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Abstract
We prove the non-existence of Mersenne primes M on Fy[z] such that all prime
divisors of the cyclotomic polynomial ®,(A) are also Mersenne in a few new cases.

1. Introduction

The following problem has attracted some interest (see [1, 2, 3, 5, 6, 9, 10, 17, 18, 19,
21, 22, 23]). Let f(x) be an irreducible polynomial over a finite field F,, let g(z) be a
polynomial over the same field. What can be said about the composite polynomial
F(z) = f(g9(x))? The second polynomial g(z) has been chosen as a power of z,
as a linearized polynomial, e.g., g(z) = zP" — x with p the characteristic of Fg, or
as a quotient A/B of two other polynomials. In particular, recently Panario et al.
[21] worked on the case g(x) = 1/(cz + 1), with nonzero ¢ € Fy, in order to obtain
conditions such that f(z) irreducible implies F'(x) irreducible. More generally, Lidl
and Niederreiter [20], and Swan [25], give the most classic results about polynomials
over finite fields.

However, to our knowledge, one has not yet considered the case in which g(z) #
f(x) is itself an irreducible polynomial of some specific type. Our choice in the
present paper is to take for g(z) a binary polynomial (reason: we might think of
the ring Fo[x] as the closest analogue of the integers Z), and for f(x) the cyclotomic
polynomial ®,(x) = (2P +1)/(z + 1) € Fo[z], with p a prime number.

A few words on the notation used throughout the paper. If A € Fy[z] is irre-
ducible then we say that A is prime, and a Mersenne polynomial M € Fa[z] (an
analogue of a Mersenne number) is a polynomial such that M + 1 is a product of
powers of z and powers of x + 1. We say that M + 1 splits. When a Mersenne
polynomial M is irreducible, we say that M is a Mersenne prime. A binary poly-
nomial A is complete [7] if all coefficients of A are equal to 1. A binary polynomial
B is odd if B(0) = B(1) = 1, otherwise B is even. More standard notations are
the following: w(P) is the number of pairwise distinct prime factors of P € Fy[z], ¢
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even, o,(b) is the multiplicative order of a nonzero element b of the finite field IF,,
o(a) is the multiplicative order of an element « in some appropriate extension of
Fy, ord(H) is the minimal positive integer m such that the binary polynomial H
divides the binomial 2™ — 1. Finally, Fs is a fixed algebraic closure of Fs.

It is easy to check that ®,(x) is square-free, but very little is known about its
prime (i.e., irreducible) factors [20, Theorem 2.47]. The special equation that we
consider, in which we take f(z) = ®,(x) and g(z) = M, with M a Mersenne prime,
is the following;:

®,(M) = My --- M,. (1)

Equation (1) is related to the search of perfect polynomials over Fo[z] (binary perfect
polynomials); see [7, 8, 11, 12, 13, 14, 15, 16]. We recall that a binary perfect
polynomial A is defined by the equality o(A4) = A, where 0(A) =} p 4 D € Fa[z]
is the sum of all divisors of A, including 1 and A. For coprime binary polynomials
X,Y one has, as over the integers Z, 0(XY) = 0(X)o(Y). The o function is more
natural, but also more complex, than the usual sum of divisor function o1(A4) =
> DlA 2deg(4) - For instance, some divisors D of A can sum up to 0, while a sum
over D of 248D is always positive. It is easy to check that for any non-negative
integer n, the polynomial T(n) = (x(z + 1))2"~! is (trivial) perfect. There are
only 11 non-trivial (known) binary perfect polynomials. We call them sporadic
perfect. The exact link with our Equation (1) is that if Equation (1) holds then
we are able to characterize 9 of these 11 sporadic perfect, as the only even binary
perfect polynomials, all of whose odd prime divisors (i.e., prime divisors coprime
with z(z + 1)) are Mersenne primes [14, 15, 16].

The binary perfect polynomials are a polynomial analogue of the multiperfect
numbers over Z since for A € Fa[z], 0(A)/A € Fa[z] is equivalent to A = o(A).
Canaday [7], the first Ph. D. student of Leonard Carlitz, started the work on binary
perfect polynomials in 1941.

Equation (1) seems very difficult to resolve. The contribution of the present
paper consists in giving a simple generalization of some properties of the only known
example, Equation (2), as well as describing a simple necessary condition.

The following theorem is our main result.

Theorem 1. Let p be an odd prime number and let s be a positive integer. Let
M := z%(x+1)°+1 € Falx] be a Mersenne prime, and T := M+1. Forj =1,...,s,
let M; := x% (z + 1)% + 1 be a Mersenne prime. Let kj := deg(M;)/o0,(2), let K,
be the number of k’s such that a, = 1, and let K1 be the number of £’s such that
by = 1. Consider Equation (1), i.e.,

1+M+...+Mp*1:M1...MS.

Consider also the statements:
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(a) Ko is even when (without loss of generality) a is even and b is odd; K is even
when b > 1, and K1 = (p—1)/2 (mod 2) when b= 1. If both a and b are odd,
then Ko =0 (mod 2) when a > 1, while Ko = (p—1)/2 (mod 2) when a = 1.
Moreover, a = 1 implies that K1 = 0 (mod 2) when b > 1, and implies that
Ky =(p—1)/2 (mod 2) when b= 1.

(b) For some j the Fuclidean (Long Division) division of M by M, gives a re-
mainder equal to x, and 4 does not divide the degrees of all M.

(¢) The degree of M is a prime number q, and, for some positive integers c, s,

ki,...,ks are in an arithmetic progression ki := c,ko == c+ 1,..., ks :=
c+s—1.
(d) One has k1 < ko and ko = --- = ks = d, where d is bounded from above by

a constant dg, (in particular this holds in Equation (2)), and deg(M) is big
enough relative to p.

(e) One hasp # 7, and ®,(x) | ®p(M) (say, My = ®,(z)), all the other M;s
have the same degree d > p — 1. Moreover, deg(M) — 1 is a prime number,
and deg(M) is big enough relative to p.

We assume in each of the statements (b), (c), (d), and (e), that 2 is a primitive
root of unity modulo p.

We have that Equation (1) implies (a). Moreover, Equation (1) is impossible
when any of the statements (b), (c), (d), or (e), hold; besides in the only two known
cases in which Equation (1) holds (switch x and x + 1 to obtain the other case ):
p=3,8s=2 M=2x(z+1)*+1=2+z+1, My = 2% +2+1, and My = * +23+1;
namely,

1+ M+M=(z(z+1)+ 1) (2@ +1)+1). 2)

Remark 1. The statements (b), (c), (d), and (e) in Theorem 1 hold in the known
case of Equation (2). Thus, we may think that if there exist some exception to
the Conjecture (i.e., if Equation (1) holds, besides the known case), then these
(possible) exceptions must be of another (unknown) nature.

We have a new result for a special case, in which p is an arbitrary odd prime, but
the Mersenne prime M is also a trinomial. We consider the case in which p = 7.
The case p = 7 is exceptional. In fact, for p = 3, and for any Mersenne prime p > 7,
Equation (1) is impossible [16]. However, for p = 7 (and for any Mersenne prime
M) we do not know if Equation (1) holds.

The following theorem is our second result.

Theorem 2. Let M := 2t +2¢+1 € Fy[z] be prime. Let p be an odd prime, and
r=w(®,(M)). Then:
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If ¢ > 2 is even, then r is odd.

(a
(b

If ¢ > 1 is odd, then r is even.

)
)

(¢) Assume that p="7. For ¢ from 1 to 12540, Equation (1) has no solutions.
)

(d) If Equation (1) holds with p =7, and ¢ > 1 is odd, then r > 6.

2. Tools

Although well known, the following lemma is very useful, since we do not know the
exact form of the prime factors of ®,(z) in Falz] (we know, however, how many
they are, and which degrees they have [20, Theorem 2.47]).

Lemma 1. Let p be an odd prime number. The cyclotomic polynomial ®,(x) €
Fylx] is irreducible if and only if 2 is a primitive element of the finite field Fy,.

It is not yet proved, that there exist an infinity of such prime numbers.

Lemma 2. (Satz 5 in [22]). Let f(z) € Fo[z] be a prime polynomial of degree k,
and let g(x) € Falz]. Let F(x) = f(g9(x)). Then the degree of every prime divisor
of F(x) is divisible by k.

The following lemma follows from Lemma 2.

Lemma 3. Let p be a prime number such that 0,(2) = p— 1. Let g(x) € Fa[z] be
such that

Dy(g(2)) = ma(z)---ms(z) 3)

for s pairwise distinct prime polynomials in Fa[z]. Then for j =1,...,s, we have
that p — 1 divides deg(m;(x)), and

deg(g(x)) = k1 + -+ + ks, (4)
where k; = deg(m;(x))/(p —1).

Lemma 4. (Theorem 1.4 in [15] and Theorem 1.4 in [16]). With the nota-
tions of Theorem 1, assume that (1) holds. Then:

(a) One has s > 2.
(b) One has deg(M) > 4.

It is also useful to know necessary conditions on ¢ > 1, provided that ¢t +2¢+1
is prime.
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Lemma 5. Let ¢ be a positive integer, and M(x,c) = z°1 + 2+ 1 € Fa[z].
Assume that M (x,c) is prime. Then:

(a) If ¢ is odd, then c € {3,5} (mod 8).
(b) If ¢ is even, then: either c =2 or c € {0,6} (mod 8).

(¢c) If for some non-negative integer m, ¢ = 2™ — 1 (respectively, ¢ = 2™ +1) then
c € {1,3} (respectively, ¢ € {2,3,5}).

Proof. Part (a) follows from [15, Corollary 3.3 (i)] with a = ¢ and b = 1. Part (b)
follows from [15, Corollary 3.3 (ii)] with a = 1 and b = ¢. Part (c) follows from [15,
Lemma 4.2] by switching « and = + 1. O

Lemma 6. (Theorems 3.3 and 3.4 in [26]). Let ¢ be a positive integer, M (x,c) :=
ot 4+ 2¢ + 1 € Fola], and let D(z) := 2% (z +1)% + 1 be a Mersenne prime. Let
a € Fy be a zero of D(z), L(c,a) == z°t + 2¢ + a(a+ 1) € K = Fya], and
r =w(L(c,a)).

(1) Assume that ¢ > 2. Thenr =c+1 (mod 2) if and only if one of the following
assertions holds.
(a) We have that [K: Fa] is even.
(b) We have ¢ € {0,6,7} (mod 8).
(¢) We have ¢ =1 (mod 8).

(2) Assume that ¢ > 2. Thenr is even if and only if one of the following assertions
holds.

(a) We have ¢ =7 (mod 8).
(b) We have ¢ € {1,3,5} (mod 8) and [K: Fs] is even.
(¢c) We have c € {2,4} (mod 8) and [K : Fs] is odd.

)

(d) We have ¢ =1 (mod 8).
The following lemma generalizes a theorem of Capelli.

Lemma 7. (Lemma 2.1 in [4] and Lemma 3.6 in [24]). Let f(z), g(z) € Fa[z]
with f(z) prime. Let 3 € Fa be a zero of f(z). Put K = F[3]. Assume that
g(x) — B is square-free in K[x] and that

g(x) —B="Fi--F, (5)
with Fy, ..., F,. irreducible in K[x]. Then

with N(F1), ..., N(F,) irreducible in Fo[x], where N is the norm from K to Fs.
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3. Proof of Theorem 1

In order to prove (a) we consider first the case in which ab is even, so that we can
assume that, say, a is even and b is odd. Put M}, := 2% (x + 1)’ + 1. Observe that
the derivative of a Mersenne polynomial P := x¢(x + 1)% 4 1 is equal to

P =z Yz + 1) ((c+d)x +c). (7)

Write Equation (1) as
MP +1=(M+1)M, - M,. (8)

By differentiation of Equation (8) relative to x, we got

pMp—lM’ZM’M1"'Ms+(M+1)(ZM1"'M;/€"'M3)- (9)
k

Since a is even and b is odd we obtain
(M+1)/M =z2(z+1)/((a+bx+a)=z(x+1)/z =2+ 1. (10)
Divide both sides of Equation (9) by M’ to get

pMP™ =My M+ (@ +1)(O My - M-+ M). (11)
k

Replace = 0 in both sides of Equation (11) to get
1=1+ K, €F,.

Thus, K is even in this case. Consider now Equation (8) written as Equation (1).
By differentiation of Equation (1) relative to x, we obtain

(1+M+"'+M(p_3)/2)2M/ZZMl"'M;;"'Ms- (12)
k

But Equation (7) implies that, independently of the value of a, one has M'(1) =0
if b>1,and M'(1) =11if b = 1. Putting = 1 into both sides of Equation (12)
we get 0 = Ky € Fy, when b > 1, and (p — 1)/2 = K; € Fy, when b = 1. Take
now, both a and b odd. Observe that Equation (7) implies that, independently of
the value of b, M’(0) = 0if a > 1, and M'(0) = 1 if a = 1. Putting = = 0 into both
sides of Equation (12) we get 0 = Ky € Fy, when a > 1, and (p — 1)/2 = K € Fo,
when a = 1. This proves (a).
We prove (b): Assume that for some @ € Fa[z] one has, say,

M = QDM +z. (13)
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Let v € Fy be a zero of M;. It follows from Equation (1) that M(y)? = 1. Thus,
Equation (13) implies that
VP =1. (14)

In other words
o(y) = p. (15)

Put r := ord(Mj). Since M; is prime, r is equal to the multiplicative order of ~,
i.e., 7 = p. By definition of r, one has for a certain K € Fy[z]

2’ —1=MK. (16)

But 2 is a primitive root modulo p, thus Lemma 1 implies that the cyclotomic
polynomial ®,(z) € Fy[z] is prime. Since the odd polynomial M; is also prime,
Equation (16) implies that

My = @,(z). (17)

But, ®,(z) is also complete. Therefore, it follows from Equation (17), and from [7,
Theorem 8], that we have M; € {®3(x), P5(z), P7(x)}. In other words

Mye{ +o+lat +a3 +22 +o+1, (23 + o+ 1) (2 +22 +1)}. (18)

Thus, either p=3 and M; =22 + 2z +1,orp=>5and M; = 2* + 23 + 22 + 2 + 1.

The case p = 3 is impossible by [16]. The case p = 5 is also impossible, since in this

case Lemma 3 implies that 4 divides deg(M;) for all j =1,...,4. This proves (b).
We prove (c): By taking degrees in both sides of Equation (1) one has

(p—1)g =Y deg(M). (19)
j=1
By Lemma 3, there exist some integers k; > 1 with j = 1,...,s, such that

deg(M;) = (p — 1)k;. So, Equation (19) reads

q= ij (20)

Using now our hypothesis, one has for each such j, k; = ¢+ j — 1, and we can write
Equation (20) as
“(2c+s5—1), (21)

N ®»

q:

a=s-(c+257) (22)

otherwise. Assume that s is even. Since ¢ is prime, it follows from Equation (21)
that one of the following cases (u),(v) is true:

when s is even, and as
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(u) We have ¢ = s/2; so that 2 = 2¢ + s. But both ¢ and s are > 1, thus 2 > 3.
This contradiction proves the result in this case.

(v) We have s/2 =1, so that s = 2. This is impossible, since we know (by Lemma
4) that s > 3.

Assume now that s is odd. As before, using Equation (22), we have two cases to
consider.

(w) We have ¢ = s; so that 3 =2c¢+ s. But both ¢ and s are > 1, thus s = ¢ = 1.
This contradicts again the fact that s > 3.

(z) We have ¢ = ¢+ (s — 1)/2 so that s = 1. This is impossible. Thus, (c) is
proved.

We prove (d): Observe that the total number of Mersenne polynomials of given
degree n equals n — 1. Thus, crudely, the number N(n) of prime Mersenne poly-
nomials of degree n is bounded above by n — 1. Let NN, be the number of dis-
tinct Mersenne prime divisors of ®,(M). From our hypothesis, it follows that
N, =N(ki(p—1)) + N(d(p—1)). Hence,

Np < (d+k1)(p—1). (23)
We claim that the following lower bound ¢(M) for deg(M):
(M) = 2d3(p — 1) + do, (24)

implies a contradiction, so that the result follows from Equation (24).
Proof of the claim: assume that

deg(M) > £(M). (25)

Remember, that by Lemma 3 we have deg(M) = k1 + (s — 1)d. Thus, using that
do > d > ki1, Equation (25) implies

ki +(s—1)d>k +d*(p—1)+dki(p—1) > ky +d*(p—1) +dki(p—1) — d. (26)
But Equation (26) says that
s> (d+k)p—1). (27)
Therefore, Equation (27) together with Equation (23), imply that
w(®,(M)) = s> N,. (28)

Clearly, Equation (28) is impossible, thereby proving the claim and the result.
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We prove (e): Besides Equation (1), one has ®,(M) = ®,(x)A(z) for some
A(z) € Fa[z]. Thus, ®,(z) is a complete polynomial that is a product of Mersenne
prime polynomials. Thus, [7, Theorem 8] implies that

d(r)e{?+z+ Lt +¥+ 2t + L, ¥ vt vt 2t o+ 1) (29)
In other words, we have ®,(z) € {®3(x), P5(x), P7(x)} so that
p€{3,5,7} (30)
But, by Lemma 1, ®,(z) is prime since 0,(2) = p — 1. Therefore, p € {3,5} since
Or(z) = (23 + 2+ 1) (2> + 2% 4+ 1)

is not prime. The case p = 3 does not happen by [16] (non-trivial proof). Thus, we
are left with the (open, and possibly non-trivial) case in which p = 5. We can take,
say, My := ®5(x). From Equation (1) and our conditions we get

4deg(M) =4+ (s —1)d. (31)

Put ¢ := deg(M) — 1. By Lemma 3 one has d = 4k; for all j = 2,...,s. Thus,
Equation (31) implies that
{= (S - 1)]@ (32)

for all j =2,...,s. The case s = 2 was done in [15, Theorem 1.4], and ¢ is a prime
number. Therefore, Equation (32) implies that

ki=1ky=1,... ks =1. (33)

The result follows then by part (d). This finishes the proof of the theorem.

4. Proof of Theorem 2

We prove part (a). Put M; = 2% (x 4+ 1)% + 1, and let o € F3 be a zero of M;.
Consider D = M; and M(z,c) = M in Lemma 6. Observe that L(c, o) = M —M (cv).
By Lemma 7 one has r = s (this also follows from [21, Corollary 2.12]). More
precisely, since L(c, «) is square-free, one has

Lc,a) = [[ wix)
i=1
for some prime polynomials ¥(z) € Fo(a)[x], while

o, (M) = [[ N@i(x)) = M - My,
=1
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where N is the norm from Fy(«) to Fa. Thus, Lemma 6 implies that r is odd, since
by Lemma 5 (b) we have ¢ € {0,6} (mod 8). This proves part (a).

In order to prove part (b), observe that Lemma 5 implies that ¢ € {3,5} (mod 8),
since ¢ is odd. Proceeding as before, we have now by Lemma 6 (2)(b) that r is even.

Part (c) follows from a straightforward computation in gp-PARI, that took about
ten days for ¢ = 1,...10000, and fifteen days, 4 hours, for ¢ = 10001, ... ,12540.

In order to prove part (d), observe that by part (b), s = r = w(®7(M)) is even.
Thus Lemma 4 implies that s > 4. Assume that s = 4. By [16, Corollary 3.15]
one has that ®;(x) divides ®;(M). Thus, we can take, say, My := 2> + x + 1, and
My = 2% + 22 + 1. Put M3 := 2% (z + 1)% + 1, and My := 2% (x + 1) + 1. Put
also R :== M®+ M + 1 and S := M3+ M? + 1. One has ®;(M) = RS. Hence,
R cannot be prime, since R prime implies, by Equation (1), that R is a Mersenne
prime. Thus, R+ 1 = M(M + 1)? splits. This is impossible, since M is odd. The
same argument proves that S is not prime. Therefore, both w(R) and w(S) are
equal to 2. We now discuss the possible cases.

(i) Both M; and M; divides R. This implies that R = M; M,, thus deg(M) = 2.
This contradicts the fact (see Lemma 4) that deg(M) > 4 when Equation (1)
holds.

(ii) Both M; and M, divide S. Same proof as that in case (a).

(iii) One has that M; divides R, and M, divides S. We can assume that R =
1\41]\437 so that S = M2M4. Put dl =R- M1M3 and dg =5 M2M4. One

has
dy =23z + 1) e @+ D) e @+ D2+ P, (34)
where
Pl = IBG(I+1)3b+$3+xa (35)
and
dy =2z + D) + 2% P+ DM + 2z + 1) + P, (36)
where
Py =2 (x+1)% 4 2%z + 1)’ + 2% + 22, (37)

Comparing coefficients in z, it follows from Equations (34), (35), (36), and
Equation (37), that a3 = 1 and a4 = 1. By substituting these values into the
four equations, we get also that b3 = 1 and by = 1. Thus, we obtain that
M3 = My = 2% + x + 1. This is impossible, since gcd(R, S) = 1. This proves
the result.

(iv) One has that M; divides S, and M; divides R. The proof is analogue to the
proof of part (c), just a little more involved, since we must now compare the
coefficients in z, 22 and 23, in order to obtain a contradiction. We find in one
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of the two possible cases, that in d; the coefficient of x* is equal to 1, while
in the other case, the coefficient of 22 in d; is equal to 1.
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