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Abstract

Selfridge asked to investigate the pairs (m,n) of natural numbers for which 2™ —
2™ divides ™ — zx™ for all integers x. This question was answered by different
mathematicians independently by showing that there are only finitely many such
pairs. In the literature, various generalizations of this question have been studied
already. Let R be the ring of integers of a number field K and M, (R) be the ring
of all n» X n matrices over R. In the current article, we suggest a new kind of
generalization to Selfridge’s question in the case of M, (R).

1. Introduction

This article is devoted to a generalization of a question asked by Selfridge. Once
he observed that 22 — 2 divides n? — n,222 — 92 divides n2° — n? and 2222 — 9%
divides n2 — n2” for all n € N. Motivated by this example, he asked the question:
for what pairs of natural numbers m and n does (2™ — 2") divide («™ — 2") for
all integers 7 We do not know at what point in time he asked this question, but
it was published in the book “Unsolved Problems in Number Theory” by Richard
Guy (see [3], problem B47). In 1974, Ruderman posed a similar problem.

Question 1 (Ruderman [8]). Suppose that m > n > 0 are integers such that 2™ —2"
divides 3™ — 3. Show that 2™ — 2" divides 2™ — ™ for all natural numbers x.

This famous question is called ‘Ruderman’s problem’ in the literature and is still
open. Selfridge’s problem was answered for the first time by Pomerance [9] in 1977
by combining results of Schinzel [12] and Velez [10]. Q. Sun and M. Zhang [13] also
answered Selfridge’s question. Actually, there are fourteen such pairs which are the
solution of Selfridge’s question and the set of solutions is

S =1{(1,0),(2,1),(3,1),(4,2),(5,1),(5,3),(6,2),(7,3),(8,2), (8,4), (9,3), (14, 2),

(15,3),(16,4)}.
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In 2011, Ram Murty and Kumar Murty [5] proved that there are only finitely
many m and n for which the hypothesis in Question 1 holds. Hence a positive
solution to it will also lead to the answer to Selfridge’s question.

Once Selfridge’s question is answered thoroughly, a natural question arises: what
happens if we replace ‘2’ by ‘3’ or, more generally, by some other integer other than
+ 1. Bose [1] considered the question of finding solutions of b —b™ dividing a™ —a"
for all non-zero integer a, where m and n are positive integers with m > n and b
is an integer satisfying (b™ — b™) # 0. He proved that the above congruence has a
solution if and only if b = 2 and, in this case, solutions are precisely the members of S
defined above. Rundle [11] also examined two types of generalizations of Selfridge’s
problem.

Now, a natural question crops up in our mind: what happens if there are three or
more terms in Selfridge’s problem? More precisely, what are the tuples (mq, ..., my)
with positive entries such that for a given polynomial f(z) = Zle a;x™ € Z[x]
and given integer b, f(b) divides f(m) V m € Z, under reasonable conditions.

The arguments used to answer Selfridge’s question were elementary and will not
suffice to answer this question as already pointed out by Bose (see [1]). However,
the notion of the fixed divisor of a polynomial can be used to get rid of this impasse.
We first give a general definition of this notion (see Rajkumar, Reddy and Semwal,

[7)-
Definition 1. Let A be a ring and f(z) € Alz] be a polynomial in n variables.

Given S C A", the fized divisor of f over S, denoted by d(S, f), is defined as the
ideal of A generated by the values taken by f on S.

In the case of Z or a unique factorization domain (UFD), we manipulate Defini-
tion 1 as follows and this definition is more useful than the above definition in this
case.

Definition 2. For a polynomial f(z) € Z[x], its fixed divisor over Z is defined as

d(Z, f) =ged{f(a): a € Z}.

Now we paraphrase how this notion is helpful in the study of Selfridge’s question.
Observe that for a given a € Z\{£1}, (a™ — a™) divides (™ — ™) for all z € Z if
and only if (a™ — a™) divides d(Z, fmm,n), where fy, ., = 2™ — 2”. Hence, we must
have |a™ —a"| < d(Z, fm,n)- Now, if we can show that with finitely many exceptions
we always have

|am - an| > d(Zafm,n),

then it will lead to the conclusion that there could be only finitely many pairs, which
are the solutions. Vajaitu and Zaharescu [14]) used this argument to generalize
Selfridge’s question.
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In 1999, Vajaitu and Zaharescu [14] generalized Selfridge’s question in a number
ring and proved the following result.

Theorem 1 (Vajaitu and Zaharescu [14]). Let R be a number ring of an algebraic
number field and let a1, as,...,ar and b be non-zero elements of R. If b be a non-
unit, then there are only finitely many k-tuples (ny,na, ...,ny) € N* satisfying the
following simultaneously:

k k
Z a;b"* divides Z a;z}’ forallz € R
i=1 i=1

and
> aib" £ 0 forall S C {1,2,...,k}.
€S
Vajaitu and Zaharescu also strengthened the conclusion of Theorem 1 for the
ring of integers in a specific number field.

Theorem 2 (Vajaitu and Zaharescu [14]). Let R be the ring of rational integers Z
or the ring of integers in an imaginary quadratic number field and let aq, a9, .. ., ak
and b be non-zero elements of R. Then there are only finitely many elements in
R for which there exist k-tuples (nq,no,...,n,) € N¥, not all zero, satisfying the
following simultaneously:

k k
Z a;b™ divides Z a;x™ forallz € R
i=1 i=1

and
Zaib”i #0 for all S C{1,2,...,k}.
i€S
Theorem 1 generalizes Selfridge’s question to the case of a number ring. In 2004,
Choi and Zaharescu [2] generalized Theorem 1 in the case of n-variables.

Theorem 3 (Choi and Zaharescu [2]). Let R be the ring of integers in an alge-

braic number field and let by,bs, ..., b, be non-zero non-unit elements of R. Let
Qiy,...i, € R, 1 < iy < ki, 1 < iy < kyy, then there are only finitely many
n-tuples (my, my, ..., m,) € NP x NF2 x ... x NF» satisfying the following simul-
taneously:
k)l kn kl kn
Z - Z iy .. 7;nb;"'hil . b;n"in divides Z e Z ai, .. inx;nlil - x:lnm"
ii=1  ip=1 i1=1  i,=1
for all x € R" where m; = (mj1,...,myx,;) and

M4 Mni
E @iy, i by b M #£0

(ilv-uvin)es
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for all non-empty S C {1,2,...,k1} x -+ x{1,2,...,kn}.

Choi and Zaharescu also generalized Theorem 2 in this setting. We write the
statement for the sake of completeness.

Theorem 4 (Choi and Zaharescu [2]). Let R be the ring of rational integers Z
or the ring of integers in an imaginary quadratic number field. Fix n and choose
non-zero elements a;, ... ;, € R for all1 < iy < ky,...,1 < iy < ky,. Then there
are only finitely many n-tuples (by,ba,...,b,) with bj € R,j = 1,...,n, for which

there exists (myp,mg,...,m,) € NF x NF2 x ... x Nk» with none of the tuples
(my,ms,...,my,) having all the components equal to zero, satisfying the following,
simultaneously

kl kn k‘l kn

Z Z iy by - by divides Z Z iy, i@y Ly

ii=1  ip=1 i1=1  i,=1
for all x € R" where m; = (mj1,...,myx;) and

DT i BB £ 0
(i14eenyin)ES

for all non-empty S C {1,2,...,k1} x -+ x{1,2,...,kn}.

In this article, we consider a generalization of Theorem 1, Theorem 2, Theorem
3 and Theorem 4 in the case when the ring under consideration is that of n x n
matrices over a number ring. We denote by M,,(A), the ring of n X n matrices over
the given ring A. We use the notion of the fixed divisor of a polynomial as our
main tool in the generalization. In the case of the ring of the matrices over a ring,
a reasonable definition of the fixed divisor of a polynomial is suggested by Prasad,
Rajkumar and Reddy ([6], Section 7) with suitable justifications.

Definition 3. For a polynomial f € M, (A)[z], its fized divisor over M,(A) (or
d(M,(A), f)) is defined as the ideal in A generated by all the entries of f(C)V C €
M, (A).

Observe that here the fixed divisor is not considered as an ideal of the ring M, (A)
as usual. This definition is helpful in the study of fixed divisors and related topics.
For a given matrix M € M, (K), where K is any number field, recall that the norm

1
2

n
M= i,
i

makes the space (M, (K), || -||) a Banach algebra. The spectral radius p(M) of M
is defined as the largest absolute value of its eigenvalues. We suggest the following
generalization of Selfridge’s question.
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Question 2. Let Ay, As, ..., A, B be non-zero matrices in M,,(R) and B satisfy
the following

(A.1) The ideal generated by B is not the whole ring.

(A.2) Either p(B*B) > n or p((B*B)™!) > n, where B* is the conjugate transpose
of B.

(A3) SiesAiB™ £0Y S C{1,2,... k}.

Then, for how many tuples (mi,ma,...,mg) € NF, does the ideal generated by
S | A;B™ contain the ideal generated by {3 %, 4;,C™ : C' € M, (R)}?

We know that each ideal of M, (A) is of the form M, (I) for some ideal I C A.
Also, for each I C A, M,(I) is an ideal of M,(A). For the given ideals I and
J of A, the condition M, (I) C M,(J) is equivalent to saying that I C J. For a
matrix M € M, (A), we denote the ideal generated by all the entries of M in A by
Ips. Hence, we have to find the number of tuples (my, ma,...,my) € N¥_ for which
Ity 2 d(M,(A), f) where f =0 | Az

The structure of the paper is as follows. In Section 2, we give bounds for fixed
divisors by combining the arguments of Vajaitu and Zaharescu and fixed divisors.
Indeed, our work is motivated by the work of Vajaitu and Zaharescu. In Section 3,
we answer Question 2 by proving Theorem 5 and Theorem 6. Finally, in Section 4,
we suggest a further generalization of our theorems in the case of several variables
when the underlying ring is still M, (R).

2. Bounds for Fixed Divisors

We fix the notations for the whole paper. Let N denote the set of natural numbers
as usual. For a given tuple m = (my, ma,..., my) € N¥, m denotes the maximum
of m; where ¢ =1,2,...,k. The norm of an ideal I C R, where R is a number ring,
is denoted by N(I) and is the cardinality of the residue class ring R/I. The norm
of an element a € R is the norm of the ideal generated by the element, which is the
same as [[,cq o(a), where G is the set of all embeddings from R to C (see Marcus
4)).

To prove our main theorem, we need several lemmas. With all the notations as
in Question 2, we prove the following lemma, in which we consider the case when
p(B*B) > n. The other case can be handled by considering B~!.

Lemma 1. Let m = (my,...,ms) € N¥ and m be the supremum of the components
of m. Under the assumption A.3 above, there exist constants ¢ and d, independent

to m such that i

1> AB™ ) = cla™.

i=1
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Proof. We claim that || Zle A;B™i~™| > ¢, for a constant c. Denoting the differ-

ence m —m; by n; for i = 1,2,... k, we have to show || Zle A; B~ ™| > ¢. If this
is false then there would exist a sequence (11 ,,M2.,...,Ng,) of natural numbers
with min {ny ,,n2,,...,n%,} = 0 for each r, such that when r tends to infinity,

I Zle A;B~ ™| tends to zero. Let A C {1,2,...,k} be the largest subset such
that for each r € A there exists a natural number b,- and an infinite sequence M such
that n;, = b, for each r € A and i € M. Then, we have the following inequality:

k
15" 4B < [ S B 411 S A (1)
=1

i€A icAc
Here A° denotes the complement of A with respect to the set {1,2,...,k}. The
second term in Equation (1) can be bounded as follows:

I AT < Y A B .
icAe icAe
Recall that for any matrix M € M, (K), we have

IM]| < /np(M*M).

Since p(B*B) > n, the quantity

MNi,r

1B | < BT

e < (Vnp((BB) )

tends to zero as r tends to infinity. We rewrite the left-hand side of Equation (1)
as follows:

1Y AB™ + Y A;B

i€A i€Ac
which tends to zero as r tends to infinity. Observe that || ;. 4. A;B~"""|| also
tends to zero as r tends to infinity leading to the conclusion that

| ZAZ-B_bi|\ — 0.
icA
This implies that > ,., A;B~% = 0, which is a contradiction to A.3 of the
Question 2. Hence, we must have || Zle A;B™im™|| > c.
We know that for any pair of matrices X and Y in M, (R), we always have
XY < IX[Y]-

Consequently, we get
k

1> AiB™

i=1

> BT = | BTHIT™,

which completes the proof. O
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For a given matrix M = [m;;|nxn, we define
o(M) = [o(mij)]nxn

where o is an automorphism of K. With this definition in hand, we can prove that
o(||IM|?) = |lo(M)||?>. In Lemma 1 , we take the product over all the conjugates
of |f(B)|| and get N(||f(B)||*) > ¢/|d'|™, where ¢/ and d’ are new constants. It is
clear that || f(B)||* € I;(p); hence there exists an ideal J C R such that Iz)J =
(If(B)|I*). Recall that an element’s norm in a number ring is the same as the
norm of the ideal generated by that element. Hence, N (Iyp)J) = N(||f(B)|?) =
N(I¢gy)N(J). Now, we prove that N(J) is also bounded above.

Lemma 2. Let J be the ideal such that IypyJ = (|| f(B)|[*). Then there exist
constants ¢ and d' not depending on m such that N(J) < |d'|™.

Proof. Applying the norm on both sides of I;p)J = (||f(B)||?) we get

N(Ip5))N(J) = N(IF(B)]).

By the definition of the norm, we have N(Iygy) > 1, hence N(J) < N(||f(B)|?).
Consider, the following inequality:

k k
IFBI =11 AB™ | <> [l Alll BI™:. (2)

i=1 i=1
Since || B|| > 1, the right-hand side of the above equation is at most |B|™ Zle
lA;]], which is of the form ¢1|d1|™. Now, we take o(f(B)) in Equation 2 for all
automorphisms of K and then multiply them together. In this way, we get an upper
bound of the form /|d’|™ for N(||f(B)||?). This bound also serves as an upper
bound for N(J), completing the proof of the lemma. O
Combining Lemma 1 and Lemma 2 with the observation N (I;g)) = %{?”2),

we get the following proposition.

Proposition 1. There exist non-zero constants c¢1 and di depending on A1, As
..., A, B and not depending on m € N¥ such that N(Igy) = cildi|™, where m
s the mazximum component of m.

We end this section with the following lemma.

Lemma 3. For a polynomial f = Zle Aix™ € M,(R)[z], there exist constants
cs3,Cq, 5 and cg not depending on m such that

N(d(M,(R), f)) < caN(ar)*exp (cwmg&fgm> .
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Proof. Corresponding to the polynomial f = Zle A;z™ € M, (R)[z], we construct
a new polynomial g = Z?zo a;x™ € R[], in which each a; is the (1,1)"" (or some
fixed position) entry of the matrix A; for each 0 <14 < k. Observe that

d(Mn(R), f) 2 d(R, f) 2 d(R, g).
Taking the norm, we obtain the following;

N(d(My(R), f)) < N(d(R, f)) < N(d(R, g)).

€6
Using the fact that N(d(R,g)) < c3N(ay)exp (c5m10€(10gm)> (see [14], Propo-

sition 2), where c3,c4,c5 and ¢g are constants not depending on m, we conclude
that

N(d(M,(R), f)) < c3N(a1)**exp (c5mlog<ifgm > 7

completing the proof of the lemma. O

3. A Generalization of Selfridge’s Question in the Case of the Ring of
Matrices

We start this section with our main theorem.

Theorem 5. Let f = Zle A;z™i € M, (R)[x] be a polynomial and B € M, (R) be
a matriz satisfying A.1, A.2 and A.3 of Question 2. Then there are finitely many
tuples in N¥_ which are solutions to Question 2.

Proof. We know that d(M,(R), f) is the ideal in R generated by all the entries of
f(A) for all A € M,,(R). Also, the condition “the ideal generated by Zle A;B™i
contains the ideal generated by {Zle A;C™ 2 C € My(R)}” is equivalent to “Iy(p)
contains the ideal in R generated by all the entries of f(C') for all C € M, (R)”. This
is equivalent to saying that d(M,(R), f) C I¢). This implies N(d(M,(R), f)) >
N(Ifp)). Invoking Proposition 1 and Lemma 3, we sandwich N(d(M,(R), f)) as
follows:

Cé
c1]di|™ < N(d(Mn(R), f)) < csN(a1)*exp <C5mlog(10gm)) )

Comparing the lower and upper bounds of N(d(M,(R), f)), it follows that m is
bounded above and the statement of the theorem holds. O

We strengthen Theorem 5 in the case when R is a special domain. The following
theorem is a generalization of Theorem 2.
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Theorem 6. Let R be the ring of rational integers Z or the ring of integers in
an imaginary quadratic number field and let Ay, As, ... Ax be non-zero elements
of Mp(R). Then there are only finitely many elements B in M,(R) for which
there exist k-tuples (m1,ma,...,mg) € N¥, not all zero, satisfying the following
simultaneously

(A.1) the ideal generated by Zle A; B™i contains the ideal generated by
Zle Aiz™ for all x € My (R);
(A.2) > ,cq AiB™ #0 for all S C{1,2,...,k}.

Proof. The numbers my, ..., m; must be distinct; otherwise, there is a possibility
of violation of the second condition of the theorem. Hence, we assume that m; >
meo > +++ > my. The value of the Vandermonde matrix

1 2m 22m o p(k=l)m
1 9ma2 92m2  9(k=1)my
1 ogme gzme L pk-bm

cannot be zero. Consequently, the matrices

k
F(271) = ZAi(QjI)mi, where I is the identity matrix and 0 < j <k —1,
i=1
cannot be the zero matrix for all 0 < j < k — 1, as this would imply that a
combination of the columns of the above Vandermonde matrix is zero. Now we
have

K , L
7@ D) < 3 [ Aifn 2 20 0me < 9lDmay 5§ (3)
=1 =1

If |B|| > w, then we have

AL

k k
s m; A B||™1
I 4™ < 3 A Bl < LB
1=2 i=2
which implies
Aq|||BJ|™
IAUEIEE < 5(B)- (4)

The condition f(B) 2 f(27I) implies ||f(B)| < ||f(21)]|, for the ring under
consideration. If | B]| is large enough, then the lower bound in Equation (4) is
greater than the upper bound in Equation (3), which is a contradiction. Since
only finitely many elements in M, (R) can have a given norm; hence our proof is
done. O
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We end this section with the following question.

Question 3. Can we find the tuples explicitly which are the answer to Question
27

4. Generalization to Several Variables

We can extend Theorem 5 and Theorem 6 to the multivariate case by induction on
the number of variables to get a generalization of Theorem 3 and Theorem 4. Here
we state the results formally for the sake of completeness and omit the proofs.

For given tuples m,n € N¥, m < n means each entry of the tuple m is less
than or equal to the corresponding entry of the tuple n. Also, we denote the tuple
(1,1,...,1) e N" by 1.

Theorem 7. Let f(z) = Zi{:1 Asx "y € M, (R)[z] be a polynomial
in T variables and By, Ba, ..., B, be matrices satisfying the following:

(A.1) The ideal generated by B; is not the whole ring for all i =1,2,...,r.
(A.2) Either p(BfB;) >n or p((B;fB;)™') >n for alli=1,2,...,r.

(A.3) EiegAiBin“’lB;nQiQ < By £ 0, for any non-empty set S of {1,2,...,k1} x
cex {1,200k b

Then, there are only finitely many tuples (my, my ..., m,) € NFt x NF2 x | x Nkr
where m; = (mj1, mjo, ..., mjk,) such that the ideal generated by f(By, Bz, ..., B;)
contains the ideal generated by {f(A1, Ag, ..., Ar) YV (41, A4s,...,Ay) € M, (R)"}.

Likewise, we can make an analogue of the Theorem 6 as follows.

Theorem 8. Let R be the ring of rational integers Z: or the ring of integers in an
imaginary quadratic number field and let {A; : 0 <i<k} and {B; : 1 <i <k} be
non-zero elements of M, (R). Then there are only finitely many elements {B; : 1 <
i <k} in M,(R) for which there exist tuples (my, my, ..., m,) € NF1 x NF2 x . x
Nk not all zero, satisfying the following simultaneously

(A.1) Sies B By . By # 0, for any non-empty set S of {1,2,... k1 } x
e X {1’25"'akr}a

(A.2) the ideal generated by f(B1, Ba, ..., B,) contains the ideal generated by { f (A1,
Aoy ALV (A, As, .o A) € M (R)7}.
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