r

tends to zero as r tends to infinity. We rewrite the left-hand side of Equation (1)

as follows:

‖
∑
i∈A

AiB
−bi +

∑
i∈Ac

AiB
−ni,r‖,

which tends to zero as r tends to infinity. Observe that ‖
∑
i∈Ac AiB

−ni,r‖ also

tends to zero as r tends to infinity leading to the conclusion that

‖
∑
i∈A

AiB
−bi‖ → 0.

This implies that
∑
i∈AAiB

−bi = 0, which is a contradiction to A.3 of the

Question 2. Hence, we must have ‖
∑k
i=1AiB

mi−m‖ ≥ c.
We know that for any pair of matrices X and Y in Mn(R), we always have

‖XY ‖ ≤ ‖X‖‖Y ‖.

Consequently, we get

‖
k∑
i=1

AiB
mi‖ ≥ c‖B−m‖−1 ≥ c‖B−1‖−m,

which completes the proof.
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For a given matrix M = [mij ]n×n, we define

σ(M) = [σ(mij)]n×n,

where σ is an automorphism of K. With this definition in hand, we can prove that

σ(‖M‖2) = ‖σ(M)‖2. In Lemma 1 , we take the product over all the conjugates

of ‖f(B)‖ and get N(‖f(B)‖2) ≥ c′|d′|m, where c′ and d′ are new constants. It is

clear that ‖f(B)‖2 ∈ If(B); hence there exists an ideal J ⊆ R such that If(B)J =

(‖f(B)‖2). Recall that an element’s norm in a number ring is the same as the

norm of the ideal generated by that element. Hence, N(If(B)J) = N(‖f(B)‖2) =

N(If(B))N(J). Now, we prove that N(J) is also bounded above.

Lemma 2. Let J be the ideal such that If(B)J = (‖f(B)‖2). Then there exist

constants c′ and d′ not depending on m such that N(J) ≤ c′|d′|m.

Proof. Applying the norm on both sides of If(B)J = (‖f(B)‖2) we get

N(If(B))N(J) = N(‖f(B)‖2).

By the definition of the norm, we have N(If(B)) ≥ 1, hence N(J) ≤ N(‖f(B)‖2).

Consider, the following inequality:

‖f(B)‖ = ‖
k∑
i=1

AiB
mi‖ ≤

k∑
i=1

‖Ai‖‖B‖mi . (2)

Since ‖B‖ > 1, the right-hand side of the above equation is at most |B|m
∑k
i=1

‖Ai‖, which is of the form c1|d1|m. Now, we take σ(f(B)) in Equation 2 for all

automorphisms of K and then multiply them together. In this way, we get an upper

bound of the form c′|d′|m for N(‖f(B)‖2). This bound also serves as an upper

bound for N(J), completing the proof of the lemma.

Combining Lemma 1 and Lemma 2 with the observation N(If(B)) = N(‖f(B)‖2)
N(J) ,

we get the following proposition.

Proposition 1. There exist non-zero constants c1 and d1 depending on A1, A2

, . . . , Ak, B and not depending on m ∈ Nk, such that N(If(B)) ≥ c1|d1|m, where m

is the maximum component of m.

We end this section with the following lemma.

Lemma 3. For a polynomial f =
∑k
i=1Aix

mi ∈ Mn(R)[x], there exist constants

c3, c4, c5 and c6 not depending on m such that

N(d(Mn(R), f)) ≤ c3N(a1)c4exp

(
c5m

c6
log(logm)

)
.
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Proof. Corresponding to the polynomial f =
∑k
i=1Aix

mi ∈Mn(R)[x], we construct

a new polynomial g =
∑k
i=0 aix

mi ∈ R[x], in which each ai is the (1, 1)th (or some

fixed position) entry of the matrix Ai for each 0 ≤ i ≤ k. Observe that

d(Mn(R), f) ⊇ d(R, f) ⊇ d(R, g).

Taking the norm, we obtain the following;

N(d(Mn(R), f)) ≤ N(d(R, f)) ≤ N(d(R, g)).

Using the fact that N(d(R, g)) ≤ c3N(a1)c4exp

(
c5m

c6
log(logm)

)
(see [14], Propo-

sition 2), where c3, c4, c5 and c6 are constants not depending on m, we conclude

that

N(d(Mn(R), f)) ≤ c3N(a1)c4exp

(
c5m

c6
log(logm)

)
,

completing the proof of the lemma.

3. A Generalization of Selfridge’s Question in the Case of the Ring of
Matrices

We start this section with our main theorem.

Theorem 5. Let f =
∑k
i=1Aix

mi ∈Mn(R)[x] be a polynomial and B ∈Mn(R) be

a matrix satisfying A.1, A.2 and A.3 of Question 2. Then there are finitely many

tuples in Nk, which are solutions to Question 2.

Proof. We know that d(Mn(R), f) is the ideal in R generated by all the entries of

f(A) for all A ∈ Mn(R). Also, the condition “the ideal generated by
∑k
i=1AiB

mi

contains the ideal generated by {
∑k
i=1AiC

mi : C ∈Mn(R)}” is equivalent to “If(B)

contains the ideal in R generated by all the entries of f(C) for all C ∈Mn(R)”. This

is equivalent to saying that d(Mn(R), f) ⊆ If(B). This implies N(d(Mn(R), f)) ≥
N(If(B)). Invoking Proposition 1 and Lemma 3, we sandwich N(d(Mn(R), f)) as

follows:

c1|d1|m ≤ N(d(Mn(R), f)) ≤ c3N(a1)c4exp

(
c5m

c6
log(logm)

)
.

Comparing the lower and upper bounds of N(d(Mn(R), f)), it follows that m is

bounded above and the statement of the theorem holds.

We strengthen Theorem 5 in the case when R is a special domain. The following

theorem is a generalization of Theorem 2.
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Theorem 6. Let R be the ring of rational integers Z or the ring of integers in

an imaginary quadratic number field and let A1, A2, . . . Ak be non-zero elements

of Mn(R). Then there are only finitely many elements B in Mn(R) for which

there exist k-tuples (m1,m2, . . . ,mk) ∈ Nk, not all zero, satisfying the following

simultaneously

(A.1) the ideal generated by
∑k
i=1AiB

mi contains the ideal generated by∑k
i=1Aix

mi for all x ∈Mn(R);

(A.2)
∑
i∈S AiB

mi 6= 0 for all S ⊆ {1, 2, . . . , k}.

Proof. The numbers m1, . . . ,mk must be distinct; otherwise, there is a possibility

of violation of the second condition of the theorem. Hence, we assume that m1 >

m2 > · · · > mk. The value of the Vandermonde matrix∣∣∣∣∣∣∣∣∣
1 2m1 22m1 . . . 2(k−1)m1

1 2m2 22m2 . . . 2(k−1)m2

...
...

...
. . .

...
1 2mk 22mk . . . 2(k−1)mk

∣∣∣∣∣∣∣∣∣
cannot be zero. Consequently, the matrices

f(2jI) =

k∑
i=1

Ai(2
jI)mi , where I is the identity matrix and 0 ≤ j ≤ k − 1,

cannot be the zero matrix for all 0 ≤ j ≤ k − 1, as this would imply that a

combination of the columns of the above Vandermonde matrix is zero. Now we

have

‖f(2jI)‖ ≤
k∑
i=1

‖Ai‖n
mi

2 2(k−1)mi < 2(k−1)m1n
m1

2

k∑
i=1

‖Ai‖. (3)

If ‖B‖ ≥ 2
∑k

i=2 ‖Ai‖
‖A1‖ , then we have

‖
k∑
i=2

AiB
mi‖ ≤

k∑
i=2

‖Ai‖‖B‖mi ≤ ‖A1‖‖B‖m1

2 ,

which implies
‖A1‖‖B‖m1

2 ≤ ‖f(B)‖. (4)

The condition f(B) ⊇ f(2jI) implies ‖f(B)‖ ≤ ‖f(2jI)‖, for the ring under

consideration. If ‖B‖ is large enough, then the lower bound in Equation (4) is

greater than the upper bound in Equation (3), which is a contradiction. Since

only finitely many elements in Mn(R) can have a given norm; hence our proof is

done.
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We end this section with the following question.

Question 3. Can we find the tuples explicitly which are the answer to Question

2?

4. Generalization to Several Variables

We can extend Theorem 5 and Theorem 6 to the multivariate case by induction on

the number of variables to get a generalization of Theorem 3 and Theorem 4. Here

we state the results formally for the sake of completeness and omit the proofs.

For given tuples m,n ∈ Nk, m ≤ n means each entry of the tuple m is less

than or equal to the corresponding entry of the tuple n. Also, we denote the tuple

(1, 1, . . . , 1) ∈ Nr by 1.

Theorem 7. Let f(x) =
∑k

i=1Aix
m1i1
1 x

m2i2
2 · · ·xmrir

r ∈Mn(R)[x] be a polynomial

in r variables and B1, B2, . . . , Br be matrices satisfying the following:

(A.1) The ideal generated by Bi is not the whole ring for all i = 1, 2, . . . , r.

(A.2) Either ρ(B∗iBi) > n or ρ((B∗iBi)
−1) > n for all i = 1, 2, . . . , r.

(A.3) Σi∈SAiB
m1i1
1 B

m2i2
2 · · ·Bmrir

r 6= 0, for any non-empty set S of {1, 2, . . . , k1}×
· · · × {1, 2, . . . , kr},

Then, there are only finitely many tuples (m1,m2 . . . ,mr) ∈ Nk1 ×Nk2 × . . .×Nkr
where mj = (mj1,mj2, . . . ,mjkj ) such that the ideal generated by f(B1, B2, . . . , Br)

contains the ideal generated by {f(A1, A2, . . . , Ar) ∀ (A1, A2, . . . , Ar) ∈Mn(R)r}.

Likewise, we can make an analogue of the Theorem 6 as follows.

Theorem 8. Let R be the ring of rational integers Z or the ring of integers in an

imaginary quadratic number field and let {Ai : 0 ≤ i ≤ k} and {Bi : 1 ≤ i ≤ k} be

non-zero elements of Mn(R). Then there are only finitely many elements {Bi : 1 ≤
i ≤ k} in Mn(R) for which there exist tuples (m1,m2, . . . ,mr) ∈ Nk1 ×Nk2 × . . .×
Nkr , not all zero, satisfying the following simultaneously

(A.1) Σi∈SAiB
m1i1
1 B

m2i2
2 . . . B

mrir
r 6= 0, for any non-empty set S of {1, 2, . . . , k1}×

· · · × {1, 2, . . . , kr},

(A.2) the ideal generated by f(B1, B2, . . . , Br) contains the ideal generated by {f(A1,

A2, . . . , Ar) ∀ (A1, A2, . . . , Ar) ∈Mn(R)r}.
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