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Abstract
We call a finite set of positive integers balanced if all its subsets have integer mean.
For a positive integer N, let M(N) be the cardinality of the largest balanced set
all of whose elements are less than or equal to N, and let S(N) be the cardinality
of the balanced set with elements less than or equal to N that has maximal sum.

We study properties of balanced sets and answer questions regarding what positive
integers N satisfy M(N) = S(N).

1. Introduction

We say a finite set A of positive integers is balanced if, for any subset B C A, the
arithmetic mean of the elements of B is an integer, i.e.,
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The definition was introduced in problem 2 of the 31st Mexican Mathematical
Olympiad held in 2017. The original problem asked to find the largest sum a
balanced set whose maximal element is 2017 can have. The answer, 12859, is
achieved with a balanced set with maximal number of elements less than or equal
to 2017; i.e., it occurs with the set {2017, 1957, 1897, 1837, 1777, 1717, 1657},
which has 7 elements, and there are no balanced sets of 8 elements with maximal
element at most 2017. I was a grader for this problem and some students would
find the largest balanced set and assumed it had maximal sum, without proving
it. To explain why these students should not get full credit, I gave the example of
considering changing the number 2017 for 3000. With 3000, there is a balanced set
with 8 elements, namely {3000, 2580, 2160, 1740, 1320, 980, 480, 60}, but it has a
smaller sum than the balanced set with 7 elements {3000, 2940, 2880, 2820, 2760,
2700, 2640}. Therefore, having a larger number of elements does not guarantee
having a larger sum (even when optimizing for largest possible elements). This led
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me to think of the question of which N satisfy that the largest balanced set with
elements less than or equal to IV is the one with the largest sum.

For a positive integer N, let M(N) be the size of the largest balanced set all of
whose elements are at most N. Let S(IN) be the size of the set with maximal sum
among balanced sets all of whose elements are at most V. Our question is, for which
N is M(N) = S(N)? For example M(2017) = S(2017), yet M (3000) # S(3000).
Using a computer, we can verify that if N < 1000000, then M (N) = S(N) for

1< N <18,
31 < N < 48,

85 < N < 300,
571 < N < 2940,
18481 < N < 22680,
54181 < N < 304920.

If we let L(n) be the least common multiple of {1,2,...,n}, then we can see
that 18 = 3L(3), 48 = 4L(4), 300 = 5L(5), 2940 = TL(7), 22680 = 9L(9),
and 304920 = 11L(11). In other words, the upper bounds on these intervals
are all of the form mL(m). If we verify using a computer for which m < 800
is M(mL(m)) = S(mL(m)), we find that it works for all primes less than or equal
to 800, along with 4, 9, and 121. This suggests that M (pL(p)) = S(pL(p)) for any
prime p. Indeed, we can prove that.

Theorem 1. Letp be prime. Then M (pL(p)) = S(pL(p)). Furthermore, M (pL(p)-+
1) # S(pL(p) + 1).

The computational evidence also suggests that if m > 121 with M (mL(m)) =
S(mL(m)), then m is prime. The following theorem partially proves it, by showing
that if M(mL(m)) = N(mL(m), then m is a prime power.

Theorem 2. If m is not a prime power, then M(mL(m)) # S(mL(m)).

Attacking prime powers is harder. However, with some nice work [1, 4] on
large gaps between consecutive primes, we can prove that for large enough m, if
S(mL(m)) = M(mL(m)), then m cannot be a prime power with exponent at least
3.

Theorem 3. For m > 1010%° of the form ¢* for a prime q and an exponent k > 3,
then M (mL(m)) # S(mL(m)).

Using results on large prime gaps [2] assuming the Generalized Riemann Hypoth-
esis (GRH), we can prove
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Theorem 4. Assuming GRH, if m = ¢* for a prime q and exponent k > 3, then
M(mL(m)) # S(mL(m)).

That large squares of primes fail is harder to prove. The reason is that our proofs

1=1/k 2] for a constant cy

above depend on the existence of a prime p € [z — ¢z
depending on k. However, for squares, we would need a prime in the interval [z —
co+/x, z]. The best unconditional result is due to Baker, Harman, and Pintz [1] who

21/40 2], while

proved that for large enough z there is a prime in the interval [z — z
the best result under GRH, proved by Carneiro, Milinovich, and Soundararajan [2],
is that for > 4 there is a prime in the interval [z — 32\/zlogz,z]. To remove
squares of primes we would need stronger conjectures regarding prime gaps. In
particular, Cramer [3] conjectured that for large enough x there is a prime in the
interval [x — C log? z, x], for some constant C. This assumption would be enough
to prove that for large p, M (p>L(p?)) # S(p*L(p?)).

The above results describe what happens at the right endpoints of the intervals.
The left endpoints are harder to estimate, but we can do enough to prove results
about the natural density of the set of N for which M (N) = S(N). In fact, we can
prove the density does not exist because of the following theorem:

Theorem 5. The set of N for which M(N) = S(N) has upper density equal to 1,
and it has lower density equal to 0.

2. Balanced Sets with Maximal Element N

An important property that balanced sets A with n elements satisfy is that the
elements of A must all be congruent modulo L(n —1). The following lemma proves
this and evaluates the maximal sum a balanced set with m elements can have if all
the elements are at most N.

Lemma 1. For an integer m > 3, a balanced set A with m elements must satisfy
that all of its elements are congruent modulo L(m — 1). Furthermore, the balanced
set with m elements less than or equal to N whose sum is mazimal is {N, N — L(m—
1),N—-2L(m—1),...,N—(m —1)L(m —1)}. The mazimal sum is

m(m —1
mN — %L(m - 1.
Proof. Let A ={ay,aq,...,an} be a balanced set with m elements. Let k < m —1.
Then a;, +ag, + ... +a;_, +a;, = ay +ai, + ...+ a4,_, +a;,, modk for any
indices i1,%2,...,%k, 1. Therefore a; = a;, ., mod k. Since it is true for any
indices, then a; = as = ... = a,, mod k. Because this is true for all &K < m —1, then

the elements are congruent modulo the least common multiple of {1,2,...,m — 1},
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which is L(m — 1). The set with elements less than or equal to N that has its
elements as large as possible and congruent modulo L(m — 1) is

{N,N—-L(m—-1),N—-2L(m—-1),...,N—(m—1)L(m —1)}.

We need to show this set is balanced. Since the elements are congruent modulo
L(m—1) than for any proper subset, the arithmetic mean is an integer. To conclude,
we need to show the arithmetic mean of the set itself is an integer. The mean is

m(m —1) B m—1
Since L(m — 1) is even for m > 3, the arithmetic mean is an integer. O

The next lemma allows us to determine the value of M (N).

Lemma 2. Let m > 3 be a positive integer. Then M(N) = m if and only if
(m—-—1)L(m—-1)+1<N <mL(m).

Proof. f N < (m—1)L(m—1), then we cannot have a balanced set with m elements
since the m elements would need to be congruent modulo L(m — 1), but there are
not m elements congruent to L(m — 1) less than or equal to (m — 1)L(m — 1). For
N>(m—-1)L(m—1)+1, theset {N,N—L(m—1),...,N—(m—1)L(m—1)} is
balanced. Therefore M(N) > m. For N < mL(m), we cannot have a balanced set
with m + 1 elements. Therefore M (N) < m. Hence M(N) = m. O

We can also prove that M and S are monotone increasing functions.
Lemma 3. The functions M and S are monotone increasing.

Proof. That M is monotone increasing follows immediately from Lemma 2. For S,
suppose s = S(N + 1) < S(N) = m. Since s < m and S(N) = m, we have from

Lemma 1
mN_m(m—l) s(s—1)

L(m—1)>sN — L(s—1).

But, since m > s, we have

m(N +1) — wLm —1) > s(N+1)— 5(52_ Yrs—1).
Therefore S(N + 1) # s. Contradiction! O

3. Proving Theorems Involving N = mL(m)

The first theorem to prove concerns showing M (pL(p)) = N(pL(p)).
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Proof of Theorem 1. First we will prove M (pL(p)) = S(pL(p)). Consider balanced
sets whose maximal element is at most pL(p). By Lemma 2, we have M (pL(p)) = p.
By Lemma 1, the maximal sum of a balanced set with p elements less than or equal
to pL(p) is

p°L(p) — @L(p -1).

Since p is prime, L(p — 1) = L(p)/p. Therefore, the sum is

p—

L) - 250 =oL) (n- 5+ 5

5 2p) > pL(p)(p — 1).

A balanced set with less than p elements less than or equal to pL(p) has sum smaller
than pL(p)(p — 1). Therefore, M (pL(p)) = S(pL(p)).

Now, let us prove M (pL(p) + 1) > S(pL(p) + 1). By Lemma 2, M (pL(p) + 1) =
p+ 1. By Lemma 1, the maximal sum of a balanced set with p + 1 elements is

(p+1)

(0 + VL) +1) = =5 L(p). M

The maximal sum of a balanced set with p elements is

por ) +1) - 22D ) &)

Using that L(p — 1) = L(p)/p for p prime, subtracting (1) from (2) yields

pp+1)
2

L(p) - p(pQ; D rp) - pL(p) - 1.

But, since p > 3, we have

L 1 L
pL(p) b2t 1Pl
2 P 2

Therefore, S(pL(p) +1) <p<p+1= M(pL(p) + 1). O

The next theorem to prove concerns showing M (mL(m)) # S(mL(m)) when m
is not a prime power.

Proof of Theorem 2. By Lemma 2, we have M (mL(m)) = m. We want to show
S(mL(m)) < m. Let p be the largest prime less than or equal to m. Then

L(p—1)=@gw.

p p

By Bertrand’s postulate [7, Theorem 8, p. 137], there is a prime between % + 1
and m. Therefore, p satisfies F +1<p<m — 1.
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Since m is not a power of a prime, L(m — 1) = L(m). Now, by Lemma 1, we
have that the balanced set with maximal sum with m elements less than or equal
to mL(m) has sum

m(m —1)

MM =1 i = 1) = m2L(m) — PR L(m) = L(m) (2

2

L —
m*L(m) 5
while the balanced set of maximal sum with p elements less than or equal to mL(m)
has sum

pmi(on) ~ 222D 15— 1) 2 pmim) - P2 ) = pmi o)~ 22 2.
(1)

Since mL(m) < L(m) for m > 2, the right side of (4) is increasing with p; therefore

it is minimal when p is minimal. In particular, the maximal sum of a balanced set
with p elements less than or equal to mL(m) is greater than

But this is greater than the sum with m elements; therefore S(mL(m)) <m. O

To prove results on prime powers, we will need better bounds on gaps of primes
than Bertrand’s postulate. Dudek [4] has the following nice result about the exis-
tence of primes between cubes.

Theorem 6. For m > 6633'3, there exists a prime p such that m® < p < m?+3m2.
In particular, there is a prime p such that

m® <p<(m+1)>3

For our proof we actually need the slightly tighter bound m? — %mz <p<md.
The following lemma can be proved by following the steps performed by Dudek
to prove Theorem 6. We will not include the proof, as it is a straightforward
adaptation.

Lemma 4. For allm > 1019 there is a prime p such that

1
m3—§m2<p<m3.
We are now ready to prove that for large enough m, we cannot have M (mL(m)) =

S(mL(m) if m is a prime power with exponent greater than or equal to 3.

Proof of Theorem 3. We need only show S(mL(m)) < m. First, note that L(m —
1) = L(m)/q. Now, let p be the largest prime less than or equal to m. By Lemma
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4, p>m— %m2/3. By Lemma 1, we have that the balanced set of m elements less
than or equal to mL(m) with maximal sum has sum

m—1)

mzL(m)fm( 2 m(m — 1)

L(m — 1) = m*L(m) — 5

L(m), ()

while the one with p elements has sum

plp—1) plp—1) p—1
L L 1) > pmL L =pmL L
pmL(m) 5 (p—1) > pmL(m) on (m) = pmL(m) 5 (m),
L(p) o L(m—1) _ L(m) (6)
use I 2 -
because L(p — 1) b < b

P pq
Subtracting (5) from (6) yields that the difference of these two sums is at least

L
;7(2qpm—p—|—1—2qm2+m2—m).
q

~—

Since 2gm > 0 the expression is increasing with p, so using the bound p > m—1m?/3

3
yields the bound

L 2 3 1 -
ﬂ f—qm5/3+fm2/3+1+m2—2m .
2q 3 3

Since k > 3, then ¢ = m!'/* < m!'/3. Therefore, the difference is at least

Lim) (1 5, 1 2/3
— | 3 = 1-2 .
2 (3m + 3m + m

This last expression is positive for m > 6. O

It would be great to prove the above for all m > 3 and to classify the primes p
such that M (p?L(p?)) = S(p*L(p?)), but this is hard. One thing we can do is prove
the above for m > 3 assuming GRH, which is Theorem 4, and we can prove that
for large enough p, M (p*>L(p?)) # S(p?L(p?)) assuming Crémer’s conjecture.

Proof of Theorem 4. From the proof of Theorem 3 we see that we need only show
2/3,m]. From Carneiro, Mininovich,
and Soundararajan [2, Theorem 5] we know that assuming GRH, for m > 4, there

is a prime in the interval [m, m+ %\/m logm]. This implies that for m > 8.1 x 1011,
1

that there is a prime p in the interval [m — %m

there is a prime between m— %mw 3 and m. We can verify with a computer program

2/3 and m. Since we had

that for m > 223, there is always a prime between m — %m
checked all m < 800 with a computer and the only non-primes were 4, 9, and 121.

The proof follows. O

1The computer program would do the following. Start with a = 8.1 x 101, then compute
b= (1/3)a?/3. Find the first prime p above a — b. If it is smaller than or equal to a, then we have
a prime in the interval. Otherwise you fail. Now let a = p and repeat the process until it fails,
which it does when a = 211.
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4. Upper and Lower Density Bounds

Let A be the set of all N such that M(N) = S(N). That is,
A={N eN|M(N)=S(N)}.
Let A(z) = {a < x|a € A} be the counting function of A. The upper density of A

is
A
ot = limsup (x)’
T—00 X

and the lower density is
0~ = liminf A(:c)
T — 00 T
To be able to prove our results about density, we will need the following lemma
about an interval I where M(N) = S(N) for all N € I.

Lemma 5. Suppose ¢ < p are consecutive primes for which there is no prime power
in the interval (q,p). Let k =p—q.

1. For N such that

pL(p) > N > max{( - ;) Lip—1), L(p)(p” ;pz;— q+1) }

we have M(N) = S(N).
2. If

2 _
Lp)(p 2;; et (p ;) L(p—1),

for N satisfying

Lp)p* —p—q+1)
2pk ’

qL(g) +1< N <

we have M(N) # S(N).

Proof. For the first part, note that (p—3) L(p — 1) > (p — 1)L(p — 1) + 1 since
p > 3. Since pL(p) > N > (p — 1)L(p — 1) + 1, then M(N) = p. Therefore, for
N, there exists a balanced set with p elements. Since there are no prime powers
between ¢ and p, we have

L@ =Lg+1)=...=L(p—-1) = —~

Suppose ¢+ 1 < m < p. The maximal sum for a balanced set with m elements less
than or equal to N is

(m—1)

(m— m
Lip—1)=mN —
(p—1)=m om

2

m(m — 1)

1)L(m—l):mN— 5

mN -2 Lp). (7)
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Since p and N are fixed, then (7) is increasing if
2m —1

N >
2p

L(p).

2
means that its maximal sum comes when m = p. Therefore, for S(N) # p we would

Sincem <pand N > (p—3)L(p—1) = %L(p), then (7) is increasing. That

need the sum with m < ¢ elements to surpass it. However, it would not be with
less than ¢ elements because S is a monotone increasing function (by Lemma 3),
and S(¢L(q)) = ¢, and (p—1)L(p — 1)+ 1 > ¢L(q). Therefore, we need only check
that the sum with ¢ elements is not larger. With ¢ elements we get

(g

gN — QT_DL(q —1)=¢gN - %L(q) N =Ty, (8)

2p
Since N > W, the sum in (7) with m = p is larger than (8). Therefore

S(N) =p.
For the second part we have m(N) > ¢+ 1. Take an N in the interval

<< B ;) Lip—1), L(p)(p? gpz;—qu 1)) ;

then the expression in (8) is greater than the expression in (7) for m = p. That
implies that S(N) < ¢ for those values. But S(¢L(q)) = ¢ and S is monotone
increasing, so S(IN) = ¢ for the whole interval. Therefore, S(N) # M(N) for any

N in the interval )
Lip)(p*—p—q+1) 0
2pk '

(a2t +1
Now we are ready to prove our theorem about densities.

Proof of Theorem 5. For the upper density, let k be a positive integer. For almost
all primes p, the closest prime power to p is a prime ¢ with p — ¢ > k. This is
because the average distance between prime powers less than or equal to z is logx
by the Prime Number Theorem, and most prime powers are primes. Let By be the
set of such primes. For these primes p we have that the interval

{max { ( _ ;) L(p—1), L&) ;pi_ a+1) }mL(p)]

is a subset of A(pL(p)) (by Lemma 5). Now,

—Yrm=1 _1
lim w — lim p 22
p—00 pL(p) p—oo P

and

i L —p—q+1)/pk) PP —p—q+l 1 (10)

p—o00 pL(p) p—00 2p2k 2k
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Therefore,
A(pL 1
R TREARE
PE By

This shows that 67 > 1 — 5 for any fixed integer k. Therefore, 67 = 1.
For the lower density, let C be the set of primes p such that the largest prime
power less than p is a prime ¢ with p—q < k. For p € Ci, by Lemma 5, all elements

N in the interval
(( _;) L(p— 1), 2O ;p];_qﬂ)) (11)

do not satisfy M(N) = S(N). Consider A (£ L(p)). As p — oo the ratio of the
right endpoint of (11) to g7 L(p) goes to 1. We also have

- HLp-1 2k
lim (pg)—(p) — lim = =0. (12)
p—00 ﬁL(p) p—oo P

Therefore, if we have infinitely many primes p in Cy, then from (12) we get

A (LK)

=0.
L)
Therefore, if there is a k, for which Cj is infinite, then 6~ = 0. Recent work from

Zhang [8], Maynard [5], and the Polymath group [6] has worked to find the best
k they can. In particular, now we know that there exist infinitely many pairs of
primes p, q such that p — g < 246. The techniques of their proof imply that the
number of primes p < x for which there is a prime ¢ with p—¢q < 246 is greater than
or equal to C ﬁ for a positive constant C. Since the number of prime powers
that are not prime is bounded above by a constant times 1/, that means there are
infinitely many primes in Ca46. This implies that

0~ =0. O

Remark 1. The proof that §— = 0 does not require the impressive work on prime
gaps of Zhang and others. One could prove it using the Prime Number Theorem.
However, one has to be more careful describing what is the infinite set on which the
limit goes to 0, because we would not be able fix an integer k to form Cj.

Acknowledgements. I would like to thank Paul Pollack for some helpful con-
versations about the problem, and his help with references. I would also like to
thank Carlos Jacob Rubio Barros for suggesting I submit this paper to a research
journal. Finally, I’d like to thank the anonymous referee and the editor for making
suggestions that improved the paper.



INTEGERS: 21 (2021) 11

References

(1]

2]

(3]

(4]

(5]

[6]

[7]

(8]

Roger C. Baker, Glyn Harman, and Janos Pintz, The difference between consecutive primes.
11, Proc. London Math. Soc. (3) 83 (2001), no. 3, 532-562.

Emanuel Carneiro, Micah B. Milinovich, and Kannan Soundararajan, Fourier optimization
and prime gaps, Comment. Math. Helv. 94 (2019), no. 3, 533-568.

Harald Cramér, On the order of magnitude of the difference between consecutive prime num-
bers, Acta Arithmetica 2 (1936), no. 1, 23-46.

Adrian W. Dudek, An explicit result for primes between cubes, Funct. Appror. Comment.
Math. 55 (2016), no. 2, 177-197.

James Maynard, Small gaps between primes, Ann. of Math. (2) 181 (2015), no. 1, 383-413.

D. H. J. Polymath, Variants of the Selberg sieve, and bounded intervals containing many
primes, Res. Math. Sci. 1 (2014), Art. 12, 83.

Waclaw Sierpinski, Elementary Theory of Numbers, Panstwowe Wydawnictwo Naukowe, War-
saw, 1964.

Yitang Zhang, Bounded gaps between primes, Ann. of Math. (2) 179 (2014), no. 3, 1121-1174.



