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Abstract

In this paper, we use techniques of enumerative combinatorics to study the following
problem: we count the number of ways to split n balls into nonempty, ordered
bins so that the most crowded bin has exactly k balls. We find closed forms for
three of the different cases that can arise: k > n

2 , k = n
2 , and when there exists

j < k such that n = 2k + j. As an immediate result of our proofs, we find a
closed form for the number of positive integer solutions to x1 + x2 + · · · + x` = n
with the maximum of {x1, x2, . . . , x`} being equal to k, when n and k have one
of the aforementioned algebraic relationships. The problem is generalized to find
a formula that enumerates the total number of ways without specific conditions
on n, `, k. Subsequently, various additional identities and estimates related to this
enumeration are proven and interpreted.

1. Introduction

One of the most elementary, well-known enumerative combinatorics problems asks

the following basic question.

Question 1 (Balls into Bins). How many ways can we split n balls into ` nonempty

ordered bins?

This is better known as the “stars-and-bars” problem and frequents itself in

combinatorics textbooks such as [4, 27, 43]. The well-known formula that answers

this question is
(
n−1
`−1

)
. However, there are many different restrictions on the contents

of the bins that can increase the difficulty of the problem at hand. Here is one

example of such a question.
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Question 2 (Balls into Bins with Minimum Capacity). How many ways can we

split n balls into ` nonempty ordered bins so that each bin has at least t balls?

It turns out this is merely a generalization of Question 1 where t can have a

value other than 1. The closed form for this problem is also well-known and is(
n−(t−1)`−1

`−1

)
. In this paper, we will address a question that sounds very similar to

Question 2 but is actually far more complicated.

Question 3 (Balls into Bins with Maximum Capacity). How many ways can we

split n balls into any number of nonempty ordered bins where the most crowded

bin has exactly k balls?

A natural variation of Question 3 simply involves fixing the total number of bins

used.

Question 4 (Generalized Balls into Bins with restrictions problem). Let n, `, k ∈
N+. This problem asks how many ways we can split n balls into ` nonempty bins

such that the most crowded bin has exactly k balls.

Question 4 aims to enumerate all the possible combinations of balls into bins

with the restriction on the maximum number of balls in a bin. The condition of the

most crowded bin having exactly k balls still holds, but with the added fact that

we are also given the exact number of nonempty bins to be filled.

Definition 1 (Generalized Bins Restriction Problem). Let n, k, ` ∈ N+. The Gen-

eralized Bins Restriction Problem aims to find the number of ways to split n balls

into ` nonempty bins such that the maximum number of balls in each bin is at most

k.

Throughout the paper we will let Bn,k denote the answer to Question 3 for chosen

values of n and k. Along with this, Mn,`,k will denote the number of ways to split

n balls into exactly ` nonempty bins where the most crowded bin has exactly k

balls (the answer to Question 4). We will also denote the quantity in Definition 1

as Rn,`,k. The Principle of Inclusion and Exclusion will be crucial for interpreting

this class of problems for the following reason: if the maximum number of balls in

a bin is exactly k, then at least one bin will have k balls in it.

Our approach to answering Question 3 revolves around considering two cases

separately: the case where most of the balls are in a single bin, and the case where

the balls are, loosely speaking, “more spread out.” We formalize this notion of

“spread out” with the following definition, which is utilized in many lemma and

theorem statements throughout the paper.

Definition 2. A configuration of n balls in bins has a dominant bin if the most

crowded bin has exactly k balls, where n
2 < k < n. Otherwise we say the configu-

ration has no dominant bin.
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Now we proceed to survey the literature to review related problems. Binomial

coefficients have surfaced in many problems of an enumerative nature, including

combinatorial inequalities, lattice walks, and Stirling numbers [1, 3, 5, 6, 10, 11, 12,

13, 14, 16, 17, 20, 24, 29, 32, 35, 39, 41, 38, 42]. There are also numerous applications

of binomial coefficient identities to number theory and computer science. One

prominent application is that of the Bernoulli trial, where we flip a [weighted] coin

in succession many times and track the number of consecutive heads. Long-time

asymptotic behavior of Bernoulli trials is explored in [8, 9, 18, 19, 21, 22, 23, 26, 33].

Furthermore, Lucas polynomials have played a role in calculating the number of

ways to place the numbers {1, 2, . . . , n} on a circle and find r adjacent numbers on

the circle where no k of them are consecutive, and this problem is closely related to

the aforementioned Bernoulli trial problem (see [8, 9]). The main difference with

our problem is that the bins we place balls into are in a line, rather than a circular

formation.

We now state the four main results of this paper. The first three are all closed

forms for Bn,k for different algebraic relationships between n and k. The fourth

one is a summation formula for Mn,`,k. One remarkable attribute of our proofs is

that we do not utilize generating functions in any way, and instead resort to more

elementary binomial coefficient manipulations.

Theorem 1 (Closed form: dominant bin). If n, k ∈ N+ with n
2 < k < n then

Bn,k = (n− k + 3)2n−k−2. (1.1)

Theorem 2 (Closed form for B2k,k). If k ∈ N+ then

B2k,k = (k + 3)2k−2 − 1. (1.2)

Theorem 3 (Closed form for B2k+j,k). Let j, k ∈ N+ with k > j. Then the number

of ways to split 2k+ j balls into nonempty bins so the most crowded bin has exactly

k balls is

B2k+j,k = (k + j + 3)2k+j−2 − (3j2 + 19j + 18)2j−4. (1.3)

Theorem 4 (Formula for Generalized Balls into Bins with restrictions problem).

Suppose n, k, ` ∈ N+ such that `+ k − 1 ≤ n ≤ `k. Then the following identity for

Mn,`,k holds:

Mn,`,k =
∑̀
t=0

(−1)t
(
`

t

)[(
n− tk − 1

`− 1

)
−
(
n− t(k − 1)− 1

`− 1

)]
. (1.4)

Upon inspection of the conditions for these results, one may notice they are not

exhaustive of all possible values of n, k, ` ∈ N+. Aside from the trivial case where

n ≤ k, these formulas do not give a general formula for Bmk+j,k when m ≥ 3. We

focus on the m = 2 case (Equation (1.3)) because it most succinctly showcases the
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strategy for counting the configurations of bins when there is no dominant bin. This

formula is derived from doing casework on the number of bins that contain k balls,

and the calculations are far more tractable when m = 2.

The remainder of this paper is organized as follows: in Section 2 we will prove

(1.1), and in Section 3 we will prove (1.2) and (1.3). In both of these sections we

prove the given closed forms first by fixing the number of bins used and then later

removing that restriction. Section 4 provides generalizations of the aforementioned

cases where we can find suitable summation formulas but not closed forms. This

strategy enables us to establish a connection to a well-studied counting problem

for solutions to certain integer equations in Section 5. The conclusion, Section 6,

provides some finishing remarks and possible directions for future research.

2. Balls into Bins with a Dominant Bin

This section will be devoted to studying the balls in bins problem (Question 3) when

there is a dominant cluster; that is, we count how many ways can we sort n balls

into bins when one bin has more than half the total number of balls. It turns out

this is the most straightforward of the three cases, for the following reason: if the

most crowded bin, henceforth called the dominant bin, has k balls, then no other

bin can have k or more balls. This simplifies the combinatorial analysis to come.

The first step will be to find a formula for Mn,`,k when n
2 < k < n. From here we

will find a summation formula for Bn,k, and then find a closed form for the sum. We

quickly remark that the smallest possible number of bins to be used is 2 (one with

k balls, and the other with n− k balls), and the largest possible number of bins is

n−k+1 (one with k balls, and n−k bins each with 1 ball). Recall that Bn,k denotes

the number of ways to split n balls into any number of ordered nonempty bins where

the most crowded bin has k balls. Furthermore, Mn,`,k denotes the number of ways

to split n balls into exactly ` nonempty bins where the largest group is of size k.

Lemma 1. Let n, `, k ∈ N+ such that n
2 < k < n and 2 ≤ ` ≤ n− k + 1. Then the

number of ways to split n balls into ` nonempty bins where the most crowded bin

has exactly k balls is

Mn,`,k = `

(
n− k − 1

`− 2

)
. (2.1)

Proof. If the largest group is of size k, then our task reduces to splitting n−k balls

into nonempty groups of size at most n − k. Since n
2 < k, this means n − k < k,

and that all of the remaining groups have size smaller than k. In other words, we

need not impose further restrictions when breaking the n − k remaining balls into

groups. This reasoning also illustrates that our proof does not generalize to the

case where 0 < k ≤ n
2 .
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We evaluate the given quantity by splitting the n− k remaining balls into `− 1

bins. By the classical stars-and-bars argument depicted in [28], this step can be

done in
(
n−k−1
`−2

)
ways. Finally, we must insert the bin of size k in between the

` − 1 groups already established, and this can be done in ` ways; the bin of size k

can go between two of the other bins, or it can be put at either end of the line of

bins. Multiplying the number of ways to perform these two steps together yields

the desired result.

Now we derive a closed form for Bn,k when there is a dominant bin.

Theorem 5 (Closed form: dominant bin). If n, k ∈ N+ with n
2 < k < n then

Bn,k = (n− k + 3)2n−k−2. (2.2)

Proof. We first obtain a summation formula for Bn,k by summing Equation (2.1)

over 2 ≤ ` ≤ n− k + 1:

Bn,k =

n−k+1∑
`=2

`

(
n− k − 1

`− 2

)
. (2.3)

Now we can verify the proposed closed form for Bn,k. Let t := n − k, because we

will be using t as a parameter. Then

Bn,k =

t∑
`=1

(`+ 1)

(
t− 1

`− 1

)
. (2.4)

It remains to evaluate the sum in Equation (2.4), which fortunately is relatively

easy once we realize that the sum resembles the formula (A.1) with different variable

labels. In particular, that formula gives us

t−1∑
`=0

`

(
t− 1

`

)
= (t− 1)2t−2. (2.5)

Shifting the index of the sum in Equation (2.5) and adding 2
∑t
`=1

(
t−1
`−1

)
to both

sides of the equation gives

t∑
`=1

(`+ 1)

(
t− 1

`− 1

)
= (t− 1)2t−2 + 2

t∑
`=1

(
t− 1

`− 1

)
. (2.6)

Upon shifting the index of the sum on the right-hand side of Equation (2.6) by 1

we notice it equals 2t−1, and so

Bn,k = (t+ 3)2t−2. (2.7)

The desired result follows upon substituting n− k back in place of t.
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Remark 1. This lemma does not hold for n = k because the second step becomes

degenerate if all of the balls are in a single group of size k. It is obvious that

Bk,k = 1 and we will henceforth ignore this case.

Remark 2. It makes heuristic sense that this formula depends on n−k but not on

n nor k individually. This is because the first step in our proof reduces the group

of balls to a group of size n− k.

3. Balls in Bins without a Dominant Bin

In Section 2, our focus was on the case where most (more than half) of all the balls

were placed in the same bin. In this section we instead assume the sunk pool balls

are more spread out, and it turns out most of the theory developed for the dominant

cluster case is no longer valid.

We will begin with a subsection devoted to the special case where n = 2k. This

situation highlights the main distinction between the behavior of the case where

there is a dominant bin and when there is not, while still having a closed form very

similar to that of the dominant bin case described in Section 2. Afterward, we will

derive a closed form for B2k+j,k when 0 < j < k, which will involve a combination

of several sums that, while manageable with purely elementary methods, is non-

trivial. The general approach in both subsections will be to derive a formula for

M2k+j,`,k and use that to derive a formula for B2k+j,k; in the first subsection j will

equal zero, and in the second subsection j will be positive but less than k.

3.1. Formula for B2k,k

Lemma 2. If k ∈ N+ then the number of ways to split 2k balls into ` nonempty

bins where 2 ≤ ` ≤ k + 1 and the most crowded bin has exactly k balls is

M2k,`,k =

{
1, ` = 2

`
(
k−1
`−2

)
, 3 ≤ ` ≤ k + 1

. (3.1)

Proof. In the special case that ` = 2 there is only one possible configuration: two

bins, each containing exactly k balls. The existence of this special case is contrary

to our derivation of a formula for B2k+j,k for 0 < j < k as we will need at least

3 bins when j > 0. On the other hand, if there are at least three bins we cannot

possibly have two bins each containing k balls.

Now we assume that ` ≥ 3. Since the largest possible number of balls in a bin

is k, and we only have one bin with k balls, each of these additional bins can have

at most k − 1 balls. Moreover, we cannot have more than k bins besides the one

containing exactly k balls (the “greedy” way to do this is to put k balls in the first

bin and a single ball in each bin thereafter). Thus once we fix the number of bins,
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we want to count the number of ways to split k balls between ` − 1 bins. By the

classical stars-and-bars argument detailed in [28], this can be done in
(
k−1
`−2

)
ways.

Finally, we must choose where to insert the bin with k balls amongst the other `

bins. Since the bins are ordered we can do this in ` ways; multiplying the number

of ways to perform each of these two steps yields the desired result.

The closed form for B2k,k now follows readily.

Theorem 6 (Closed Form for B2k,k). If k ∈ N+ then

B2k,k = (k + 3)2k−2 − 1. (3.2)

Proof. We can easily deduce a summation formula for B2k,k by summing the formula

(3.1) over all 2 ≤ ` ≤ k + 1. We obtain

B2k,k = 1 +

k+1∑
`=3

`

(
k − 1

`− 2

)
= 1 +

k−1∑
`=1

(`+ 2)

(
k − 1

`

)
. (3.3)

The evaluation of this sum follows from (2.5) and (2.6); then the desired result is

immediate.1

3.2. Formula for B2k+j,k

In this subsection, we will derive a closed form for B2k+j,k when k > j. The strategy

is much more involved than the one used in Section 3.1, and proceeds as follows.

We will see that a valid configuration of balls will have either one or two bins with

exactly k balls; thus we calculate the number of ways to split 2k+j balls into a fixed

number of bins so that there is at least one bin with k balls, and then when there

are two bins with k balls each. However, it is possible to have a configuration where

one bin has k balls and another bin has k + i balls, for some 1 ≤ i ≤ j; we do not

want to include these configurations in our final formula because the largest bin has

more than k balls in this case. The process of adding and subtracting these formulas

from each other will closely resemble the Principle of Inclusion and Exclusion.

Before proceeding to the lemmas and their proofs, we introduce some notation

that will be used only in this subsection.

1. First, T2k+j,[k+i,k] denotes the number of ways to sort 2k + j balls into

nonempty bins so that one bin has k balls and another has k+ i balls. Every

time this notation is used, we will have 1 ≤ i ≤ j.

2. If we want the aforementioned quantity where exactly ` nonempty bins are

used, we denote it as U2k+j,`,[k+i,k].

1The sequence {B2k,k}∞k=1 appears in the Online Encyclopedia of Integer Sequences [40].
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3. Next, F2k+j,k,t denotes the total number of ways to split 2k + j balls into

nonempty bins so that at least t bins have exactly k balls. Every time this

notation is used in this paper, t will equal 1 or 2.

4. Finally, if we want the aforementioned quantity where exactly ` nonempty

bins are used, we denote it as G2k+j,`,k,t.

Lemma 3. Let i, j, k ∈ N+ with k > j > i. Then the number of ways to sort 2k+ j

balls into nonempty bins so that one bin has k balls and another has k + i balls is

T2k+j,[k+i,k] =

j−i∑
`=1

(`2 + 3`+ 2)

(
j − i− 1

`− 1

)
. (3.4)

Proof. Let 1 ≤ i < j be arbitrary. Since one bin has k balls and another bin has

k+ i balls, we have j− i balls to split between nonempty bins. Say that this number

of bins is denoted by `, and then 1 ≤ ` ≤ j − i. By the classical stars-and-bars

method, j − i balls can be split into ` nonempty bins in
(
j−i−1
`−1

)
ways. Now, we

insert the remaining two bins in between these ` bins. There are `+ 1 possible slots

in which to insert the bin with k balls, and then there are `+ 2 slots to insert the

bin with k + i balls (these last two bins are distinguishable since i > 0). So, there

are a total of (`2 + 3` + 2)
(
j−i−1
`−1

)
arrangements of these bins. Summing over all

possible values of ` yields the desired result.

Remark 3. The other quantity related to those calculated in Lemma 3 that we

will need is T2k+j,[k+j,k]. However, it is clear that

T2k+j,[k+j,k] = 2, (3.5)

because the only valid configurations are those with a bin having k balls and the

other bin having k + j balls, in either order; there must be exactly two bins.

Lemma 4. Let j, k ∈ N+ with k > j. Then the total number of ways to split 2k+ j

balls into nonempty bins so that at least two bins have exactly k balls is

F2k+j,k,2 =

j∑
`=1

`2 + 3`+ 2

2

(
j − 1

`− 1

)
. (3.6)

Proof. First notice that we cannot have more than two bins with k balls each while

the total number of balls is 2k + j, because k > j. Thus the quantity we want

to calculate is the total number of ways to split 2k + j balls into nonempty bins

so that exactly two bins have exactly k balls. In this case, the remaining j balls

can be split into ` nonempty bins, where 1 ≤ ` ≤ j. By the classical stars-and-bars

method, this step can be done in
(
j−1
`−1

)
ways. Now we insert the two bins with k

balls in between the other bins, and there are `+1 slots in which to do this. If both
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bins with k balls are in the same slot, there are ` + 1 ways to do this, and if the

two bins with k balls are in different slots, there are `(`+1)
2 ways to do this. Thus

the total number of ways to insert the two bins with k balls is

`+ 1 +
`(`+ 1)

2
=

`2 + 3`+ 2

2
. (3.7)

Since the value of ` ranges from 1 to j, the desired result follows.

The main difference between Lemma 4 and Lemma 5 is that only the former

precludes the possibility of having a bin with more than k balls. If two of the bins

each have at least k balls, and there are a total of 2k + j balls, then no other bin

can have k or more balls because k > j.

Lemma 5. Let j, k ∈ N+ with k > j. Then the total number of ways to split 2k+ j

balls into nonempty bins so that at least one bin has exactly k balls is

F2k+j,k,1 =

k+j∑
`=1

(`+ 1)

(
k + j − 1

`− 1

)
−

j∑
`=1

`2 + 3`+ 2

2

(
j − 1

`− 1

)
. (3.8)

Proof. Much as in the proof of (3.6), there will be either one or two bins with

exactly k balls. We will find the number of ways in which to split 2k + j balls

into nonempty bins so that at least one bin has exactly k balls, that happens to

count the configurations having two bins with k balls twice. Deliberately allowing

for this over-counting gives us an easier way to count all of the configurations with

exactly one bin with k balls; we will then subtract the over-counted amount, which

is represented by the formula (3.6). Fix one bin to have k balls, and suppose we are

splitting the remaining k + j balls into ` nonempty bins, where 1 ≤ ` ≤ k + j. We

can split k + j balls into ` nonempty bins in
(
k+j−1
`−1

)
ways (by the classical stars-

and-bars argument). Then, we insert the bin with k balls in between the other `

bins, which can be done in ` + 1 ways. Finally, sum over the possible values of `

and we obtain the first sum in (3.8).

However, we have double-counted configurations that have two bins with exactly

k balls each. This is because when we insert the bin with k balls, there is the

possibility of having one other bin with k balls already, and these two bins are

not distinguishable (this reasoning is actually an implicit use of the Principle of

Inclusion and Exclusion). Hence we subtract the formula (3.6) and obtain the

desired result.

In Lemma 5, the argument is only valid because the maximum number of bins

with exactly k balls is two. The resulting summations become considerably more

complicated if three or more bins can all have k balls apiece.
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Lemma 6. Let i, j, k, ` ∈ N+ with i < j < k and 3 ≤ ` ≤ j − i + 2. Then the

number of ways to split 2k+ j balls into ` nonempty bins so one bin has k balls and

another has k + i balls is

U2k+j,`,[k+i,k] = (`2 − `)
(
j − i− 1

`− 3

)
. (3.9)

Proof. Let 1 ≤ i < j be arbitrary. Since one bin has k balls and another bin has

k + i balls, we have j − i balls to split between ` − 2 nonempty bins. The range

of possible values of ` goes from 3 to j − i + 2, because one bin has k balls and

another has k + i balls. However, we still have j − i balls left over, which can be

split between as few as one additional bin and as many as j − i additional bins.

By the classical stars-and-bars method of [28], j − i balls can be split into `− 2

nonempty bins in
(
j−i−1
`−3

)
ways. Now, we insert the remaining two bins in between

these ` bins. There are `− 1 possible slots in which to insert the bin with k balls,

and then there are ` slots to insert the bin with k + i balls (these last two bins are

distinguishable since i > 0). So, there are a total of (`2 − `)
(
j−i−1
`−3

)
arrangements

of these bins, as desired.

Remark 4. As a slight extension of the result of Lemma 6, we consider how to

split 2k+j balls into exactly ` = 2 nonempty bins when one bin has exactly k balls.

In this case, the other bin must have k + j balls. Thus we cannot split 2k + j balls

into exactly 2 nonempty bins when the most crowded bin has exactly k balls.

Lemma 7. Let j, k, ` ∈ N+ with j < k and 3 ≤ ` ≤ j+2. Then the total number of

ways to split 2k+ j balls into ` nonempty bins so that at least two bins have exactly

k balls is

G2k+j,`,k,2 =
`2 − `

2

(
j − 1

`− 3

)
. (3.10)

Proof. First notice that we cannot have more than two bins with k balls each while

the total number of balls is 2k + j, because k > j. Thus the quantity we want to

calculate is the total number of ways to split 2k + j balls into ` nonempty bins so

that exactly two bins have exactly k balls. In this case, the remaining j balls can

be split into `− 2 nonempty bins, and now it is clear the total number of bins must

range from 3 to j + 2.

By the classical stars-and-bars method used in [28], this step can be done in(
j−1
`−3

)
ways. Now we insert the two bins with k balls in between the other bins, and

there are ` − 1 slots in which to place the bins with exactly k balls. If both bins

with k balls are in the same slot, there are ` − 1 ways to do this, and if the two

bins with k balls are in different slots, there are (`−2)(`−1)
2 ways to do this. Thus

the total number of ways to insert the two bins with k balls is

`− 1 +
(`− 2)(`− 1)

2
=

`2 − `
2

. (3.11)
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Multiplying the number of ways to perform the two steps yields the desired result.

In this lemma we finally combine the previous lemmas in this subsection to obtain

a closed form for M2k+j,`,k.

Lemma 8. Let j, k ∈ N+ with j < k and 2 ≤ ` ≤ k+ j + 1. Then the total number
of ways to split 2k+j balls into ` nonempty bins so the most crowded bin has exactly
k balls is

M2k+j,`,k =



0, ` = 2

`

(
k + j − 1

`− 2

)
− `2 − `

2

(
j − 1

`− 3

)
−

s∑
i=1

(`2 − `)

(
j − i− 1

`− 3

)
, ` = j + 2− s, 1 ≤ s < j

`

(
k + j − 1

`− 2

)
− `2 − `

2

(
j − 1

`− 3

)
, ` = j + 2

`

(
k + j − 1

`− 2

)
, j + 3 ≤ ` ≤ k + j + 1.

(3.12)

Proof. We will handle each case separately. If ` = 2 and one bin has exactly k balls,
then as discussed in the proof of Lemma 7, the other bin has k + j balls, so this
case gives an answer of zero.

Now we will discuss the case where j + 3 ≤ ` ≤ k+ j + 1. As stated in (3.8), the
number of ways to split 2k + j balls into ` nonempty bins so at least one bin has
exactly k balls is `

(
k+j−1
`−2

)
. We do not want to include configurations containing a

bin with k + i balls for some 1 ≤ i ≤ j, but there are no such configurations when
` is at least j + 3 because we cannot split j balls into more than j nonempty bins.

Handing the case of 3 ≤ ` ≤ j+1 (the second case) is more subtle. Just as in the
previous case, the number of ways to split 2k + j balls into ` nonempty bins so at
least one bin has exactly k balls is `

(
k+j−1
`−2

)
, but there are now some configurations

where one bin has k + i balls for some 1 ≤ i ≤ j. There will exist 1 ≤ s < j such
that ` = j + 2 − s. The value of s imposes a further restriction on i, and we will
determine what term to subtract from `

(
k+j−1
`−2

)
by repeatedly using Lemma 6. It

is possible to have a configuration with both a bin having k balls and a bin having
k + i balls for any 1 ≤ i ≤ s, so we must subtract (3.9) for each 1 ≤ i ≤ s, proving
the proposed formula in this case. Notice that since j < k we cannot have multiple
bins each having more than k balls and a bin having exactly k balls. This is why
our procedure is only effective for studying B2k+j,k and not Bmk+j,k for m ≥ 3.

Finally, the case of ` = j + 2 serves as an edge case. There are no configurations
having both a bin with k balls and a bin with k + i balls for some 1 ≤ i < j, but

according to (3.10) we must subtract `2−`
2

(
j−1
`−3

)
to get the desired result in this

case.
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The formula (3.12) gives us a natural partition for the number of ways to split
2k+j balls into nonempty bins where the most crowded bin has k balls: we partition
on the total number of bins used.

Lemma 9 (Summation Formula for B2k+j,k). Let j, k ∈ N+ with k > j. Then the
total number of ways to split 2k + j balls into nonempty bins so the most crowded
bin has exactly k balls is

B2k+j,k =

k+j+1∑
`=2

`

(
k + j − 1

`− 2

)
−
j+2∑
`=3

`2 − `
2

(
j − 1

`− 3

)
−
j−1∑
i=1

j−i+2∑
`=3

(`2−`)
(
j − i− 1

`− 3

)
−2.

(3.13)

Proof. This lemma follows from summing the result of (3.12) over 3 ≤ ` ≤ k +
j + 1. The double sum arises from summing

(
j−i−1
`−3

)
over different values of i that

represented over-counted configurations for each value of s. Here i ranges from 1 to
j − 1 because those were the possible values of s in (3.12), and we can interchange
these two sums freely as they are both finite; it will be easier to evaluate this sum
by summing over ` first.

In this formula, we extend the range of the first sum to ` = 2, and clearly that
term will always have value 2; hence we subtract a 2 at the end of the equation.
We do this because it will make the future calculation of that sum slightly less
cumbersome.

We now have a combination of sums which together represent the value of
B2k+j,k. These sums can all be converted to closed forms, but doing so is a lengthy
process. We will treat the evaluation of the sums in (3.13) as distinct parts of the
same lemma, and then the overall evaluation of (3.13) as a single closed form will
be the main theorem for this section.

Lemma 10. Let j, k ∈ N+ with k > j. Then the sums appearing in Equation (3.13)
are evaluated as follows:

k+j+1∑
`=2

`

(
k + j − 1

`− 2

)
= (k + j + 3)2k+j−2 (3.14)

j+2∑
`=3

`2 − `
2

(
j − 1

`− 3

)
= 2j−4(j2 + 9j + 14) (3.15)

j−1∑
i=1

j−i+2∑
`=3

(`2 − `)
(
j − i− 1

`− 3

)
= 2j−3(j2 + 5j + 2)− 2. (3.16)

Proof. We will start by proving formula (3.14). In order to use the lemmas in
Appendix A, we shift the index of the sum by 2:

k+j+1∑
`=2

`

(
k + j − 1

`− 2

)
=

k+j−1∑
`=0

(`+ 2)

(
k + j − 1

`

)
. (3.17)
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Now split this into two sums: Equation (3.17) equals

k+j−1∑
`=0

`

(
k + j − 1

`

)
+ 2

k+j−1∑
`=0

(
k + j − 1

`

)
. (3.18)

To handle the first sum, we use Equation (A.1) from Appendix A, and the second
is the binomial expansion of (1 + 1)k+j−1, so Equation (3.18) equals

(k + j − 1)2k+j−2 + 2k+j = (k + j + 3)2k+j−2, (3.19)

completing the proof of (3.14).

Now we will proceed with proving formula (3.15), starting by shifting the index
of the sum by 3:

j+2∑
`=3

`2 − `
2

(
j − 1

`− 3

)
=

1

2

j−1∑
`=0

(`2 + 5`+ 6)

(
j − 1

`

)
. (3.20)

We split this sum into three based on the power of ` before the binomial coefficient:

1

2

j−1∑
`=0

`2
(
j − 1

`

)
+

5

2

j−1∑
`=0

`

(
j − 1

`

)
+ 3

j−1∑
`=0

(
j − 1

`

)
. (3.21)

The three sums can be evaluated respectively as follows: for the first, use (A.2); for
the second use (A.1); and finally, the third is the binomial expansion of (1 + 1)j−1,
so Equation (3.21) equals

1

2
j(j − 1)2j−3 +

5

2
(j − 1)2j−2 + 3 · 2j−1. (3.22)

We can factor out a 2j−4 from every term and simplify the resulting quadratic factor
to obtain (3.15).

Finally, we will prove formula (3.16). Again we start by shifting the index of the
(inner) sum by 3:

j−1∑
i=1

j−i+2∑
`=3

(`2 − `)
(
j − i− 1

`− 3

)
=

j−1∑
i=1

j−i−1∑
`=0

(`2 + 5`+ 6)

(
j − i− 1

`

)
. (3.23)

Break Equation (3.23) into three sums based on the power of ` to allow us to use
the identities in Appendix A. Then, (3.23) equals

j−1∑
i=1

j−i−1∑
`=0

`2
(
j − i− 1

`

)
+5

j−1∑
i=1

j−i−1∑
`=0

`

(
j − i− 1

`

)
+6

j−1∑
i=1

j−i−1∑
`=0

(
j − i− 1

`

)
. (3.24)

Now, we use (A.2) on the first double sum and (A.1) on the second double sum,
and notice the third term’s inner sum is the binomial expansion of (1 + 1)j−i−1,
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allowing us to conclude that Equation (3.24) equals

j−1∑
i=1

((j − i− 1)(j − i)2j−i−3 + 5(j − i− 1)2j−i−2 + 6 · 2j−i−1). (3.25)

To greatly simplify the remainder of this calculation, we use a trick that somewhat
resembles u-substitution for integrals. The current sum ranges from i = 1 to i =
j − 1, where j is fixed, so if we let t = j − i and index the sum with respect to t,
the range of the sum is t = j − 1 to t = 1. This greatly simplifies the summand,
and by performing this substitution we realize that the sum (3.25) equals

j−1∑
t=1

(t(t− 1)2t−3 + 5(t− 1)2t−2 + 6 · 2t−1). (3.26)

We utilize a series of algebraic steps that are not particularly insightful but lead us
to a closed form for Equation (3.26):

j−1∑
t=1

(t(t− 1)2t−3 + 5(t− 1)2t−2 + 6 · 2t−1) =
1

8

j−1∑
t=1

2t(t2 + 9t+ 14)

=
1

8

(
j−1∑
t=1

t22t + 9

j−1∑
t=1

t2t + 14

j−1∑
t=1

2t

)

=
1

8
(2j(j2 − 4j + 6)− 6 + 9(j2j − 2j+1 + 2) + 14(2j − 2))

=
1

8
(j22j + 5j2j + 2j+1 − 16)

= 2j−3(j2 + 5j + 2)− 2, (3.27)

completing the proof.

We can now prove the main result of this section: a closed form for B2k+j,k.

Theorem 7 (Closed Form for B2k+j,k). Let j, k ∈ N+ with k > j. Then the number
of ways to split 2k+ j balls into nonempty bins so the most crowded bin has exactly
k balls is

B2k+j,k = (k + j + 3)2k+j−2 − (3j2 + 19j + 18)2j−4. (3.28)

Proof. This formula follows from directly substituting (3.14), (3.15), and (3.16) into
(3.13). Notice that the constant terms cancel each other out.

While we successfully found a closed form for B2k+j,k with k > j, this method is
not tractable as m gets larger. Section 4 serves in part to generalize our summation
formulas to the case where the parameters are not within fixed multiple factors of
each other.
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4. Generalized Solution for Balls into Bins with Restrictions

The previous section dealt with the formulae for the Balls in bins problem without a
dominant bin for the case when the number of bins was `, the most crowded bin had
exactly k balls and the total number of balls was 2k + j with j < k. However, one
may wonder if it would be possible for the number of balls to be arbitrary and not
dependent on other variables (like k in this case). Therefore, we aim to generalize
the concept of putting Balls into Bins with restrictions, as defined in Question 4.
Let us revisit Definition 1 and Question 4, which were posed in Section 1, to obtain
a better understanding of the meaning of the problem and the notation which will
be used for the rest of the paper.

Definition 3 (Generalized Bins Restriction Problem). Let n, `, k ∈ N+. The Gen-
eralized Bins Restriction Problem aims to find the number of ways to split n balls
into ` bins such that the maximum number of balls in each bin is at most k.

Question 5 (Generalized Balls into Bins with restrictions problem). Let n, `, k ∈
N+. This problem asks how many ways can we split n balls into ` nonempty bins
such that the most crowded bin has exactly k balls?

The notation associated with the quantity defined in the Generalized Bins Re-
striction Problem in Definition 3 will henceforth be denoted as Rn,`,k. Note that
this is different from the problem we want to tackle, in the sense that the maxi-
mum number of balls in each bin is at most k, not exactly k, which was the case
investigated in the earlier sections. Also, the notation associated with the quantity
defined in the Generalized Balls in Bins with restriction problem in Question 5 will
henceforth be denoted by Mn,`,k. The main result of this section, Theorem 10,
will be a formula for Rn,`,k. An intermediate step will be to count the number of
configurations described by Definition 3.

4.1. Formula for Generalized Bins Restriction Problem: Rn,`,k

Theorem 8. Let n, `, k ∈ N+. Then

Rn,`,k =
∑̀
t=0

(−1)t
(
`

t

)(
n− t(k + 1) + `− 1

`− 1

)
. (4.1)

Proof. We will prove this formula with the help of the Principle of Inclusion and
Exclusion. First, we note that the total number of filling n balls into ` bins with
no upper restriction on the number of bins is simply(

n+ `− 1

`− 1

)
. (4.2)

Now, this would include all the configurations that satisfy the restriction condition
that each bin contains at most k and all the configurations which do not satisfy
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this condition. Thus the aim of this proof is to first calculate the total number of
configurations that do not satisfy the restriction condition and then subtract that
from Equation (4.2).

Let us assume that the bins have been labelled in some order, indexed from 1 to `.
Let Ai denote the finite set of all configurations such that the ith bin contains more
than k balls. Using this definition, note that the total number of configurations
that violate the restriction condition is equal to∣∣∣∣∣⋃̀

i=1

Ai

∣∣∣∣∣ . (4.3)

Using the Principle of Inclusion and Exclusion, this is equivalent to the following
formula:∣∣∣∣∣⋃̀
i=1

Ai

∣∣∣∣∣ = ∑̀
i=1

|Ai| −
∑

1≤i<j≤`

|Ai ∩Aj |+
∑

1≤i<j<k≤`

|Ai ∩Aj ∩Ak| −· · ·+(−1)`−1 |A1 ∩A2 · · · ∩A`| .

(4.4)

Now, to find all such configurations, let us find the cardinalities appearing in (4.4)
by breaking into cases.

Terms in the First Summation: This is the number of configurations such that bin
number i contains more than k balls. Note that this statement means that bin i
contains at least k + 1 balls. We first put k + 1 balls into bin i. Now, we just
need to distribute the remaining n − k − 1 balls into ` bins (note that bin i is
included because we have filled only the ”minimum” number of balls in the bin,
and it may contain more than k + 1 balls). Therefore, the total number of ways to
place n− 1(k + 1) balls into ` bins is(

n− 1(k + 1) + `− 1

`− 1.

)
(4.5)

We need to sum this formula over all possible values of i, i.e.,
∑`
i=1 |Ai|. This means

that we just need to multiply the formula obtained in Equation (4.5) by ` to sum
over all values of i. Therefore, we have the following formula:

∑̀
i=1

|Ai| = `

(
n− 1(k + 1) + `− 1

`− 1

)
=

(
`

1

)(
n− 1(k + 1) + `− 1

`− 1

)
. (4.6)

Terms in the Second Summation: This is the number of configurations such that
the bins numbered i and j, where i < j, have more than k balls. This means both
the ith and jth bins contain at least k+ 1 balls. So we again put k+ 1 balls in each
bin. Therefore, we have n− 2(k+ 1) balls remaining to put into ` bins; the number
of ways to place n− 2(k + 1) balls into ` bins is(

n− 2(k + 1) + `− 1

`− 1.

)
(4.7)
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We need to sum this formula over all possible values of i, j, i.e.,
∑

1≤i<j≤` |Ai ∩Aj |.
The number of ways of choosing two such bins out of ` bins is simply

(
`
2

)
; we just

need to multiply the formula obtained in Equation 4.7 by
(
`
2

)
. Therefore, we obtain

the formula ∑
1≤i<j≤`

|Ai ∩Aj | =

(
`

2

)(
n− 2(k + 1) + `− 1

`− 1

)
. (4.8)

We proceed similarly for the other summations given in the formula of Inclusion and
Exclusion, and substitute the formulae obtained into Equation (4.4) which gives us
the following formula:∣∣∣∣∣⋃̀

i=1

Ai

∣∣∣∣∣ =
∑̀
t=1

(−1)t−1

(
`

t

)(
n− t(k + 1) + `− 1

`− 1

)
. (4.9)

Note that this is the number of all configurations that do not satisfy the restriction
condition. So, to obtain the number of configurations satisfying the restriction con-
dition, we just subtract Equation (4.9) from Equation (4.2) to obtain the formula.
Therefore, we obtain

Rn,`,k =

(
n+ `− 1

`− 1

)
−
∑̀
t=1

(−1)t−1

(
`

t

)(
n− t(k + 1) + `− 1

`− 1

)
. (4.10)

This equation can be further simplified as follows:

Rn,`,k =
∑̀
t=0

(−1)t
(
`

t

)(
n− t(k + 1) + `− 1

`− 1

)
. (4.11)

This formula should actually have the restriction on t that 0 ≤ t ≤ n
k+1 , because

for the cases where t ≥ n
k+1 , the binomial coefficient

(
n−t(k+1)+`−1

`−1

)
would return

erroneous values, depending on how we extend the definition of the binomial coef-
ficient for negative values. That said, we want all of these cases to be equated to 0
because they all violate the definition of our main problem. To make things easier,
we can define the binomial coefficient

(
n
k

)
in a new (albeit equivalent) way to use

the formula in Equation (4.11). The following definition of binomial coefficients will
be used in the remainder of the paper.(

n

k

)
=

{
n!

k! (n − k)! , n ≥ 0 , k ≥ 0 , n ≥ k
0, otherwise

. (4.12)

This definition will ease the computation of the binomial coefficients and the
cases associated with these in the coming sections.
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4.2. Formula for Mn,`,k

We approached the problem of Generalized balls in bins with restriction in two
different ways to obtain different formulae representing the same problem. One of
the highlights of our work is that we are establishing new connections between the
quantities Rn,`,k and Mn,`,k that have not been previously explored in the literature.
The first method utilized in this section features the Principle of Inclusion and
Exclusion to derive Equation (4).

Theorem 9 (Formula for Generalized Balls into Bins with restrictions problem
(I)). Suppose n,`, k ∈ N+ such that `+k− 1 ≤ n ≤ `k. Then the following identity
holds:

Mn,`,k =
∑̀
t=1

(−1)t−1

(
`

t

)
Rn−t(k−1)−`,`−t,k−1. (4.13)

Proof. We begin the proof by taking cases for the number of bins which are full (i.e.,
how many bins contain exactly k balls) and then distributing the remaining balls
into the bins which are not meant to be full with updated restrictions. After that,
we use the Principle of Inclusion and Exclusion to sum up all the cases to prove
the theorem. So, for case 1 (where at least one bin is full), the number of ways we
can choose one bin out of ` bins to be full is simply

(
`
1

)
. Now, let us fill the rest of

the bins with the balls, while keeping the new restriction in mind. Let us call these
variables new balls, new bins, and new restrict. Note that we have already given k
balls to a bin, so the number of remaining bins is `− 1. Also note that none of the
remaining `− 1 bins can remain empty, so we put one ball in each of the remaining
` − 1 bins. The number of balls remaining is simply n − k − ` + 1, but now each
of the remaining `− 1 bins contains only one ball. In order to apply Theorem 8 on
the remaining bins, we need to reduce the restriction on the number of balls in a
bin from k to k − 1. So, we have the values of the new variables as follows:

new balls = n− k − `+ 1 (4.14)

new bins = `− 1 (4.15)

new restrict = k − 1. (4.16)

In order to distribute the remaining balls into bins with the given restriction, we
use Theorem 8 to identify Rnew balls,new bins,new restrict as the total number of ways

of distribution, given the above conditions. Finally, we multiply this by
(
`
1

)
and

substitute the values of the variables to get the total number of ways such that at
least 1 bin is full is (

`

1

)
Rn−k−`+1,`−1,k−1. (4.17)

However, notice that we have over-counted in some cases, specifically the cases
where at least 2 bins are full. To explain this in more detail, let (b1, b2, b3, · · · , b`)
denote a particular valid configuration of balls in the bins numbered 1, 2, · · · , ` with
the aforementioned conditions satisfied. Let us assume there are two indices i and
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j with i 6= j such that bi = bj = k; that is, bins i and j are full with k balls
each. In the explanation above, when we chose a bin that was full, we counted
this configuration once when we chose bi as the bin which is full. We also counted
this configuration once when we chose bj as the bin which is full. So, we need to
subtract the case where there are at least two bins full from the above sum. The
formula for the case where at least two bins are full and which satisfy the original
conditions is (

`

2

)
Rn−2(k−1)−`,`−2,k−1. (4.18)

However, if we subtract this from the case where at least one bin was full, there
would be some cases, like the number of bins with at least 3 bins full, which would
be under-counted, as these cases would appear in both of the above cases. So we
need to add this to the original sum. By invoking the Principle of Inclusion and
Exclusion, this would go on until the maximum possible number of bins contain k
balls.

Considering the generalized case of putting n balls in ` bins such that each bin
has at most k balls and at least s bins are full, we have the formula(

`

s

)
Rn−s(k−1)−`,`−s,k−1. (4.19)

Using this formula along with the Principle of Inclusion and Exclusion to sum up
all the cases gives us the required formula (4.13).

Note that in the above statement, we use the statement ”maximum possible
number of bins contain k balls”, but have taken the summation of cases up to `.
The above proof is valid due to the definition of

(
n
k

)
, which equates to 0 for the case

where n ≤ 0 or n < k. So the above formula is still valid because the rest of the
cases do not contribute anything to the sum.

This approach involving The Principle of Inclusion and Exclusion has given us a
very complicated formula in terms of Rn,`,k, which itself has a complicated formula!
Thus it makes sense to find alternate ways to represent solution to the same problem.

Theorem 10 (Formula for Generalized Balls into Bins with restrictions problem
(II)). Suppose n, `, k ∈ N+ such that `+k−1 ≤ n ≤ `k. Then the following identity
for Mn,`,k holds:

Mn,`,k = Rn−`,`,k−1 −Rn−`,`,k−2 =∑̀
t=0

(−1)t
(
`

t

)[(
n− tk − 1

`− 1

)
−
(
n− t(k − 1)− 1

`− 1

)]
. (4.20)

Proof. We will prove this identity by counting all the configurations that satisfy
only some parts of the definition of Mn,`,k, and then subtract all the configurations
which do not satisfy the remaining criteria. Specifically, we temporarily relax the
condition that a given bin can have at most k balls. Let us start by remembering
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that the formula Mn,`,k holds true only for nonempty bins. We put one ball in
each of the ` bins. Now, the remaining number of balls is (n − `), so we apply
Equation (4.1) to fill the bins with the remaining n − ` balls. However, note that
the restriction must now be reduced from k to k−1 because each bin has a ball and
we want at most k balls in each bin. So, the number of ways to distribute (n − `)
balls into ` bins such that each bin gets at most k − 1 balls is simply Rn−`,`,k−1.

However, note that we have included some unwanted configurations in the above
formula. The statement of Definition 4 also says that the most crowded bin must
contain exactly k balls, so there are some cases where the most crowded bin might
contain less than k balls, but other than that, it would satisfy all the conditions. In
order to eliminate these cases, note that if the most crowded bin does not contain
k balls, then it would contain at most k − 1 balls. These configurations fall under
Definition 1. Hence the number of ways we can distribute n balls into ` nonempty
bins such that each bin contains at most k− 1 balls is Rn−`,`,k−2. Subtracting this
from Rn−`,`,k−1 gives the desired answer.

Remark 5. The restriction `+ k− 1 ≤ n ≤ `k was not explicitly used in the proof
of (4.20). However, it is important because of the definition of Mn,`,k. Recall that
Mn,`,k counts the number of ways to split n balls into ` nonempty bins so that
the most crowded bin has exactly k balls; the remaining ` − 1 bins will contain at
least one ball each. If this were to be possible for some values of n, `, and k, then
necessarily ` + k − 1 ≤ n ≤ `k. At least one bin must actually be filled to the
maximum capacity, giving the lower bound. On the other hand, given ` bins with
maximum capacity k, one obtains the greatest possible number of balls by filling
all bins with the maximum capacity. This gives the upper bound. Therefore we are
justified using these bounds in the next lemma as well.

The natural follow-up question after proving (4.20) is to ask whether there is a
closed form for that sum. We believe that the answer to this is negative, because
the presence of tk inside the binomial coefficients makes the sum inaccessible by
evaluation techniques such as Snake Oil and the WZ Method (see [43] for a detailed
explanation of these techniques). As a result, we look to derive estimates instead.
These estimates will involve exponential functions for two reasons. First, binomial
coefficients are intimately related to exponential functions through Stirling’s formula
(see for instance [4, 15, 34, 38, 42]). Second, as we will see, such estimates will
produce factors with kt as a power, which is more manageable than kt inside a
binomial coefficient. The statement and proof of this lemma are technical in nature
and are comprised mostly of elementary manipulations of sums and inequalities.
Therefore we defer the exact statement of the lemma and its proof to Appendix B.

4.3. Additional Identities Involving Mn,`,k and Rn,`,k

There are various identities which involve the variables Mn`,k and Rn,`,k. These
identities help us understand the nature of the variables. The expression Rn,`,k
used in this paper here is also known as Polynomial coefficients in various papers
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like [12] and [13]. These papers provide a more rigorous definition and expression
for the term Rn,`,k. The paper [12] has also explored the various combinatorial
interpretations of the Polynomial coefficients in different areas of mathematics.

There are many identities of involving the Polynomial coefficients mentioned in
these papers, but almost every paper has proved them using generating functions
and their algebraic manipulations. Here, we present the proof of four identities
using only the elementary principles of enumerative combinatorics.

Lemma 11 (Identities involving Rn,`,k). Some of the prominent identities involving
the variable Rn,`,k are highlighted below:

1.
Rn,`,k = R`k−n,`,k; (4.21)

2.

Rn,`,m+k =

n∑
i=0

Ri,`,m Rn−i,`,k; (4.22)

3.

Rn,`+1,k =

k∑
i=0

Rn−i,`,k; (4.23)

4.
Rn+1,`+1,k −Rn,`+1,k = Rn+1,`,k −Rn−k,`,k. (4.24)

Proof. Let us prove all the identities from (4.21) to (4.24) in the order listed.

1. For proving Rn,`,k = R`k−n,`,k, we will use the principle of one-to-one cor-
respondence between two sets to show that the cardinalities of both sets are
equal, which would lead us to the above identity. We know that each con-
figuration of balls in the bins with conditions expressed with the formula of
Rn,`,k can be uniquely denoted as (b1, b2, b3, · · · , b`), where each bi denotes
the number of balls in the bin numbered i from a selection of bins numbered
from 1 to `. The sum of all bi’s equals n. Furthermore, for each 1 ≤ i ≤ `,
bi is a non-negative integer which can have a maximum value of k. Let us
denote {bi}`i=1 to be the same configuration (b1, b2, b3, · · · , b`), but expressed
in a more compact form.

Now, for each configuration of balls in bins denoted by {bi}`i=1, we have an-
other unique configuration of the form {k−bi}`i=1. Note that this configuration
has each term of the form k− bi, which is always non-negative due to the fact
that bi ≤ k. Also note that the maximum value of k − bi is at most k due to
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the fact that bi ≥ 0. Now, this configuration can be said to be a collection of
bins with bi balls in the ith bin; the ` bins are indexed such that each bin is
nonempty and has at most k balls. Also, the sum of the number of balls in
each bin over all the bins is

(k−b1)+(k−b2)+· · ·+(k−b`) = `k−(b1+b−2+· · ·+b`) = `k−n. (4.25)

On the other hand, the total number of such configurations of this type can
be expressed with the formula of Rk`−n,`,k. This means there is a one-to-
one correspondence between the two sets of configurations satisfying their
respective conditions. This implies that the cardinalities of both the sets are
equal, which implies that Rn,`,k = Rk`−n,`,k.

2. For proving Rn,`,m+k =
n∑
i=0

Ri,`,m Rn−i,`,k, we proceed by counting in two

ways. Suppose we have ` bins and n balls such that each bin has at most
(m + k) balls. The total number of such configurations, due to the simple
definition of the Generalized Bins Restriction Problem, equals Rn,`,m+k from
the formula (4.1).

Let us count the same problem from a different perspective. Let each bin
have a partition which divides the bin into two parts (say A and B) such
that one component of the partition A can contain a maximum of m balls
and the other component B can contain a maximum of k balls. Note that
this problem is still equivalent to Question 4, because in both problems, each
configuration has bins with at most m+k balls. Enumerating all the possible
cases via partitions, let us fill all the partition components A for every bin.
Let us suppose we require i balls (0 ≤ i ≤ n) to fill each partition component
A of every bin such that no bin’s partition component labelled A has more
than m balls. The number of such configurations is Ri,`,m. Now, we must
fill the remaining n − i balls into all the partition components labelled B of
every bin such that no bin has more than k balls. By a similar argument, the
number of such configurations equals Rn−i,`,k.

Now, note that for any two bins Bi and Bj , the Bis that partition compo-
nent A can be interchanged with the partition component A of bin Bj , and
both the bins will still satisfy the restrictions on the bins and their partition
components. Hence, the total number of ways to fill ` bins with n balls such
that every bin has at most (m+k) balls is the product of the number of ways
to fill the two partitions of the bins. That is, this describes the expression
Ri,`,mRn−i,`,k.

Now, i can range from 0 to n due to the number of balls available, so we
should sum the total number of such configurations over all possible values

of i. This is equal to
n∑
i=0

Ri,`,m Rn−i,`,k. So, we have just counted the same
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problem in two ways, hence we have the identity

Rn,`,k =

n∑
i=0

Ri,`,m Rn−i,`,k. (4.26)

3. To prove Rn,`+1,k =
k∑
i=0

Rn−i,`,k, we will use the concept of counting in two

ways to prove this identity.

We first find a way to represent Rn,`+1,k. Note that for each bin bi satisfying
the restriction, we have that 0 ≤ bi ≤ k for any integer i such that 1 ≤ i ≤ `+1.
Now, let us fill the first bin first with some number of balls, and then fill the
rest of the bins accordingly. Now, the minimum number of balls we can put
in the first bin is b1 = 0, and the maximum number of balls we can fill into a
bin is b1 = k. Let us find the number of ways to fill the rest of the balls into
the remaining bins for each of the cases that lie within the given restrictions.

Term in the First Case (b1 = 0): This means the number of balls in the first
bin is 0, so in order to fill the remaining n−0 = n balls into `+ 1−1 = ` bins
such that each bin contains at most k balls, the number of such configurations
is Rn,`,k from Theorem 8.

Term in the Second Case (b1 = 1): This means the first bin has a single ball;
therefore, in order to fill the remaining n− 1 balls into ` bins, such that each
bin contains at most k balls, the number of such configurations is Rn−1,`,k.

For the remaining cases, i.e., where b1 ranges from 1 to k, we proceed similarly
as shown above. We now discuss the last case.

Term in the (k + 1)th Case (b1 = k): This means the first bin has k balls;
therefore, in order to distribute the remaining n−k balls amongst ` bins, such
that each bin contains at most k balls, the number of such configurations is
Rn−k,`,k. Now, note that summing each of the cases above would account
for every available configuration having n balls and ` + 1 bins where each
bin contains at most k balls. However, the formula associated with the total
number of such configurations is represented by Rn,`+1,k. We conclude that
the following identity holds:

Rn,`,k +Rn−1,`,k + · · ·+Rn−k,`,k = Rn,`+1,k =⇒ Rn,`+1,k =

k∑
i=0

Rn−i,`,k.

(4.27)

4. Finally, to prove, Rn+1,`+1,k−Rn,`+1,k = Rn+1,`,k−Rn−k,`,k, we will leverage
formula (4.23) to prove this identity. Using that formula, we have the following
results:

Rn+1,`+1,k =

k∑
i=0

Rn+1−i,`,k; (4.28)
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Rn,`+1,k =

k∑
i=0

Rn−i,`,k. (4.29)

Subtracting Equation (4.29) from Equation (4.28) gives us

Rn+1,`+1,k −Rn,`+1,k =

k∑
i=0

Rn+1−i,`,k −
k∑
i=0

Rn−i,`,k, (4.30)

Further, splitting the first term from Equation (4.28) and the last term from
Equation (4.29) upon further simplification gives us the following:

Rn+1,`+1,k −Rn,`+1,k = Rn+1,`,k −Rn−k,`,k +

k∑
i=1

Rn+1−i,`,k −
k−1∑
i=0

Rn−i,`,k.

(4.31)
Now, notice that we may shift the index of the first sum in Equation (4.31)

k∑
i=1

Rn+1−i,`,k =

k−1∑
i=0

Rn−i,`,k (4.32)

Substituting Equation (4.32) into Equation (4.31) gives us the required iden-
tity (4.24).

These identities help develop intuition about the combinatorial properties of the
Balls in bins with restriction formula Rn,`,k. We can further apply these properties
to sum up the formula Rn,`,k while keeping two terms between n, `, k as a constant,
and the third term as a variable.

4.4. Sums Associated with Mn,`,k

In Section 1, Question 3 asked the number of ways to split n balls into any number
of nonempty ordered bins where the most crowded bin has k balls. Note that in this
question, the number of bins was not provided. A natural variant of this question
would be to pose the same question when the other variables, such as the number
of balls and the restriction on the bin, do not have fixed values. We have already
discussed the case with a variable number of bins in Sections 2 and 3, which was
denoted by Bn,k. Now, we try keeping the other factors as variables and find the
appropriate sums associated with these terms.

Definition 4. Let n, ` ∈ N+. Then, Kn,` represents the total number of ways to
fill ` nonempty bins with n balls without any restrictions.

Note that this is the same as enumerating all the possible configurations of balls
and nonempty bins with the restriction on each bin ranging from 0 to n − ` + 1.
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Note that technically a restriction of 0 is not possible unless the number of balls is
0, but we have accounted for all such cases in the formula of Rn,`,k. Therefore we
can write this sum as

Kn,` =

n−`+1∑
i=1

Mn,`,i. (4.33)

Now, if we represent Mn,`,k in terms of Rn,`,k, it can be seen that the sum is actually
a telescoping sum in which most of the terms cancel, and only Rn−`,`,n−`+1 remains.

Theorem 11. Let k, ` ∈ N+. Then

Kn,` =

(
n− 1

`− 1

)
. (4.34)

Proof. Notice that there are no restrictions on how many balls can be in each
bin. Also, Definition 4 simply represents the number of ways to distribute n balls
amongst ` nonempty bins, which is already a very well-known problem in combi-
natorics. To give a perspective for the formula associated with Kn,`,k, we start by
filling each bin with one ball. This is because we do not have any empty bins. So,
we have n− ` balls remaining to be distributed into ` bins, such that each bin gets
0 or more balls. The number of ways this can be done is(

(n− `) + `− 1

`− 1

)
=

(
n− 1

`− 1

)
from the stars-and-bars argument.

The next definition focuses on having a constant number of bins, and a restriction
on the maximum number of balls that can be present in the bins. The main task
is to enumerate all possibilities of filling these bins with balls while satisfying the
given restrictions.

Definition 5. Let k, ` ∈ N+. Then N`,k represents the total number of ways to
fill any number of balls into ` nonempty bins such that the most crowded bin(s)
contain exactly k balls.

In this case, we are varying the number of balls, whereas the bins and the re-
striction on the bin remain the same. The minimum number of balls required in
the ` bins such that all the bins are nonempty and at least 1 bin contains k balls
would be equal to k+ `− 1. The maximum number of balls would be utilized when
all bins have k balls, which would be equal to k`. Therefore, we can write the sum
of all such configurations as

N`,k =

k∑̀
i = k+`−1

Mi,`,k. (4.35)



INTEGERS: 21 (2021) 26

Theorem 12. Let k, ` ∈ N+. Then

N`,k = k` − (k − 1)`. (4.36)

Proof. We will solve this problem by first counting a more general version of the
problem, and then subtracting all the cases violating the original conditions. Recall
that we have these restrictions:

1. The most crowded bin(s) have exactly k balls.

2. All of the bins are nonempty.

Let us partially fulfill these conditions, and fill all the bins such that all bins are
nonempty and the maximum number of balls in the bins are at most k. We have
` bins, and each bin could have anywhere between 1 to k balls; as there is no
restriction on the total number of balls available, the total number of filling ` bins
with this condition is k`. Note that in the above case, we have also counted the
configurations where the most crowded bin has less than k balls. For example,
consider the configuration (k − 1, k − 1, · · · , k − 1) where all ` bins contain (k − 1)
balls. Here, the most crowded bins contain (k − 1) balls. However, in the original
definition, the most crowded bin has exactly k balls. Thus in order to count only
those configurations which have the most crowded bin with exactly k balls, we
subtract all such configurations whose most crowded bin contains less than k balls
from k` as shown above. The number of ways to fill ` bins such that the most
crowded bin(s) contain at most (k− 1) balls is simply (k− 1)`. Subtracting the two
derived expressions yields the desired result.

5. Interpretation in Counting Solutions to Integer Equations

The problem studied in depth through earlier sections of this paper happens to
be analogous with a class of problems that have a more robust literature. One
elementary problem that frequents itself in mathematics textbooks such as [4, 27, 43]
is to find the number of positive integer solutions to

x1 + x2 + · · ·+ x` = n, (5.1)

where ` ≤ n. This equation with various choices for the coefficients is closely
studied in additive and enumerative combinatorics papers such as [7, 30, 36, 37].
Incidentally, this problem also motivated the development of the “stars-and-bars”
argument we used numerous times throughout the paper. There are many restric-
tions that can be added to these solutions. One of particular relevance is where we
require that the maximum attained value of {x1, x2, . . . , xn} is some k > 0; this
is relevant because finding a formula for Mn,`,k is clearly equivalent to finding the
number of positive integer solutions to (5.1) with this restriction, and the authors
are not aware of any previously published resources that provide a closed form to
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the solution of this problem. Among other things, this paper gives us such a closed
form when n ≤ 2k or when there exists j ∈ N+ such that j < k and n = 2k + j.
Here are two examples where we demonstrate that our formulas agree with the list
of solutions to (5.1) that is generated by inspection.

Example 1. Using formula (3.1), we calculate

M8,5,4 = 5

(
4− 1

5− 2

)
= 5. (5.2)

On the other hand, the list of solutions to (5.1) when n = 8, ` = 5, k = 4 is

(x1, x2, x3, x4, x5) ∈ {(4, 1, 1, 1, 1), (1, 4, 1, 1, 1), (1, 1, 4, 1, 1), (1, 1, 1, 4, 1), (5.3)

(1, 1, 1, 1, 4)},

and there are 5 total solutions on this list.

Example 2. Using the third case of Equation (3.12), we calculate

M8,4,3 = 4

(
3 + 2− 1

4− 2

)
− 42 − 4

2

(
2− 1

4− 3

)
= 18. (5.4)

On the other hand, the list of solutions to (5.1) when n = 8, ` = 4, k = 3 is

(x1, x2, x3, x4) ∈ {(3, 3, 1, 1), (3, 1, 3, 1), (3, 1, 1, 3), (1, 3, 3, 1), (1, 3, 1, 3), (5.5)

(1, 1, 3, 3), (3, 2, 2, 1), (3, 2, 1, 2), (3, 1, 2, 2), (2, 3, 2, 1),

(2, 3, 1, 2), (1, 3, 2, 2), (2, 2, 3, 1), (2, 1, 3, 2), (1, 2, 3, 2),

(2, 2, 1, 3), (2, 1, 2, 3), (1, 2, 2, 3)},

and there are 18 total solutions on this list.

6. Conclusion and Future Work

We studied two variants of the same problem in this paper; we counted how many
ways to split n balls into nonempty, ordered bins so that the most crowded bin has
exactly k balls, for certain values of n and k. In the first variant, we fixed the total
number of bins that were allowed; in the second variant, we permitted any number
of bins to be used, as long as all the bins were nonempty. Clearly, the solution to
the second problem follows very quickly from the first, but the first problem is of
interest in its own right. As we demonstrated in Section 5, the first problem yields
a previously unknown closed form for counting the number of solutions to certain
integer equations.

That being said, we have yet to find a closed form for Bn,k for all n, k ∈ N+.
The case where there exists j < k such that n = 2k+ j may be most illustrative to
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how we handle the case where n = mk+ j for some m ≥ 3. Thus, the natural open
problem to consider is whether the technique used in Section 3.2 can be extended to
this more general case. Finding a closed form for this general case will completely
solve the problem at hand, because whenever n > k, there exists m ∈ N+ and
0 ≤ j < k such that n = mk+ j. The case where m = 1 was the dominant bin case
considered in Section 2, and the m = 2 case was handled in Section 3.

In a previous discussion on public forums2, people have approximated the distri-
bution of Mn,`,k as a normal distribution. Here the parameter is ` (i.e., the number
of bins); thus it may be worthwhile to solidify this theory.

There are also other aspects of this problem which could be explored in the
future. One of them is exploring the behaviour of the average number of bins, given
the number of balls n, the restriction on each bin k, and the fact that at least 1 bin
contains exactly k balls. Basically, we are exploring the properties of Mn,`,k with `
as a variable. The average number of bins required in this case would just be the
weighted sum of the number of bins required and the number of such configurations
divided by the total number of configurations possible for all cases of the number
of bins. Using Python libraries such as NumPy and Matplotlib, we explored the
nature of the average number of bins with respect to other factors (such as the
number of balls, and the restriction on the bins). Figure 1 shows the number of
configurations for a constant restriction on the bins and an increasing number of
balls. Using many simulations of such test cases, it can be safely conjectured that
the average number of bins increases if we keep the restriction on bins as a constant
value and increase the number of balls.

Finally, there are some other problems to consider for future research. One
variant of the problems studied in this paper is as follows: we can enumerate ways
to split n balls into nonempty, ordered bins so that the most crowded bin has exactly
k balls, and exactly t bins have this many balls. This is a sensible problem to study
because the calculations in Section 3.2 implicitly broke the problem at hand into
the cases t = 1 and t = 2. There is also an asymptotic problem to consider:
for fixed n and k, we can consider the list of all configurations where we split n
balls into nonempty, ordered bins so the most crowded bin has exactly k balls as a
probability space with the parameter being the number of bins used; then we ask
what probability distribution is resembled as n→∞ for a fixed k.

2https://math.stackexchange.com/questions/3548108/counting-solutions-to-%

2Dx-1-x-2-dots-x-k-n-with-x-i-leq-r-closed-for

https://math.stackexchange.com/questions/3548108/counting-solutions-to-%2Dx-1-x-2-dots-x-k-n-with-x-i-leq-r-closed-for
https://math.stackexchange.com/questions/3548108/counting-solutions-to-%2Dx-1-x-2-dots-x-k-n-with-x-i-leq-r-closed-for
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Figure 1: Distribution of the number of configurations with varying number of balls;
our GitHub repository with the code is located at https://github.com/

vedantbonde/Balls-in-Bins-Analysis
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A. Some Useful Binomial Coefficient Identities

In this appendix we will provide proofs of some binomial coefficient identities that
are used throughout the paper and have many uses outside the context of this paper.
The proofs in this section are very similar in nature to those in the Appendix of [10].
They may be regarded as well-known, but we provide proofs for sake of completeness
and for future reference.

Lemma 12. For any n ∈ N+,

n∑
k=0

k

(
n

k

)
= n2n−1. (A.1)

Proof. This follows immediately from using the formula for the mean of a binomial
random variable on page 330 of [27], using value of the parameter p = 1

2 .

Lemma 13. For any n ∈ N+,

n∑
k=0

k2
(
n

k

)
= n(n+ 1)2n−2. (A.2)
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Proof. We aim to rewrite the left-hand side of (A.2) so that we can invoke the
formula (A.1). To do this we turn the binomial coefficient into

(
n
k−1

)
:

n∑
k=0

k2
(
n

k

)
=

n∑
k=0

k2
n!

k!(n− k)!
=

n∑
k=0

k(n− k + 1)

(
n

k − 1

)
. (A.3)

We notice this sum’s first term vanishes and shift the index of it:

n∑
k=0

k(n−k+1)

(
n

k − 1

)
=

n∑
k=1

k(n−k+1)

(
n

k − 1

)
=

n−1∑
k=0

(k+1)(n−k)

(
n

k

)
. (A.4)

Now we decompose this into three sums:

n−1∑
k=0

(k + 1)(n− k)

(
n

k

)
= −

n−1∑
k=0

k2
(
n

k

)
+ (n− 1)

n−1∑
k=0

k

(
n

k

)
+ n

n−1∑
k=0

(
n

k

)
. (A.5)

All three sums look familiar if we include the k = n terms: the first sum is the
opposite of the left-hand side of (A.2), the second sum is the left-hand side of
(A.1), and the right-hand side is the binomial expansion of (1 + 1)n. Thus we
decide to add the k = n terms and then subtract them:

−
n−1∑
k=0

k2
(
n

k

)
+ (n− 1)

n−1∑
k=0

k

(
n

k

)
+ n

n−1∑
k=0

(
n

k

)
=

−
n∑
k=0

k2
(
n

k

)
+ (n− 1)

n∑
k=0

k

(
n

k

)
+n

n∑
k=0

(
n

k

)
+n2

(
n

n

)
− (n− 1)n

(
n

n

)
+n

(
n

n

)
.

(A.6)

It turns out the last three terms on the right-hand side of (A.6) cancel each other
out. In addition, everything in (A.6) is equal to the left-hand side of (A.2), so we
can treat those quantities like an equation and rearrange it to obtain

2

n∑
k=0

k2
(
n

k

)
= (n− 1)

n∑
k=0

k

(
n

k

)
+ n

n∑
k=0

(
n

k

)
. (A.7)

The desired result follows from a direct application of (A.1) and the fact that the
rightmost sum in (A.7) is equal to 2n.

Remark 6. The process used in this proof can be repeated to evaluate sums of
the form

∑n
k=0 k

m
(
n
k

)
, but in this paper we only need the results for m = 1 and

m = 2. There is no known closed form for this sum for general values of m. See
[5, 6] for more information on past explorations with this family of sums, including
a discussion on how Stirling’s triangle was developed.
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B. Estimates on Enumerating Generalized Balls into Bins with Restric-
tions

Before obtaining our estimate on Equation (4.20), we need one other preliminary
lemma. This identity may be regarded as well-known, but we provide a quick proof
for sake of completeness.

Lemma 14. Let m ∈ N+. Then∑
0≤t≤m
t even

(
m

t

)
=

∑
0≤t≤m
t odd

(
m

t

)
= 2m−1. (B.1)

Proof. The following two identities follow from applying the Binomial Theorem to
expand (1 + 1)m and (1− 1)m, respectively.

m∑
t=0

(
m

t

)
= 2m (B.2)

m∑
t=0

(−1)t
(
m

t

)
= 0. (B.3)

We can add (B.2) and (B.3) together. In doing so, the terms with odd index
t cancel out while the terms with even index t double in magnitude. This proves
the first equality in (B.1). Subtracting this equality from (B.2) yields the second
equality in (B.1), completing the proof.

Lemma 15. Let n, `, k ∈ N+ such that k ≤ n ≤ `k and n ≥ 2. Then we have the
following estimates on Mn,`,k:

Mn,`,k ≤ 2

(
`

α

)(
n− αk − 1

`− 1

)
+ 2

(
`

β

)(
n− β(k − 1)− 1

`− 1

)
+(

2`−1

(`− 1)!
· (n− 1)n−

1
2 e1−`+`ke

1
12(n−`k−1)

− 1
12(n−`)+1

(n− (α− 1)k − `)n−`k−`+ 1
2

)
−(

2`

(`− 1)!
· (n− `)−`−1e1−`e

1
12n−11−

1
12

)
+(

2`−1

(`− 1)!
· (n− 1)n−

1
2 e1−`+`ke

1
12(n−`(k−1)−1)

− 1
12(n−`)+1

(n− (β − 1)(k − 1)− `)n−`(k−1)−`+ 1
2

)
. (B.4)
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Mn,`,k ≥ −2

(
`

α

)(
n− αk − 1

`− 1

)
− 2

(
`

β

)(
n− β(k − 1)− 1

`− 1

)
+(

2`

(`− 1)!
· (n− `)−`−1e1−`e

1
12n−11−

1
12

)
−(

2`−1

(`− 1)!
· (n− 1)n−

1
2 e1−`+`ke

1
12(n−`k−1)

− 1
12(n−`)+1

(n− (α− 1)k − `)n−`k−`+ 1
2

)
−(

2`−1

(`− 1)!
· (n− 1)n−

1
2 e1−`+`ke

1
12(n−`(k−1)−1)

− 1
12(n−`)+1

(n− (β − 1)(k − 1)− `)n−`(k−1)−`+ 1
2

)
. (B.5)

The constants α and β are defined as follows:

α := max{t ∈ {0, 1, . . . , `}, n− tk − 1 ≥ `− 1} (B.6)

β := max{t ∈ {0, 1, . . . , `}, n− t(k − 1)− 1 ≥ `− 1}. (B.7)

Proof. The idea behind the proof is as follows: recall that Equation (4.20)’s sum-
mation form is a sum over t ranging from 0 to `. Each term in the sum has binomial
coefficients

(
n−tk−1
`−1

)
and

(
n−t(k−1)−1

`−1

)
. We will estimate these binomial coefficients

from above and below, and then use the alternating nature of the sum (4.20) to
bound each term of the sum appropriately, based on the parity of t. An application
of (B.1) to the resulting bounds will complete the proof.

We will also need to rule out some trivial cases for how n, `, and k relate in order
to validate the forthcoming calculations. Recall that Mn,`,k denotes the number of
ways to split n balls into ` nonempty bins where the most crowded bin has exactly
k balls. In this setup, the total number of balls is at most `k, where all ` bins are
filled to maximum capacity. That is, n ≤ `k. On the other hand, at least one bin
must be filled to maximum capacity, so k ≤ n. See Remark 5.

If n − k` − ` < 0 then n − k`− 1 < ` − 1, which means the binomial coefficient(
n−tk−1
`−1

)
vanishes when t = `. The binomial coefficient estimates we will prove are(

n− tk − 1

`− 1

)
≤ 1

(`− 1)!
· (n− 1)n−

1
2

(n− (α− 1)k − `)n−`k−`+ 1
2

e1−`+`ke
1

12(n−`k−1)
− 1

12(n−`)+1 ;

(B.8)(
n− tk − 1

`− 1

)
≥ 1

(`− 1)!
· (n− `)−`−1e1−`e

1
12n−11−

1
12 ; (B.9)

(
n− t(k − 1)− 1

`− 1

)
≤ 1

(`− 1)!
· (n− 1)n−

1
2

(n− (β − 1)(k − 1)− `)n−`(k−1)−`+ 1
2

e1−`+`ke
1

12(n−`(k−1)−1)
− 1

12(n−`)+1 ; (B.10)
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n− t(k − 1)− 1

`− 1

)
≥ 1

(`− 1)!
· (n− `)−`−1e1−`e

1
12n−11−

1
12 , (B.11)

where 0 ≤ t < α in (B.8) and (B.9), and 0 ≤ t < β in (B.12) and (B.14). Notice
that if t > α, then the binomial coefficient

(
n−tk−1
`−1

)
vanishes; if t > β then the

binomial coefficient
(
n−t(k−1)−1

`−1

)
vanishes. With that in mind, (4.20) is rewritten

by truncating the sum:

Mn,`,k = (−1)α
(
`

α

)(
n− αk − 1

`− 1

)
− (−1)β

(
`

β

)(
n− β(k − 1)− 1

`− 1

)
+

α−1∑
t=0

(−1)t
(
`

t

)(
n− tk − 1

`− 1

)
−

β∑
t=0

(−1)t
(
`

t

)(
n− t(k − 1)− 1

`− 1

)
. (B.12)

The central Stirling-type estimates we will invoke are
√

2πmm+ 1
2 e−me

1
12m+1 ≤ m! ≤

√
2πmm+ 1

2 e−me
1

12m . (B.13)

These are proven in [15, 34]. There are also similar estimates proven in [42], but
those are only relevant when n is large. To obtain the upper bound in (B.8), we
use the definition of the binomial coefficient along with both estimates in (B.13):(

n− tk − 1

`− 1

)
=

(n− tk − 1)!

(`− 1)!(n− tk − `)!

≤ 1

(`− 1)!
· (n− tk − 1)n−tk−

1
2 e−n+tk+1e

1
12(n−tk−1)

(n− tk − `)n−tk−`+ 1
2 e−n+tk+`e

1
12(n−tk−`)+1

. (B.14)

However, the above is only guaranteed to hold if t < α. It can be seen that for
any t < α, we have n − tk − 1 > ` − 1. However, if n − αk − 1 = ` − 1, then the
binomial coefficient in question is actually equal to 1. Rather than break into cases
depending on whether α has this property or not, we simply separate the term where
t = α within our summation formula (B.12). We use analogous reasoning to justify
separating the t = β term from the second sum in (B.12). Henceforth in our further
estimation of (B.14), we will have 0 ≤ t ≤ α− 1. As a consequence, n− tk− ` > 0,
and we will no longer need to be concerned with inadvertent division by 0. The
goal is to estimate (B.14) as tightly as possible while removing all dependencies on
t. Our next step in this vein will be to estimate n− tk−1 ≤ n−1 in the numerator
and n− tk − ` ≥ n− (α− 1)k − ` in the denominator:(

n− tk − 1

`− 1

)
≤ 1

(`− 1)!
· (n− 1)n−tk−

1
2 e−n+tk+1e

1
12(n−tk−1)

(n− (α− 1)k − `)n−tk−`+ 1
2 e−n+tk+`e

1
12(n−tk−`)+1

.

(B.15)
Now we estimate exponents in the numerator from above, and exponents in the
denominator from below, to obtain(

n− tk − 1

`− 1

)
≤ 1

(`− 1)!
· (n− 1)n−

1
2 e−n+`k+1e

1
12(n−`k−1)

(n− (α− 1)k − `)n−`k−`+ 1
2 e−n+`e

1
12(n−`)+1

. (B.16)
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Notice that n − 1 > 0 since we assumed n ≥ 2. Finally, this inequality can be
consolidated slightly to obtain (B.8). This concludes the proof of the upper bound
for
(
n−tk−1
`−1

)
. Now we will prove the lower bound (B.9) in a similar manner. Use

the definition of the binomial coefficient along with both estimates in (B.13):(
n− tk − 1

`− 1

)
=

(n− tk − 1)!

(`− 1)!(n− tk − `)!

≥ 1

(`− 1)!
· (n− tk − 1)n−tk−

1
2 e−n+tk+1e

1
12(n−tk−1)+1

(n− tk − `)n−tk−`+ 1
2 e−n+tk+`e

1
12(n−tk−`)

. (B.17)

Just as in the proof of the upper bound, we assume n−tk−` > 0 and use n−tk−1 >
n− tk − ` to simplify (B.17) into(

n− tk − 1

`− 1

)
≥ 1

(`− 1)!
· (n− tk − `)−`−1 · e

−n+tk+1e
1

12(n−tk−1)+1

e−n+tk+`e
1

12(n−tk−`)

, (B.18)

which in turn is easily consolidated into(
n− tk − 1

`− 1

)
≥ 1

(`− 1)!
· (n− tk − `)−`−1e1−` · e

1
12(n−tk−1)+1

e
1

12(n−tk−`)

. (B.19)

Next, we utilize the inequalities 1
12(n−tk−1)+1 ≥

1
12n−11 and 1

12(n−tk−`) ≤
1
12 to

conclude(
n− tk − 1

`− 1

)
≥ 1

(`− 1)!
· (n− tk − `)−`−1e1−`e

1
12n−11−

1
12 . (B.20)

There is one remaining appearance of t. Since the exponent −` − 1 of n − tk − `
is negative, we will acquire another bound from below by using n− tk − ` < n− `.
The result (B.9) follows from this. Moreover, the results (B.12) and (B.14) follow
from replicating the proofs of (B.8) and (B.9), but with replacing k with k− 1 and
α with β. Now, we prove the estimate (B.4). We rewrite (B.12) by breaking the
sums into two sums each: one over even indices, and the other over odd indices.
Precisely,

Mn,`,k = (−1)α
(
`

α

)(
n− αk − 1

`− 1

)
− (−1)β

(
`

β

)(
n− β(k − 1)− 1

`− 1

)
+∑

0≤t≤α−1
t even

(
`

t

)(
n− tk − 1

`− 1

)
−

∑
0≤t≤α−1
t odd

(
`

t

)(
n− tk − 1

`− 1

)
−

∑
0≤t≤β−1
t even

(
`

t

)(
n− t(k − 1)− 1

`− 1

)
+

∑
0≤t≤β−1
t odd

(
`

t

)(
n− t(k − 1)− 1

`− 1

)
. (B.21)

By our choice of α,
(
n−αk−1
`−1

)
equals either 1 or 0. Similarly,

(
n−β(k−1)−1

`−1

)
also

equals either 1 or 0. Since we are handling inequalities, we will assume those terms
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possess the largest possible magnitudes. Then, we will use the bounds from above
(B.8) and (B.12) to estimate the positive terms in the sums from above; we will use
the bounds from below (B.9) and (B.14) to estimate the negative terms in the sums
from above:

Mn,`,k ≤ 2

(
`

α

)(
n− αk − 1

`− 1

)
+ 2

(
`

β

)(
n− β(k − 1)− 1

`− 1

)
+

∑
0≤t≤`
t even

(
`

t

)(
1

(`− 1)!
· (n− 1)n−

1
2 e1−`e

1
12(n−`k−1)

− 1
12(n−`)+1

(n− (α− 1)k − `)n−`k−`+ 1
2

)
−

∑
0≤t≤`
t odd

(
`

t

)(
1

(`− 1)!
· (n− `)−`−1e1−`+`ke

1
12n−11−

1
12

)
−

∑
0≤t≤`
t even

(
`

t

)(
1

(`− 1)!
· (n− `)−`−1e1−`+`ke

1
12n−11−

1
12

)
+

∑
0≤t≤`
t odd

(
`

t

)(
1

(`− 1)!
· (n− 1)n−

1
2 e1−`e

1
12(n−`(k−1)−1)

− 1
12(n−`)+1

(n− (β − 1)(k − 1)− `)n−`(k−1)−`+ 1
2

)
. (B.22)

Finally, one can interchange the summation with the factors that are independent
of t, and invoke Lemma 15 to conclude the desired upper bound (B.4).

Similarly, we we will use the bounds from below (B.9) and (B.14) to estimate
the positive terms in the sums from below; we will use the bounds from above (B.8)
and (B.12) to estimate the negative terms in the sums from below:

Mn,`,k ≥ −2

(
`

α

)(
n− αk − 1

`− 1

)
− 2

(
`

β

)(
n− β(k − 1)− 1

`− 1

)
+∑

0≤t≤`
t even

(
`

t

)(
1

(`− 1)!
· (n− `)−`−1ee

1
12n−11−

1
12

)
−

∑
0≤t≤`
t odd

(
`

t

)(
1

(`− 1)!
· (n− 1)n−

1
2

(n− (α− 1)k − `)n−`k−`+ 1
2

e1−`+`ke
1

12(n−`k−1)
− 1

12(n−`)+1

)
−

∑
0≤t≤`
t even

(
`

t

)(
1

(`− 1)!
· (n− 1)n−

1
2 e1−`+`ke

1
12(n−`(k−1)−1)

− 1
12(n−`)+1

(n− (β − 1)(k − 1)− `)n−`(k−1)−`+ 1
2

)
+

∑
0≤t≤`
t odd

(
`

t

)(
1

(`− 1)!
· (n− `)−`−1e1−`e

1
12n−11−

1
12

)
. (B.23)

Just as before, interchange the summation with the factors that are independent
of t, and invoke Lemma 14. This procedure will prove (B.5), completing the entire
proof.
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Remark 7. The last step in the proof of Lemma 15 could arguably be made
more precise if we broke the lemma into cases based on the parity of α and β.
However, doing so would further obscure the desired result while providing virtually
no additional insight.
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