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Abstract
Let P and T be disjoint sets of prime numbers with T finite. A simple formula is
given for the natural density of the set of square-free numbers which are divisible
by all of the primes in 7" and by none of the primes in P. If P is the set of primes
congruent to r modulo m (where m and r are relatively prime numbers), then this
natural density is shown to be 0 and if P is the set of Mersenne primes (and T = (),
then it is appproximately .3834.

1. Main results

Gegenbauer proved in 1885 that the natural density of the set of square-free integers,
i.e., the proportion of natural numbers which are square-free, is 6/72 [3, Theorem
333; reference on page 272]. In 2008 J. A. Scott conjectured [8] and in 2010 G. J. O.
Jameson proved [5] that the natural density of the set of odd square-free numbers is
4/m?% (so the proportion of natural numbers which are square-free and even is 2/72).
Jameson’s argument was adapted from one used to compute the natural density of
the set of all square-free numbers. In this note we use the classical result for all
square-free numbers to reprove Jameson’s result and indeed to generalize it.

Theorem 1. Let P and T be disjoint sets of prime numbers with T finite. Then
the proportion of all numbers which are square-free and divisible by all of the primes
i T and by none of the primes in P is
72 - - .
us peT1+pp€P1+p
As in the above theorem, throughout this paper P and T will be disjoint sets
of prime numbers with 7" finite. The letter p will always denote a prime number.
The term numbers will always refer to positive integers. Empty products, such as

occurs in the first product above when T is empty, are understood to equal 1. If P
is infinite, we will argue in Section 4 that the second product above is well-defined.
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Examples. 1. Setting P = {2} and T equal to the empty set () in the theorem we

see that the natural density of the set of odd square-free numbers is %2—3_1 = %;
taking 7' = {2} and P = ) we see that the natural density of the set of even square-
free numbers is %2_%1 = 3—2 Thus one third of the square-free numbers are even

and two thirds are odd. (These are Jameson’s results of course.)

2. Taking P = {101} and T' = 0 in the theorem we see that the set of square-free
numbers not divisible by 101 has natural density %%. Thus slightly over 99% of
square-free numbers are not divisible by 101.

3. Set T'= {2,5} and P = {3,7} in the theorem. Then the theorem says that
the natural density of the set of square-free numbers divisible by 10 but not by 3 or
7ig 61137 7

235318 = 32,2, S0 the proportion of square-free numbers which are divisible

by 10 but not by 3 or 7 is 7/192.

Our interest in the case that P is infinite arose in part from a question posed by
Ed Bertram: what is the natural density of the set of square-free numbers none of
which is divisible by a prime congruent to 1 modulo 4?7 The answer is zero; more
generally we have the following.

Theorem 2. Let r and m be relatively prime numbers. Then the natural density
of the set of square-free numbers divisible by no prime congruent to r modulo m is
zero.

This theorem is a corollary of the previous theorem since, as we shall see in
Section 5, for any r and m as above, [] _, (mod m) p/(1+p)=0.

By way of contrast with Theorem 2 we will prove in Section 6 a lemma giving
a simple condition on an infinite set of primes P which will guarantee that the
set of square-free numbers not divisible by any element of P has positive natural
density. An immediate corollary is that the set of square-free numbers not divisible
by any Mersenne prime has positive natural density; we will also show how to closely
approximate the natural density of this set.

2. A Basic Lemma

Notation. For any finite set .S of primes we set dg = Hpe 2

For any real number z and set B of numbers, we let B[z] denote the number
of elements t of B with ¢t < z. Recall that if lim,_, ., Blz]/x exists, then it is by
definition the natural density of B [6, Definition 11.1]. In case it exists we will
denote the natural density of B by B*. We will also let |B| denote the cardinality
of B.

Let A denote the set of square-free numbers. Then we let A(T, P) denote the
set of elements of A which are divisble by all elements of 7" and by no element of
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P. (Thus A = A(0,0) and A* = 6/72.) The set of square-free numbers analyzed in
Theorem 1 is A(T, P).

The above notation is used in the next lemma, which shows how the calculation
of the natural density of the sets A(T, P) reduces to the calculation of the natu-
ral density of sets of the form A(f),S) and, when P is finite, also reduces to the
calculation of the natural density of sets of the form A(.S, 0).

Lemma 1. For any finite set of primes S disjoint from T and from P and for
any real number x, we have A(T,S U P)[z] = A(T U S, P)[zds]. Moreover, the set
A(T U S, P) has a natural density if and only if A(T, PUS) has a natural density,
and if these natural densities exist, then A(T,P U S)* =dsA(T US, P)*.

This lemma generalizes Lemmas 1 and 2 of [2].

Proof. The first assertion is immediate from the fact that multiplication by dg gives
a bijection from the set of elements of A(T, S U P) less than or equal to « to the
set of elements of A(T U S, P) less than or equal to zdg. This implies that

A(T,PUS)[x] — ds A(T U S, P)lzds]
T xdg

The lemma follows by taking the limit as z (and hence xdg) goes to infinity. O

Remark 1. We might note that if we assume that for all T the sets A(T,0) have
natural densities, then it is easy to compute these natural densities. After all, for
any T the set A is the disjoint union over all subsets S of T of the sets A(T'\ 5, 5),
so by Lemma 1

6/n% = A" = 3" AT\ 5,5)" = 3 ds AT, 0)" = AT, 0)° 3 ds.

SCT sCcT SCT

dds=>d=]]0+p)

SCT d|dr peT

[6, Theorem 4.5], so indeed

But

., 6 1

We could now use Lemma 1 to obtain the formula of Theorem 1 in the case that P
is finite.
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3. Proof of Theorem 1 when P is Finite

The theorem in this case was proved in [2]. For the convenience of the reader we
sketch the proof using the notation of this paper.

Lemma 2. Let p be a prime number not in T. If the set A(T, () has natural density

D, then the set A({p} UT, D) has natural density p%D.

Proof. For any real number x we set E(z) = A({p} UT,D)[z]. Let € > 0.
Note that A(T,0) is the disjoint union of A({p} UT,0) and A(T,{p}). Hence by
Lemma 1 (applied to A(T,{p})) for any real number z,

A(T,0)[x/p] = E(z/p) + E(x)
and so by the choice of D there exists a number M such that if x > M then

B@)  E@/p) _pl s,

z/p z/p

We next pick an even number k such that # < 5. Then
€
|B/p")| < z/p" < go (1)

and also (using the usual formula for summing a geometric series)

k 1 1\k+1
1, 1 —5)— (=3 1
B S e P Pk s (2)
= p p+1 1—(=3) p+1
D 71+’%k+ ! < 1D <
= Ur —F T —T.
p+1 p+1 pF 3

Now suppose that > p*M. Then for all 0 < i < k we have x/p’ > M and
hence (applying the choice of M above),

]<—1>1‘E< )+ (D ECE) - (0Dt

T € I
Pt

Using the triangle inequality to combine the inequalities (1) and (2) and all the
inequalities (3) for 0 < i < k and dividing through by z, we can conclude that

k
E(x) 1 € 1 € €
—_—~ p|l<E L I
‘x erl’ 3<2p1>+3+3 ¢

i=1

Hence the natural density of A({p} UT,0) is p—ilD. O
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Theorem 1 now follows in the case that P is empty from the above lemma by
induction on the number of elements of T'. That it is true when P is finite but not
necessarily empty follows from Lemma 1: in the statement of that lemma replace
P by () and S by P; then we see that the natural density of A(T, P) is indeed

dp.A(TUP@ = ZHP H T_ﬂ'QHl—FP

peP peTUP 1 +p

peP

4. Proof of Theorem 1 when P is Infinite

In this and the next section we will use the simple fact that for all x > 1 we have

z+1 1 1

—. 4
1+:1:>2x ()

1
— > log(x 4+ 1) —logz = log
z

We first show that the expression [[,cp 15 is well-defined when P is infinite.
Let p1,p2,ps,- - be the strictly increasing sequence of elements of P. Since all the
quotients p; /(1 + p;) are less than 1, the partial products of the infinite product
[L; pi/(1 4+ p;) form a strictly decreasing sequence bounded below by 0; thus the
infinite product [, p;/(1 4+ p;) converges, say to . Its limit is also unchanged by
any rearrangement of its factors; this is easy to check if « is zero. Otherwise the

infinite sum
ZoglJr ZIngz —log(1 + p;)

converges absolutely (to log(«)) and therefore its value is unchanged under re-
arrangements; hence the corresponding fact is also true of the infinite product
[1; pi/(1+p;). Thus in all cases the expression [] . p 7% is well-defined.

We now prove the theorem in the case that 7' is empty.

First suppose that o # 0. Then ZpEP 1/p < co. After all, we have

—loga:Zbg(l—i—p logp > = Zf
pEP pEP

Now observe that A\ A(), P) is the disjoint union

AN A0, P) = Up>1A({pr s {1 -+ s pe—1})

since for all b € A\ A(D, P) there exists a least k > 1 with p, dividing b, so that
be A({pk}a {pla T 7pk—l})'

For all n and k we have

Alpid (- e D)) _ [ 1< 5 <nand pili}] _ 1
n o n T ook
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Hence by Tannery’s theorem (see [9, p. 292] or [4, p. 199]) the natural density of
A\ A(D, P) is therefore

g AVAOLI] S5 Al s Dl

n— oo n n—00 n
k=1

=3 lim Adpet {pr, -+ o1 }Pn] 3 % 1 pi
- " P L
by the proof in the previous section of the theorem in the case that P is finite.
Writing 1/(14px) = 1—pg/(1+px) we can see that the natural density of A\.A((, P)
is therefore a limit of telescoping sums

L
6 . Di Di
~ 1 —
7T2Lgr;o;<i<k1+pi H 1+pi>

i<k4+1

6 . Di 6
= — lim 17H1+p¢ zﬁ(lfoz)

and thus 6 6
Py =—=-—=(1-
A, P) w2 72 @) a2 H 1+p

which proves the theorem in the case that o # 0 and T = ().

We next consider the case that o = Hpepp/(l + p) = 0. Suppose that € > 0.
By hypothesis there exists a number M with % HZ<M 1+p < €/2. Then by our
proof of the theorem in the case that P is finite there exists a number L such that
if n > L then

A(®7{p1ap2a"'7pM})[ } 6 bi

<= _’_7 .
n 2 72 Ml—i—pi

Thus if n > L we have

o< AOPI] _ AO g paDlal _ e e
n n 2 2
Therefore,
_AO,P)n] _ P
Jim ZEEE 0= S

peP

which proves the theorem if « = 0 and T = {.

This completes the proof of the theorem in the case that T' = (). The general case
where T is arbitrary then follows from Lemma 1, applied with T and S replaced
respectively by @ and T: A(T, P)* equals
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Avporyd =S I e s = g I s

peT © peT peT peEP

which completes the proof of Theorem 1.

5. Proof of Theorem 2

Let us set P = {p:p =1 (mod m)}. It then suffices by Theorem 1 to prove that
[[,epp/(1+p)=0. For any real number z > 3 we have

Z 1/p— loglog x —on)

r>peEP (b(m)

(see [1, Exercise 6, page 156]). Hence > p1/p = co. Theorem 2 now follows from

the next lemma, which applies to any infinite set P of primes.

Lemma 3. Let P be an infinite set of primes. Then EpEP 1/p = o0 if and only if
Hpepp/(l +p) = 0. Moreover, if ZPEP 1/p < S < oo for a real number S, then

[Lepp/(1+p) >e®.

Proof. The inequalities of display (4) imply that

sl P pt1l 1
QZpg logple_Ll_Fp pezplog ) §pr.

pEP pEe

Our conclusions follow easily. O

6. Mersenne Primes

Lemma 4. Let d be a number. Let P = {p1,p2,---} be an infinte set of primes
such that for all i > 1 we have p; > 2° —d. Then the set of square-free numbers not
divisible by any element of P has positive natural density.

Proof. The infinite sum ) p 1/p converges since it is less than or equal to the
infinite sum Y, 1/(2" — d), which itself converges by the limit comparison test.
Thus by Lemma 3, [ [, p p/(1+p) > 0; the lemma now follows from Theorem 1. [

An immediate corollary of this lemma (or just of Theorem 1 if the relevant set
of primes turns out to be finite) is that the natural density of the set of square-free
numbers not divisible by any Fermat prime is positive [3, Section 2.5]. Similarly,
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the natural density of the set of square-free numbers not divisible by any Mersenne
prime is positive. The next theorem allows us to approximate this natural density
closely.

Let ¢; denote the i-th prime number and let P denote the set of Mersenne primes.
For any number M let

Py ={peP:p=2%—1for some i < M}

(so, for example, Ps = {3,7,31,127}). Let Ay = HpePM p/(14p) (so, for example,
As = 3131221 ~ 63078). If the number of Mersenne primes is finite, then there
exists some M with P = Py and so Ay = [] In general, we have the

following.

_p_
pEP T4p"
Theorem 3. Whether P is finite or infinite, we have

p 1
Ay > Hl_’_pZAMeXp<_2M>~
peP
Proof. For any number ¢ we have ¢; > i+ 1 so

1 1 1 1
Z 7SZ2Q7L71§Z?:27M7

peP\Py i>M i>M

so by Lemma 3

1
mz T = T T o= ave (<5 ).

+
peP peEPym p pEP\ Py

Thus, for example, taking M = 5 we have

D 1
631 > A5 > —_— > —— ] 45 > 611
631 > 57p|eP| 1_i_pexp< 25) 5> .6

so the natural density D of the set of square-free numbers divisible by no Mersenne
prime satisfies

6 6
384> .631— > D > .611— > .371.
T s
If we repeat this calculation with M = 17 (so that now
Py o= {3,7,31,127,213 — 1,217 — 1,219 — 1,231 —1})
[3, Section 2.5], then we find that

38342 > D > .38341.
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Remark 2. An easy induction shows that for ¢ > 1, ¢; — 24 is an increasing function
of i; hence if ¢+ > M > 1then q; > 2i+qp;—2M. Using this bound on ¢; the argument
in the proof of the above theorem can be modified to show that

so that by Lemma 3

6 1 6 1
Dz duew (‘3<2w - 1>> = e (‘3<MM1°g2 - 1))

where we have used Rosser’s Theorem [7] to deduce the last inequality. Thus, for
example, if M =5 (so gpr = 11) we can compute that

6
D > — Asexp (— > > .383403.
™

_
3211 —1)
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