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Abstract

We prove the non-existence of Mersenne primes M on F2[x] such that all prime

divisors of the cyclotomic polynomial Φp(M) are also Mersenne in a few new cases.

1. Introduction

The following problem has attracted some interest (see [1, 2, 3, 5, 6, 9, 10, 17, 18, 19,

21, 22, 23]). Let f(x) be an irreducible polynomial over a finite field Fq, let g(x) be a

polynomial over the same field. What can be said about the composite polynomial

F (x) = f(g(x))? The second polynomial g(x) has been chosen as a power of x,

as a linearized polynomial, e.g., g(x) = xp
r − x with p the characteristic of Fq, or

as a quotient A/B of two other polynomials. In particular, recently Panario et al.

[21] worked on the case g(x) = 1/(cx+ 1), with nonzero c ∈ Fq, in order to obtain

conditions such that f(x) irreducible implies F (x) irreducible. More generally, Lidl

and Niederreiter [20], and Swan [25], give the most classic results about polynomials

over finite fields.

However, to our knowledge, one has not yet considered the case in which g(x) 6=
f(x) is itself an irreducible polynomial of some specific type. Our choice in the

present paper is to take for g(x) a binary polynomial (reason: we might think of

the ring F2[x] as the closest analogue of the integers Z), and for f(x) the cyclotomic

polynomial Φp(x) = (xp + 1)/(x+ 1) ∈ F2[x], with p a prime number.

A few words on the notation used throughout the paper. If A ∈ F2[x] is irre-

ducible then we say that A is prime, and a Mersenne polynomial M ∈ F2[x] (an

analogue of a Mersenne number) is a polynomial such that M + 1 is a product of

powers of x and powers of x + 1. We say that M + 1 splits. When a Mersenne

polynomial M is irreducible, we say that M is a Mersenne prime. A binary poly-

nomial A is complete [7] if all coefficients of A are equal to 1. A binary polynomial

B is odd if B(0) = B(1) = 1, otherwise B is even. More standard notations are

the following: ω(P ) is the number of pairwise distinct prime factors of P ∈ Fq[x], q
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even, op(b) is the multiplicative order of a nonzero element b of the finite field Fp,

o(α) is the multiplicative order of an element α in some appropriate extension of

F2, ord(H) is the minimal positive integer m such that the binary polynomial H

divides the binomial xm − 1. Finally, F2 is a fixed algebraic closure of F2.

It is easy to check that Φp(x) is square-free, but very little is known about its

prime (i.e., irreducible) factors [20, Theorem 2.47]. The special equation that we

consider, in which we take f(x) = Φp(x) and g(x) = M , with M a Mersenne prime,

is the following:

Φp(M) = M1 · · ·Ms. (1)

Equation (1) is related to the search of perfect polynomials over F2[x] (binary perfect

polynomials); see [7, 8, 11, 12, 13, 14, 15, 16]. We recall that a binary perfect

polynomial A is defined by the equality σ(A) = A, where σ(A) =
∑

D|AD ∈ F2[x]

is the sum of all divisors of A, including 1 and A. For coprime binary polynomials

X,Y one has, as over the integers Z, σ(XY ) = σ(X)σ(Y ). The σ function is more

natural, but also more complex, than the usual sum of divisor function σ1(A) =∑
D|A 2deg(A). For instance, some divisors D of A can sum up to 0, while a sum

over D of 2degD is always positive. It is easy to check that for any non-negative

integer n, the polynomial T (n) = (x(x + 1))2
n−1 is (trivial) perfect. There are

only 11 non-trivial (known) binary perfect polynomials. We call them sporadic

perfect. The exact link with our Equation (1) is that if Equation (1) holds then

we are able to characterize 9 of these 11 sporadic perfect, as the only even binary

perfect polynomials, all of whose odd prime divisors (i.e., prime divisors coprime

with x(x+ 1)) are Mersenne primes [14, 15, 16].

The binary perfect polynomials are a polynomial analogue of the multiperfect

numbers over Z since for A ∈ F2[x], σ(A)/A ∈ F2[x] is equivalent to A = σ(A).

Canaday [7], the first Ph. D. student of Leonard Carlitz, started the work on binary

perfect polynomials in 1941.

Equation (1) seems very difficult to resolve. The contribution of the present

paper consists in giving a simple generalization of some properties of the only known

example, Equation (2), as well as describing a simple necessary condition.

The following theorem is our main result.

Theorem 1. Let p be an odd prime number and let s be a positive integer. Let

M := xa(x+1)b+1 ∈ F2[x] be a Mersenne prime, and T := M+1. For j = 1, . . . , s,

let Mj := xaj (x + 1)bj + 1 be a Mersenne prime. Let kj := deg(Mj)/op(2), let K0

be the number of k’s such that ak = 1, and let K1 be the number of `’s such that

b` = 1. Consider Equation (1), i.e.,

1 +M + · · ·+Mp−1 = M1 · · ·Ms.

Consider also the statements:
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(a) K0 is even when (without loss of generality) a is even and b is odd; K1 is even

when b > 1, and K1 ≡ (p−1)/2 (mod 2) when b = 1. If both a and b are odd,

then K0 ≡ 0 (mod 2) when a > 1, while K0 ≡ (p−1)/2 (mod 2) when a = 1.

Moreover, a = 1 implies that K1 ≡ 0 (mod 2) when b > 1, and implies that

K1 ≡ (p− 1)/2 (mod 2) when b = 1.

(b) For some j the Euclidean (Long Division) division of M by Mj gives a re-

mainder equal to x, and 4 does not divide the degrees of all Mj.

(c) The degree of M is a prime number q, and, for some positive integers c, s,

k1, . . . , ks are in an arithmetic progression k1 := c, k2 := c + 1, . . . , ks :=

c+ s− 1.

(d) One has k1 ≤ k2 and k2 = · · · = ks = d, where d is bounded from above by

a constant d0, (in particular this holds in Equation (2)), and deg(M) is big

enough relative to p.

(e) One has p 6= 7, and Φp(x) | Φp(M) (say, M1 = Φp(x)), all the other Mjs

have the same degree d > p − 1. Moreover, deg(M) − 1 is a prime number,

and deg(M) is big enough relative to p.

We assume in each of the statements (b), (c), (d), and (e), that 2 is a primitive

root of unity modulo p.

We have that Equation (1) implies (a). Moreover, Equation (1) is impossible

when any of the statements (b), (c), (d), or (e), hold; besides in the only two known

cases in which Equation (1) holds (switch x and x + 1 to obtain the other case ):

p = 3, s = 2, M = x(x+1)2+1 = x3+x+1, M1 = x2+x+1, and M2 = x4+x3+1;

namely,

1 +M +M2 = (x(x+ 1) + 1)(x3(x+ 1) + 1). (2)

Remark 1. The statements (b), (c), (d), and (e) in Theorem 1 hold in the known

case of Equation (2). Thus, we may think that if there exist some exception to

the Conjecture (i.e., if Equation (1) holds, besides the known case), then these

(possible) exceptions must be of another (unknown) nature.

We have a new result for a special case, in which p is an arbitrary odd prime, but

the Mersenne prime M is also a trinomial. We consider the case in which p = 7.

The case p = 7 is exceptional. In fact, for p = 3, and for any Mersenne prime p > 7,

Equation (1) is impossible [16]. However, for p = 7 (and for any Mersenne prime

M) we do not know if Equation (1) holds.

The following theorem is our second result.

Theorem 2. Let M := xc+1 +xc + 1 ∈ F2[x] be prime. Let p be an odd prime, and

r = ω(Φp(M)). Then:
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(a) If c > 2 is even, then r is odd.

(b) If c > 1 is odd, then r is even.

(c) Assume that p = 7. For c from 1 to 12540, Equation (1) has no solutions.

(d) If Equation (1) holds with p = 7, and c > 1 is odd, then r ≥ 6.

2. Tools

Although well known, the following lemma is very useful, since we do not know the

exact form of the prime factors of Φp(x) in F2[x] (we know, however, how many

they are, and which degrees they have [20, Theorem 2.47]).

Lemma 1. Let p be an odd prime number. The cyclotomic polynomial Φp(x) ∈
F2[x] is irreducible if and only if 2 is a primitive element of the finite field Fp.

It is not yet proved, that there exist an infinity of such prime numbers.

Lemma 2. (Satz 5 in [22]). Let f(x) ∈ F2[x] be a prime polynomial of degree k,

and let g(x) ∈ F2[x]. Let F (x) = f(g(x)). Then the degree of every prime divisor

of F (x) is divisible by k.

The following lemma follows from Lemma 2.

Lemma 3. Let p be a prime number such that op(2) = p − 1. Let g(x) ∈ F2[x] be

such that

Φp(g(x)) = m1(x) · · ·ms(x) (3)

for s pairwise distinct prime polynomials in F2[x]. Then for j = 1, . . . , s, we have

that p− 1 divides deg(mj(x)), and

deg(g(x)) = k1 + · · ·+ ks, (4)

where kj := deg(mj(x))/(p− 1).

Lemma 4. (Theorem 1.4 in [15] and Theorem 1.4 in [16]). With the nota-

tions of Theorem 1, assume that (1) holds. Then:

(a) One has s > 2.

(b) One has deg(M) > 4.

It is also useful to know necessary conditions on c ≥ 1, provided that xc+1+xc+1

is prime.
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Lemma 5. Let c be a positive integer, and M(x, c) := xc+1 + xc + 1 ∈ F2[x].

Assume that M(x, c) is prime. Then:

(a) If c is odd, then c ∈ {3, 5} (mod 8).

(b) If c is even, then: either c = 2 or c ∈ {0, 6} (mod 8).

(c) If for some non-negative integer m, c = 2m−1 (respectively, c = 2m + 1) then

c ∈ {1, 3} (respectively, c ∈ {2, 3, 5}).

Proof. Part (a) follows from [15, Corollary 3.3 (i)] with a = c and b = 1. Part (b)

follows from [15, Corollary 3.3 (ii)] with a = 1 and b = c. Part (c) follows from [15,

Lemma 4.2] by switching x and x+ 1.

Lemma 6. (Theorems 3.3 and 3.4 in [26]). Let c be a positive integer, M(x, c) :=

xc+1 + xc + 1 ∈ F2[x], and let D(x) := xd1(x+ 1)d2 + 1 be a Mersenne prime. Let

α ∈ F2 be a zero of D(x), L(c, α) := xc+1 + xc + αc(α + 1) ∈ K = F2[α], and

r = ω(L(c, α)).

(1) Assume that c > 2. Then r ≡ c+1 (mod 2) if and only if one of the following

assertions holds.

(a) We have that [K : F2] is even.

(b) We have c ∈ {0, 6, 7} (mod 8).

(c) We have c ≡ 1 (mod 8).

(2) Assume that c > 2. Then r is even if and only if one of the following assertions

holds.

(a) We have c ≡ 7 (mod 8).

(b) We have c ∈ {1, 3, 5} (mod 8) and [K : F2] is even.

(c) We have c ∈ {2, 4} (mod 8) and [K : F2] is odd.

(d) We have c ≡ 1 (mod 8).

The following lemma generalizes a theorem of Capelli.

Lemma 7. (Lemma 2.1 in [4] and Lemma 3.6 in [24]). Let f(x), g(x) ∈ F2[x]

with f(x) prime. Let β ∈ F2 be a zero of f(x). Put K = F2[β]. Assume that

g(x)− β is square-free in K[x] and that

g(x)− β = F1 · · ·Fr, (5)

with F1, . . . , Fr irreducible in K[x]. Then

f(g(x)) = N(F1) · · ·N(Fr), (6)

with N(F1), . . . , N(Fr) irreducible in F2[x], where N is the norm from K to F2.
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3. Proof of Theorem 1

In order to prove (a) we consider first the case in which ab is even, so that we can

assume that, say, a is even and b is odd. Put Mk := xak(x+ 1)bk + 1. Observe that

the derivative of a Mersenne polynomial P := xc(x+ 1)d + 1 is equal to

P ′ = xc−1(x+ 1)d−1((c+ d)x+ c). (7)

Write Equation (1) as

Mp + 1 = (M + 1)M1 · · ·Ms. (8)

By differentiation of Equation (8) relative to x, we got

pMp−1M ′ = M ′M1 · · ·Ms + (M + 1)(
∑
k

M1 · · ·M ′k · · ·Ms). (9)

Since a is even and b is odd we obtain

(M + 1)/M ′ = x(x+ 1)/((a+ b)x+ a) = x(x+ 1)/x = x+ 1. (10)

Divide both sides of Equation (9) by M ′ to get

pMp−1 = M1 · · ·Ms + (x+ 1)(
∑
k

M1 · · ·M ′k · · ·Ms). (11)

Replace x = 0 in both sides of Equation (11) to get

1 = 1 +K0 ∈ F2.

Thus, K0 is even in this case. Consider now Equation (8) written as Equation (1).

By differentiation of Equation (1) relative to x, we obtain

(1 +M + · · ·+M (p−3)/2)2M ′ =
∑
k

M1 · · ·M ′k · · ·Ms. (12)

But Equation (7) implies that, independently of the value of a, one has M ′(1) = 0

if b > 1, and M ′(1) = 1 if b = 1. Putting x = 1 into both sides of Equation (12)

we get 0 = K1 ∈ F2, when b > 1, and (p − 1)/2 = K1 ∈ F2, when b = 1. Take

now, both a and b odd. Observe that Equation (7) implies that, independently of

the value of b, M ′(0) = 0 if a > 1, and M ′(0) = 1 if a = 1. Putting x = 0 into both

sides of Equation (12) we get 0 = K0 ∈ F2, when a > 1, and (p− 1)/2 = K0 ∈ F2,

when a = 1. This proves (a).

We prove (b): Assume that for some Q ∈ F2[x] one has, say,

M = QM1 + x. (13)
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Let γ ∈ F2 be a zero of M1. It follows from Equation (1) that M(γ)p = 1. Thus,

Equation (13) implies that

γp = 1. (14)

In other words

o(γ) = p. (15)

Put r := ord(M1). Since M1 is prime, r is equal to the multiplicative order of γ,

i.e., r = p. By definition of r, one has for a certain K ∈ F2[x]

xp − 1 = M1K. (16)

But 2 is a primitive root modulo p, thus Lemma 1 implies that the cyclotomic

polynomial Φp(x) ∈ F2[x] is prime. Since the odd polynomial M1 is also prime,

Equation (16) implies that

M1 = Φp(x). (17)

But, Φp(x) is also complete. Therefore, it follows from Equation (17), and from [7,

Theorem 8], that we have M1 ∈ {Φ3(x),Φ5(x),Φ7(x)}. In other words

M1 ∈ {x2 + x+ 1, x4 + x3 + x2 + x+ 1, (x3 + x+ 1)(x3 + x2 + 1)}. (18)

Thus, either p = 3 and M1 = x2 + x+ 1, or p = 5 and M1 = x4 + x3 + x2 + x+ 1.

The case p = 3 is impossible by [16]. The case p = 5 is also impossible, since in this

case Lemma 3 implies that 4 divides deg(Mj) for all j = 1, . . . , 4. This proves (b).

We prove (c): By taking degrees in both sides of Equation (1) one has

(p− 1)q =

s∑
j=1

deg(Mj). (19)

By Lemma 3, there exist some integers kj ≥ 1 with j = 1, . . . , s, such that

deg(Mj) = (p− 1)kj . So, Equation (19) reads

q =

s∑
j=1

kj . (20)

Using now our hypothesis, one has for each such j, kj = c+ j− 1, and we can write

Equation (20) as

q =
s

2
· (2c+ s− 1), (21)

when s is even, and as

q = s ·
(
c+

s− 1

2

)
, (22)

otherwise. Assume that s is even. Since q is prime, it follows from Equation (21)

that one of the following cases (u),(v) is true:
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(u) We have q = s/2; so that 2 = 2c + s. But both c and s are ≥ 1, thus 2 ≥ 3.

This contradiction proves the result in this case.

(v) We have s/2 = 1, so that s = 2. This is impossible, since we know (by Lemma

4) that s ≥ 3.

Assume now that s is odd. As before, using Equation (22), we have two cases to

consider.

(w) We have q = s; so that 3 = 2c+ s. But both c and s are ≥ 1, thus s = c = 1.

This contradicts again the fact that s ≥ 3.

(z) We have q = c + (s − 1)/2 so that s = 1. This is impossible. Thus, (c) is

proved.

We prove (d): Observe that the total number of Mersenne polynomials of given

degree n equals n − 1. Thus, crudely, the number N(n) of prime Mersenne poly-

nomials of degree n is bounded above by n − 1. Let Np be the number of dis-

tinct Mersenne prime divisors of Φp(M). From our hypothesis, it follows that

Np = N(k1(p− 1)) +N(d(p− 1)). Hence,

Np ≤ (d+ k1)(p− 1). (23)

We claim that the following lower bound `(M) for deg(M):

`(M) := 2d20(p− 1) + d0, (24)

implies a contradiction, so that the result follows from Equation (24).

Proof of the claim: assume that

deg(M) ≥ `(M). (25)

Remember, that by Lemma 3 we have deg(M) = k1 + (s − 1)d. Thus, using that

d0 ≥ d ≥ k1, Equation (25) implies

k1 + (s− 1)d ≥ k1 + d2(p− 1) + dk1(p− 1) > k1 + d2(p− 1) + dk1(p− 1)− d. (26)

But Equation (26) says that

s > (d+ k1)(p− 1). (27)

Therefore, Equation (27) together with Equation (23), imply that

ω(Φp(M)) = s > Np. (28)

Clearly, Equation (28) is impossible, thereby proving the claim and the result.
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We prove (e): Besides Equation (1), one has Φp(M) = Φp(x)A(x) for some

A(x) ∈ F2[x]. Thus, Φp(x) is a complete polynomial that is a product of Mersenne

prime polynomials. Thus, [7, Theorem 8] implies that

Φp(x) ∈ {x2 + x+ 1, x4 + x3 + x2 + x+ 1, x6 + x5 + x4 + x3 + x2 + x+ 1}. (29)

In other words, we have Φp(x) ∈ {Φ3(x),Φ5(x),Φ7(x)} so that

p ∈ {3, 5, 7}. (30)

But, by Lemma 1, Φp(x) is prime since op(2) = p− 1. Therefore, p ∈ {3, 5} since

Φ7(x) = (x3 + x+ 1)(x3 + x2 + 1)

is not prime. The case p = 3 does not happen by [16] (non-trivial proof). Thus, we

are left with the (open, and possibly non-trivial) case in which p = 5. We can take,

say, M1 := Φ5(x). From Equation (1) and our conditions we get

4 deg(M) = 4 + (s− 1)d. (31)

Put ` := deg(M) − 1. By Lemma 3 one has d = 4kj for all j = 2, . . . , s. Thus,

Equation (31) implies that

` = (s− 1)kj (32)

for all j = 2, . . . , s. The case s = 2 was done in [15, Theorem 1.4], and ` is a prime

number. Therefore, Equation (32) implies that

k1 = 1, k2 = 1, . . . , ks = 1. (33)

The result follows then by part (d). This finishes the proof of the theorem.

4. Proof of Theorem 2

We prove part (a). Put Mj = xd1(x + 1)d2 + 1, and let α ∈ F2 be a zero of Mj .

ConsiderD = Mj andM(x, c) = M in Lemma 6. Observe that L(c, α) = M−M(α).

By Lemma 7 one has r = s (this also follows from [21, Corollary 2.12]). More

precisely, since L(c, α) is square-free, one has

L(c, α) =

r∏
i=1

ψi(x)

for some prime polynomials ψ(x) ∈ F2(α)[x], while

Φp(M) =

r∏
i=1

N(ψi(x)) = M1 · · ·Ms,
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where N is the norm from F2(α) to F2. Thus, Lemma 6 implies that r is odd, since

by Lemma 5 (b) we have c ∈ {0, 6} (mod 8). This proves part (a).

In order to prove part (b), observe that Lemma 5 implies that c ∈ {3, 5} (mod 8),

since c is odd. Proceeding as before, we have now by Lemma 6 (2)(b) that r is even.

Part (c) follows from a straightforward computation in gp-PARI, that took about

ten days for c = 1, . . . 10000, and fifteen days, 4 hours, for c = 10001, . . . , 12540.

In order to prove part (d), observe that by part (b), s = r = ω(Φ7(M)) is even.

Thus Lemma 4 implies that s ≥ 4. Assume that s = 4. By [16, Corollary 3.15]

one has that Φ7(x) divides Φ7(M). Thus, we can take, say, M1 := x3 + x+ 1, and

M2 := x3 + x2 + 1. Put M3 := xa3(x + 1)b3 + 1, and M4 := xa4(x + 1)b4 + 1. Put

also R := M3 + M + 1 and S := M3 + M2 + 1. One has Φ7(M) = RS. Hence,

R cannot be prime, since R prime implies, by Equation (1), that R is a Mersenne

prime. Thus, R + 1 = M(M + 1)2 splits. This is impossible, since M is odd. The

same argument proves that S is not prime. Therefore, both ω(R) and ω(S) are

equal to 2. We now discuss the possible cases.

(i) Both M1 and M2 divides R. This implies that R = M1M2, thus deg(M) = 2.

This contradicts the fact (see Lemma 4) that deg(M) > 4 when Equation (1)

holds.

(ii) Both M1 and M2 divide S. Same proof as that in case (a).

(iii) One has that M1 divides R, and M2 divides S. We can assume that R =

M1M3, so that S = M2M4. Put d1 := R−M1M3 and d2 := S −M2M4. One

has

d1 = xa3+3(x+ 1)b3 + xa3+1(x+ 1)b3 + xa3(x+ 1)b3 + P1, (34)

where

P1 := x3a(x+ 1)3b + x3 + x, (35)

and

d2 = xa4+3(x+ 1)b4 + xa4+2(x+ 1)b4 + xa4(x+ 1)b4 + P2, (36)

where

P2 := x3a(x+ 1)3b + xa(x+ 1)b + x3 + x2. (37)

Comparing coefficients in x, it follows from Equations (34), (35), (36), and

Equation (37), that a3 = 1 and a4 = 1. By substituting these values into the

four equations, we get also that b3 = 1 and b4 = 1. Thus, we obtain that

M3 = M4 = x2 + x+ 1. This is impossible, since gcd(R,S) = 1. This proves

the result.

(iv) One has that M1 divides S, and M2 divides R. The proof is analogue to the

proof of part (c), just a little more involved, since we must now compare the

coefficients in x, x2 and x3, in order to obtain a contradiction. We find in one
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of the two possible cases, that in d1 the coefficient of x4 is equal to 1, while

in the other case, the coefficient of x2 in d1 is equal to 1.
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