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Abstract

The number of Dyck paths of semilength n is famously Cn, the nth Catalan num-
ber. This fact follows after noticing that every Dyck path can be uniquely parsed
according to a context-free grammar. In a recent paper, Zeilberger showed that
many restricted sets of Dyck paths satisfy different, more complicated grammars,
and from this derived various generating function identities. We take this further,
highlighting some combinatorial results about Dyck paths obtained via grammatical
proof and generalizing some of Zeilberger’s grammars to infinite families.

1. Introduction

As Flajolet and Sedgewick masterfully demonstrate in their seminal text, Analytic

Combinatorics [4], mathematicians have occasionally borrowed the study of formal

languages from computer science and linguistics for combinatorial reasons. Many

combinatorial classes can be reinterpreted as languages generated by certain gram-

mars, and these grammars often make writing down generating functions, another

favorite combinatorial tool, routine. Such grammars are sometimes called “combi-

natorial specifications.”

For example, consider the well-known Dyck paths. A Dyck path is a finite list of

+1’s and −1’s whose partial sums are nonnegative, and whose sum is 0. We will

write U (up) for +1 and D (down) for −1. Thus, the following are all Dyck paths:

UUDD

UDUD

UUUDUDDD
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A Dyck path must have even length, and for this reason we often refer to Dyck

paths of semilength n (length 2n).

The number of Dyck paths of semilength n equals the nth Catalan number,

Cn =
1

n+ 1

(
2n

n

)
.

There are many proofs of this fact, but here is a grammatical proof.

Let P denote the set of all Dyck paths. Then, P is generated by the unambiguous,

context-free grammar

P = ε ∪ UPDP, (1)

where ε denotes the empty string. In words, a path is either empty or begins with a

U , is followed by a Dyck path (shifted to height 1), a D, then another Dyck path.1

This is a unique parsing of all Dyck paths.

Given a set of objects E each with a nonnegative integer size, let GF (E) =∑
k≥0 |E(k)|zk be a formal generating function, where |E(k)| is the number of

objects of size k in E. The main result about formal grammars is that, in an

unambiguous context free grammar,

GF (A ∪B) = GF (A) +GF (B),

for disjoint clauses A and B, and

GF (AB) = GF (A)GF (B),

where A∪B is the union of the words of A and the words of B, and AB stands for

“concatenation of words of A with words in B.” The “sizes” of a grammar are the

lengths of the words it generates.

In our case, if P (z) is the generating function for the number of Dyck paths of

semilength n, then the grammar (1) implies

P (z) = GF (ε) +GF (UPDP)

= 1 + zP (z)2.

The generating function C(z) for the Catalan numbers also satisfies

C(z) = 1 + zC2(z),

and since there are only two possible solutions, it is not hard to see that P (z) =

C(z).

The grammatical technique offers a unifying framework: Devise a grammar and

you get an equation. Sometimes the equations turn out to be well-known or simple.

1Note that D denotes the first time the path returns to height 0.



INTEGERS: 21 (2021) 3

Other times they are new and messy. The enumeration of all Dyck paths is one

application of this framework, and here we want to demonstrate others. In particu-

lar, we will give grammatical proofs of several combinatorial facts about restricted

Dyck paths, and also establish several infinite families of grammars in closed form.

First, let us define the restrictions we shall consider.

Definition 1. Given a Dyck path, the height of the path at position k is the partial

sum of its first k terms. A peak of a Dyck path at height h (or simply “at h”) is

the bigram UD where the height of the path after the U is h. Similarly, a valley

occurs at the bigram DU , and its height is analogously defined. The empty path

has, by convention, a peak at 0 but no valley.

Definition 2. Given a sequence of steps L, define Ln to be the repetition of L n

times. (For example, U2 = UU and (UD)3 = UDUDUD.) A Dyck path has an

up-run of length n provided that it contains at least one Un that is not preceded

nor followed by U . Similarly, it contains a down-run of length n provided that it

contains at least one Dn that is neither preceded nor followed by D.

We will study Dyck paths whose peak heights, valley heights, up-run lengths,

and down-run lengths avoid certain sets. We will, for example, discuss the set of

all Dyck paths whose peak heights avoid {2, 4, 6, . . . } and have no up-run of length

greater than 2.

Definition 3. For arbitrary sets of positive integers A, B, C, and D, let

P(A,B,C,D) be the set of Dyck paths whose peak heights avoid A, whose val-

ley heights avoid B, whose up-run lengths avoid C, and whose down-run lengths

avoid D. Let PA,B,C,D(z) be be the generating function for the number of Dyck

paths of semilength n in P(A,B,C,D).

Some of these sets have been studied. In [8], Peart and Woan provide a continued-

fraction recurrence for the generating functions P{k},∅,∅,∅(z). In [3], Eu, Liu, and

Yeh take this idea further and express PA,∅,∅,∅(z) as a finite continued fraction

whenever A is finite or an arithmetic progression. In [5], Hein and Huang enumerate

the number of Dyck paths which avoid up-runs of length k after a down step.

In [2], Zeilberger presents a rigorous experimental method to derive equations for

PA,B,C,D(z) when the sets involved are finite or arithmetic progressions. Proving

“by hand” some of Zeilberger’s interesting discoveries ex post facto was a motivation

for the present work. We generalize some of Zeilberger’s results to infinite families

which are likely out of reach for symbolic methods.

Our results include several explicit grammars (and therefore generating function

equations) for infinite families of the sets A and B, and also grammatical proofs

of several interesting special cases suggested in [2]. Many of these—any grammars

referencing restrictions on up- or down-runs—are not in [3]. Some of our results are
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suggested in the OEIS [6]; see, for example, A1006 (Motzkin numbers) and A004148

(generalized Catalan numbers).

The remainder of the paper is organized as follows. Section 2 presents some re-

sults discovered by experimentation with software from [2] and proven with gram-

matical methods. Section 3 presents some infinite families of explicit grammars.

Section 4 offers some concluding remarks about the limitations of grammars.

2. Combinatorial Results

In this section we will present a number of results with grammatical proofs.

Proposition 1. The number of Dyck paths of semilength n whose peak heights

avoid {2r + 3 | r ≥ 0} and whose up-runs are no longer than 2 is 1 when n = 0,

and 2n−1 when n ≥ 1.

Proof. Let P be the set of all such Dyck paths, and Q the set of all Dyck paths

which avoid peaks in {2r+2} and up-runs longer than 2. Note that P and Q satisfy

the following grammar:

P = ε ∪ UDP ∪ UUDQDP
Q = ε ∪ UDQ.

This implies the following system of equations:

P = 1 + zP + z2QP

Q = 1 + zQ.

Thus, Q(z) = (1− z)−1 (the only path in Q of semilength n is (UD)n), and

P (z) =
1− z
1− 2z

.

Therefore, [z0]P (z) = 1, and [zn]P (z) = 2n−1.

The following proposition concerns generalized Catalan numbers (see A4148 in

the OEIS and [9]). These numbers are defined by the recurrence

G0 = 1

G1 = 1

Gn+2 = Gn+1 +
∑

1≤k<n+1

GkGn−k.

Proposition 2. The number of Dyck paths of semilength n whose peak heights

avoid {2r + 3 | r ≥ 0} and whose up-runs are no longer than 3 equals the (n+ 1)th

generalized Catalan number.
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Proof. Let P, O, and E be the set of all Dyck paths with up-runs no longer than 3,

and whose peak heights avoid {2r+3 | r ≥ 0}, {2r+2 | r ≥ 0}, and {2r+1 | r ≥ 0},
respectively. Observe that P, O, and E satisfy the following grammar:

P = ε ∪ UDP ∪ UUDODP
O = ε ∪ UDO ∪ UUUDODEDO
E = ε ∪ UUDODE .

This grammar implies the following equations:

P = 1 + zP + z2OP

O = 1 + zO + z3EO2

E = 1 + z2OE.

This system has two possible solutions for P , but only one is holomorphic near the

origin, namely

P (z) =
2

1− z − z2 + (z4 − 2z3 − z2 − 2z + 1)1/2
.

The generating function G(z) for the generalized Catalan numbers is (see A4148 in

the OEIS)

G(z) =
1− z + z2 − (1− 2z − z2 − 2z3 + z4)1/2

2z2
,

and it is routine to verify that G(z) = zP (z) + 1. Therefore Gn+1 = [zn]P (z) for

n ≥ 0.

The following proposition is concerned with Motzkin numbers (see A1006 in the

OEIS and [1]). A Motzkin path is like a Dyck path, but includes a “sideways” step

S which does not change the height. The nth Motzkin number Mn is the number

of Motzkin paths of length n. The generating function M = M(z) for Mn satisfies

the quadratic equation

M = 1 + zM + z2M2.

There are numerous bijections between Motzkin paths and various restricted

classes of Dyck paths. Such bijections are often variations of the “folding” map

UD 7→ S

DU 7→ S

UU 7→ U

DD 7→ D,

which in general is not injective, but many restrictions on Dyck paths make it

injective. For example, this idea shows that the Dyck paths of semilength n with
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no up-runs longer than 2 are in bijection with the Motzkin paths of length n. We

offer a grammatical proof of this fact.

Proposition 3. The number of Dyck paths of semilength n which avoid up-runs of

length 3 or more equals the nth Motzkin number Mn.

Proof. Let P be the set of such paths. A grammar for P is

P = ε ∪ UUDPDP ∪ UDP.

Our grammar implies that

P = 1 + zP + z2P 2.

This is the same equation satisfied by the Motzkin generating function, and it is

easy to check that P (z) = M(z).

Proposition 4. Consider the set of Dyck paths such that no peak or valley has

positive, even height. The numbers of such paths of semilength 2n and 2n + 1 are(
2n−1

n

)
and

(
2n
n

)
, respectively.

Proof. Let P denote the set of such paths, and let O denote the set of all Dyck

paths whose peaks and valleys avoid odd heights. These sets satisfy the following

grammars

P = ε ∪ UODP,
O = ε ∪ UUODDO.

This grammar can be translated into the following equations:

P = 1 + zOP, and

O = 1 + z2O2

Solving this system for O, we get two solutions for O, but only the following is

holomorphic near the origin

O =
1−
√

1− 4z2

2z2
.

Thus,

P =
2z − 1−

√
1− 4z2

2(2z − 1)
,

and it is easy to check that

[z2n]P (z) =

(
2n− 1

n

)
, and

[z2n+1]P (z) =

(
2n

n

)
.
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Now, let us define a mapping which allows us to translate restrictions on up-run

(respectively, down-run) lengths into restrictions on down-run (respectively, up-run)

lengths. Let P denote the set of all Dyck paths. Define the mapping

φ : P → P, P 7→ Q, (2)

where applying φ reverses the order and direction of the steps in P . For example,

φ(UUUDUUDDDDUD) = UDUUUUDDUDDD.

It is obvious that φ(P ) must be a Dyck path. Moreover, it is easy to check that

φ is an involution. Note that the up-runs (respectively, down-runs) in P become

down-runs (respectively, up-runs) in φ(P ) of the same length.

Proposition 5. Let A and B be arbitrary sets of positive integers. The number of

Dyck paths of semi-length n which avoid up-runs and down-runs with lengths in A

and B, respectively, equals the number of Dyck paths of semi-length n which avoid

down-runs with lengths in A and up-runs with lengths in B.

Proof. Let P(A,B) be the set of Dyck paths such that no up-run has length in A

and no down-run has length in B, and P(B,A) be the set of Dyck paths such that

no up-run has length in B and no down-run has length in A. Then φ – defined in

equation 2 – gives a one-to-one correspondence between the Dyck paths of semi-

length n in P(A,B) and the Dyck paths of semi-length n in P(B,A).

Note that φ also allows us to translate the grammar of P(A,B) into the grammar

of P(B,A), as seen in the following section.

3. Grammatical Families

In this section we provide some explicit grammars for infinite families of restricted

Dyck paths. In many cases, such grammars are guaranteed to exist. The reasoning

in [2] shows that, for every set of Dyck paths whose peaks, valleys, and up- and

down-runs avoid specific arithmetic progressions, we may construct a finite, context-

free grammar which generates them. The method implied in [2] to compute these

grammars gives no hint as to their form, and this is what we try to provide here.

Our first two results are about Dyck paths whose up-run lengths avoid a fixed

arithmetic progression {Ar+B | r ≥ 0}; each of these is accompanied by a corollary

on Dyck paths that avoid down-run lengths in {Ar +B | r ≥ 0}. It turns out that

when B < A, there is a simple context-free grammar for such paths. When B ≥ A
the situation is more complicated, but we can derive a “grammatical equation”

which again leads to a generating function.
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Proposition 6. Let B < A be non-negative integers. The set P of Dyck paths

whose up-run lengths avoid {Ar +B | r ≥ 0} has the unambiguous grammar

P =

 ⋃
0≤k<A
k 6=B

Uk(DP)k

 ∪ UA(PD)AP,

and therefore

P (z) =

 ∑
0≤k<A
k 6=B

zkP k(z)

+ zAPA+1(z),

where P (z) is the weight-enumerator of P.

Proof. The grammar clearly uniquely parses the empty path, so suppose that P ∈ P
has length n > 0. Then P starts with a up-run of length k > 0 for some k 6≡ B

mod A. If k < A, then write P = UkDW , where W is a walk from height k − 1

to height 0 with the same restrictions on up-runs as P . For 0 ≤ i < k − 1, let Di

indicate the down-step in W which hits the height i for the first time. Then

W = Pk−1Dk−2Pk−2Dk−3...P1D0P0,

where Pi is a Dyck path shifted to height i with the same restrictions on up-runs

as P . This uniquely parses P into the case Uk(DP)k in the grammar.

If the initial up-run has length k ≥ A, then write P = UAW , where W is a

walk from height A to height 0 whose up-run lengths avoid {Ar + B | r ≥ 0}. By

argument analogous to the previous paragraph, we can decompose W as

W = PADA−1PA−1DA−2...P1D0P0,

where Pi ∈ P. Thus W is of the form (PD)AP, and this uniquely parses P into

the final case of the grammar.

We have shown that P is contained in the language generated by this grammar,

and it is easy to see that the first k cases of the grammar are contained in P. The

final case, UA(PD)AP, is also contained in the grammar, because concatenating

UA to the beginning of a path does not change the length any of the up-runs modulo

A. The different cases are clearly disjoint, so the grammar is also unambiguous.

Corollary 1. Let A,B ∈ Z≥0 such that B < A. The set P of Dyck paths avoiding

down-run lengths in {Ar +B|r ∈ Z≥0} has the unambiguous grammar

P =

 ⋃
0≤k<A

k 6=B

(PU)kDk

 ∪ P(UP)ADA,
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and therefore

P (z) =

 ∑
0≤k<A
k 6=B

zkP k(z)

+ zAPA+1(z),

where P (z) is the weight-enumerator of P.

Proof. Let φ be the involution defined in equation 2, and let Q be the set of Dyck

paths avoiding up-run lengths in {Ar +B|r ∈ Z≥0}. By proposition 6,

Q =
⋃

0≤k<A
k 6=B

Uk(DQ)k ∪ UA(QD)AQ.

Since

φ(Q) = P,
φ(Uk(DQ)k) = (PU)kDk, for all 0 ≤ k < A, and

φ(UA(QD)AQ) = P(UP)AUA,

φ translates the grammar of Q into the desired grammar for P.

Proposition 7. Let A ≤ B be nonnegative integers. The set P of Dyck paths

avoiding up-run lengths in {Ar +B | r ≥ 0} satisfies the “grammatical equation”

P ∪ UB(DP)B =

 ⋃
0≤k<A

Uk(DP)k

 ∪ UA(PD)AP,

and therefore

P (z) + zBP (z)B =

 ∑
0≤k<A

zkP k(z)

+ zAPA+1(z),

where P (z) is the weight-enumerator of P.

Note that the right-hand side is nearly identical to proposition 6; the difference

being that we can get paths in UB(DP)B , which we will show below.

Proof. If P is a path in P, then we can uniquely parse P into a case of the right-hand

side by the same argument given in the previous proposition. Note that

UB(DP)B = UAUB−A(DP)B

= UA{UB−A(DP)B−A}(DP)A

= UA[{UB−A(DP)B−A}D(PD)A−1]P.
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The expression in brackets, UB−A(DP)B−A, is in P, which shows that UB(DP)B

is contained in UA(PD)AP.

Conversely, it remains to show that the left-hand side is all that the right-hand

side can generate.
⋃

0≤k<A U
k(DP)k is contained in P as in the previous proposi-

tion. For W ∈ UA(PD)AP, write

W = UAP1D . . . PADPA+1.

Let ` be the length of the initial up-run in P1. If ` 6≡ B (mod A), then W contains

no up-runs of lengths in {Ar + B | r ≥ 0} and is a path in P. If ` ≡ B (mod A),

then ` ≤ B − A. If ` < B − A then the initial run of W has length less than B.

Thus, W contains no up-runs of lengths in {Ar+B | r ≥ 0}. For ` = B−A, let Di

denote the first time W steps down to height i for A < i < B and write

W = UAP1D . . . PADPA+1

= UA(UB−ADB−1WB−1 . . . DAWA)DP2D . . . PADPA+1

= UBDB−1WB−1 . . . DAWADP2D . . . PADPA+1.

Wi is Dyck path shifted to height i by the definition of Di. Hence, W ∈ UB(DP)B .

Corollary 2. Let A,B ∈ Z≥0 such that B ≥ A. The set P of Dyck paths avoiding

down-run lengths in {Ar +B|r ∈ Z≥0} satisfies the grammatical equation

P ∪ (PU)BDB =
(⋃

0≤k<A
(PU)kDk

)
∪ P(UP)ADA.

and therefore

P (z) + zBPB(z) =

 ∑
0≤k<A

zkP k(z)

+ zAPA+1(z).

where P (z) is the weight-enumerator of P.

Proof. Let φ be the involution defined in equation 2, and let Q be the set of Dyck

paths avoiding up-run lengths in {Ar + B|r ∈ Z≥0}. Applying φ to each clause of

the grammar of Q given in proposition 7, we get

P ∪ (PU)BDB =
(⋃

0≤k<A
(PU)kDk

)
∪ P(UP)ADA,

as desired.

Proposition 8. Let r ∈ Z+. The set P of Dyck paths avoiding ascending and

descending runs of lengths in {1, ..., r} satisfies the grammatical equation

P ∪ UDP = ε ∪ Ur+1Dr+1P ∪ UPDP.
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and therefore

P (z) + zP (z) = 1 + zr+1P (z) + zP 2(z),

where P (z) is the weight-enumerator of P.

Proof. If P ∈ P is the empty path, then the grammar uniquely parses P . Otherwise,

P ∈ P must begin with an ascending run of length ` > r. If ` = r + 1, then clearly

Ur+1 must be immediately followed by the descending run Dr+1, and P is uniquely

parsed into the case Ur+1Dr+1P.

If ` > r+ 1, then let D0 denote the step where P returns to height 0 for the first

time and write

P = UP1D0P2.

It is obvious that P2 ∈ P and P1 is a Dyck path shifted to height 1. By restrictions

on P , the final descending run in P1 must have length L ≥ r. If L = r then the

preceding ascending run ends at height r + 1. But the ascending runs in P must

have length of at least r+1, and hence P1 hits height 0, contradicting the definition

of D0. From here, it is clear that P1 has the same restrictions on ascending and

descending runs as P . Thus, P is uniquely parsed into the case UPDP.

Since it is trivial that UDP is contained in UPDP, we have shown that the left-

hand side of the given equation is generated by the right-hand side. It is also obvious

that the cases defined on the right-hand side are disjoint and that ε∪Ur+1Dr+1P is

contained in P. A path UP1DP2 ∈ UPDP is contained in UDP if P1 is the empty

path and P otherwise. Thus, P satisfies the given grammatical equation.

Proposition 9. Let m,n ∈ Z+. The set P of Dyck paths avoiding ascending runs

of lengths in {1, ...,m} and descending runs of lengths in {1, ..., n} satisfies the

grammatical equation

P ∪ UDP = ε ∪ UPDP ∪ Um+1Dn+1(PD)m−nP, if m ≥ n (3)

P ∪ PUD = ε ∪ PUPD ∪ P(UP)n−mUm+1Dn+1, if m ≤ n. (4)

Proof. We have already shown that this statement is true for m = n. Suppose m >

n. If P ∈ P is the empty path, then the grammar uniquely parses P . Otherwise,

P must begin with an ascending run of length ` > m. If ` = m + 1 then Um+1 is

followed by a descending chain of length of at least n + 1. Let Di denote the first

time P returns to height i for 0 ≤ i ≤ m− n− 1, and write

P = Um+1Dn+1Pm−nDm−n−1...P1D0P0.

It is obvious that Pi is a Dyck path, shifted to height i, that has the same restrictions

on ascending runs and descending runs (with the exception of the final descending
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run) as P . Since Pi is a Dyck path, its final descending run must be at least as long

as the ascending run preceding it. Thus, Pi is either the empty path or ends with

a descending run of length L > m > n. Thus, P is uniquely parsed into the case

Um+1Dn+1(PD)m−nP.
If ` > m+ 1 then, letting D0 denote the first time P returns to height 0, write

P = UP1D0P0.

Clearly, P0 ∈ P, and P1 is a Dyck path shifted to height 1 and has the same

restrictions on ascending runs as P . Using the same argument as for Pi in the

previous case, the descending runs in P1 also have the same restrictions as P . This

uniquely parses P into the case UPDP. Finally, it is obvious that UDP is contained

in UPDP, so the left-hand side of (1) is generated by the right-hand side.

It is clear that the cases on the right-hand side are disjoint, and the empty path

is an element of P. Also, UP1DP2 ∈ UPDP is contained in P if P1 is not the empty

path, and is contained in UDP otherwise. Um+1Dn+1(PD)m−nP is contained in

P, since all ascending runs clearly avoid restrictions on P and the descending runs

are formed by concatenating down-steps to descending runs of length of at least

n− 1. Thus, we have proved the grammar for the case m ≥ n.
Now assume that n ≥ m. Applying the involution φ from equation 2, we can

directly translate the grammar 3 into the desired grammar 4.

Proposition 10. Let r, k ∈ Z+ and let P be the set of Dyck paths avoiding ascend-

ing runs of length {1, ..., r} and descending runs of length {k + 1, ..., r}. Then the

‘grammar’ of P is

P ∪ UDP ∪ Ur+1Dk(DP)r+1−k = ε ∪ UPDP ∪ Ur+1Dr+1P ∪ Ur+1(DP )r+1

Proof. If P ∈ P is the empty path, then the grammar uniquely parses P . Otherwise,

P begins an ascending run of length ` > r, and we can deduce that it also ends

with a descending run of length L > r. If ` > r + 1, then let D0 denote the first

time that P returns to the x−axis and write

P = UP1D0P0.

It is easy to see that P0 is a path in P and P1 is a Dyck path shifted to height

1. The initial ascending run in P1 has length ` − 1 > r. Thus, all ascending runs

in P1 have length of at least r + 1 and, since P1 is a shifted Dyck path, the final

descending run in P1 must also have length of at least r + 1. From here, it is easy

to see that P1 has the same restrictions on ascending and descending runs as P . P

is therefore uniquely parsed into the case UPDP.
Suppose ` = r + 1. Let Di be the step where P returns to height i for the first

time and write

P = Ur+1DrPr...D0P0.
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Pi is a Dyck path for all i and, if Pi is not the empty path, it must end with a

descending run of length r+ 1 by restrictions on ascending runs. Thus Pi is a path

in P, and P is parsed into the case Ur+1(DP)r+1.

It is trivial that UDP is contained in UPDP and Ur+1Dk(DP)r+1−k is contained

in Ur+1(DP)r+1. Thus, the left-hand side is generated by the right-hand side. Note

that, on the left-hand side,

UDP ∩ P = UDP ∩ Ur+1Dk(DP)r+1−k = ∅,

however

P ∩ Ur+1Dk(DP)r+1−k = Ur+1Dr+1P.

Looking at the right-hand side, it is clear that ε, UPDP, and Ur+1(DP)r+1 are

disjoint, and Ur+1Dr+1P is contained in Ur+1(DP)r+1. Note that this resolves the

issue of double counting paths in Ur+1Dr+1P on the left-hand side. Thus, all that

remains to show is that all the paths generated by the right-hand side are contained

in the left-hand side.

The path UP1DP0 in UPDP is clearly in P if P1 is not the empty path and in

UDP otherwise. For W in Ur+1(DP)r+1, write

W = Ur+1DrPr...D1P1D0P0.

Choose the smallest i such that Pr−i is not the empty path or, if no such i exists,

set i = r. Then the first descending run in W has length i+ 1. If i ≥ k then W is

an element of Ur+1Dk(DP)r+1−k. Otherwise, we claim that W is a path in P. It

is clear that W is a Dyck path and we have seen that nonempty Pj ∈ P must end

in a descending run of length of at least r + 1. Thus, we only need to show that

the first descending run in W follows the restrictions in P. This is clearly true since

i < k. Hence W ∈ P, and P satisfies the grammatical equation as desired.

4. Conclusion

We have given several grammatical proofs of various combinatorial results about

restricted Dyck paths and established some infinite families of grammars. Our

methods work because we are able to derive context-free grammars describing cer-

tain restricted classes Dyck paths, namely when our restrictions involved sets of

arithmetic progressions.

It is natural to ask if context-free grammars exist for other types of restrictions.

Parikh’s theorem [7] states that the set of lengths of any context-free language is the

union of finitely-many arithmetic progressions, so it seems likely that restrictions

involving arithmetic progressions are essentially all that can be done. However,

addressing this question in full is beyond our current scope.
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