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Abstract

Let P and T be disjoint sets of prime numbers with T finite. A simple formula is
given for the natural density of the set of square-free numbers which are divisible
by all of the primes in T and by none of the primes in P . If P is the set of primes
congruent to r modulo m (where m and r are relatively prime numbers), then this
natural density is shown to be 0 and if P is the set of Mersenne primes (and T = ∅),
then it is appproximately .3834.

1. Main results

Gegenbauer proved in 1885 that the natural density of the set of square-free integers,

i.e., the proportion of natural numbers which are square-free, is 6/π2 [3, Theorem

333; reference on page 272]. In 2008 J. A. Scott conjectured [8] and in 2010 G. J. O.

Jameson proved [5] that the natural density of the set of odd square-free numbers is

4/π2 (so the proportion of natural numbers which are square-free and even is 2/π2).

Jameson’s argument was adapted from one used to compute the natural density of

the set of all square-free numbers. In this note we use the classical result for all

square-free numbers to reprove Jameson’s result and indeed to generalize it.

Theorem 1. Let P and T be disjoint sets of prime numbers with T finite. Then

the proportion of all numbers which are square-free and divisible by all of the primes

in T and by none of the primes in P is

6

π2

∏
p∈T

1

1 + p

∏
p∈P

p

1 + p
.

As in the above theorem, throughout this paper P and T will be disjoint sets

of prime numbers with T finite. The letter p will always denote a prime number.

The term numbers will always refer to positive integers. Empty products, such as

occurs in the first product above when T is empty, are understood to equal 1. If P

is infinite, we will argue in Section 4 that the second product above is well-defined.
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Examples. 1. Setting P = {2} and T equal to the empty set ∅ in the theorem we

see that the natural density of the set of odd square-free numbers is 6
π2

2
2+1 = 4

π2 ;

taking T = {2} and P = ∅ we see that the natural density of the set of even square-

free numbers is 6
π2

1
2+1 = 2

π2 . Thus one third of the square-free numbers are even

and two thirds are odd. (These are Jameson’s results of course.)

2. Taking P = {101} and T = ∅ in the theorem we see that the set of square-free

numbers not divisible by 101 has natural density 6
π2

101
102 . Thus slightly over 99% of

square-free numbers are not divisible by 101.

3. Set T = {2, 5} and P = {3, 7} in the theorem. Then the theorem says that

the natural density of the set of square-free numbers divisible by 10 but not by 3 or

7 is 6
π2

1
3
1
6
3
4
7
8 = 7

32π2 , so the proportion of square-free numbers which are divisible

by 10 but not by 3 or 7 is 7/192.

Our interest in the case that P is infinite arose in part from a question posed by

Ed Bertram: what is the natural density of the set of square-free numbers none of

which is divisible by a prime congruent to 1 modulo 4? The answer is zero; more

generally we have the following.

Theorem 2. Let r and m be relatively prime numbers. Then the natural density

of the set of square-free numbers divisible by no prime congruent to r modulo m is

zero.

This theorem is a corollary of the previous theorem since, as we shall see in

Section 5, for any r and m as above,
∏
p≡r (mod m) p/(1 + p) = 0.

By way of contrast with Theorem 2 we will prove in Section 6 a lemma giving

a simple condition on an infinite set of primes P which will guarantee that the

set of square-free numbers not divisible by any element of P has positive natural

density. An immediate corollary is that the set of square-free numbers not divisible

by any Mersenne prime has positive natural density; we will also show how to closely

approximate the natural density of this set.

2. A Basic Lemma

Notation. For any finite set S of primes we set dS =
∏
p∈S p.

For any real number x and set B of numbers, we let B[x] denote the number

of elements t of B with t ≤ x. Recall that if limx→∞B[x]/x exists, then it is by

definition the natural density of B [6, Definition 11.1]. In case it exists we will

denote the natural density of B by B∗. We will also let |B| denote the cardinality

of B.

Let A denote the set of square-free numbers. Then we let A(T, P ) denote the

set of elements of A which are divisble by all elements of T and by no element of
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P . (Thus A = A(∅, ∅) and A∗ = 6/π2.) The set of square-free numbers analyzed in

Theorem 1 is A(T, P ).

The above notation is used in the next lemma, which shows how the calculation

of the natural density of the sets A(T, P ) reduces to the calculation of the natu-

ral density of sets of the form A(∅, S) and, when P is finite, also reduces to the

calculation of the natural density of sets of the form A(S, ∅).

Lemma 1. For any finite set of primes S disjoint from T and from P and for

any real number x, we have A(T, S ∪ P )[x] = A(T ∪ S, P )[xdS ]. Moreover, the set

A(T ∪ S, P ) has a natural density if and only if A(T, P ∪ S) has a natural density,

and if these natural densities exist, then A(T, P ∪ S)∗ = dSA(T ∪ S, P )∗.

This lemma generalizes Lemmas 1 and 2 of [2].

Proof. The first assertion is immediate from the fact that multiplication by dS gives

a bijection from the set of elements of A(T, S ∪ P ) less than or equal to x to the

set of elements of A(T ∪ S, P ) less than or equal to xdS . This implies that

A(T, P ∪ S)[x]

x
= dS

A(T ∪ S, P )[xdS ]

xdS
.

The lemma follows by taking the limit as x (and hence xdS) goes to infinity.

Remark 1. We might note that if we assume that for all T the sets A(T, ∅) have

natural densities, then it is easy to compute these natural densities. After all, for

any T the set A is the disjoint union over all subsets S of T of the sets A(T \S, S),

so by Lemma 1

6/π2 = A∗ =
∑
S⊆T

A(T \ S, S)∗ =
∑
S⊆T

dSA(T, ∅)∗ = A(T, ∅)∗
∑
S⊆T

dS .

But ∑
S⊆T

dS =
∑
d|dT

d =
∏
p∈T

(1 + p)

[6, Theorem 4.5], so indeed

A(T, ∅)∗ =
6

π2

∏
p∈P

1

1 + p
.

We could now use Lemma 1 to obtain the formula of Theorem 1 in the case that P

is finite.
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3. Proof of Theorem 1 when P is Finite

The theorem in this case was proved in [2]. For the convenience of the reader we

sketch the proof using the notation of this paper.

Lemma 2. Let p be a prime number not in T . If the set A(T, ∅) has natural density

D, then the set A({p} ∪ T, ∅) has natural density 1
p+1D.

Proof. For any real number x we set E(x) = A({p} ∪ T, ∅)[x]. Let ε > 0.

Note that A(T, ∅) is the disjoint union of A({p}∪T, ∅) and A(T, {p}). Hence by

Lemma 1 (applied to A(T, {p})) for any real number x,

A(T, ∅)[x/p] = E(x/p) + E(x)

and so by the choice of D there exists a number M such that if x > M then∣∣∣∣E(x)

x/p
+
E(x/p)

x/p
−D

∣∣∣∣ < ε/3.

We next pick an even number k such that 1
pk
< ε

3 . Then∣∣E(x/pk)
∣∣ ≤ x/pk < ε

3
x (1)

and also (using the usual formula for summing a geometric series)∣∣∣∣∣−Dx
k∑
i=1

(−1

p
)i −Dx 1

p+ 1

∣∣∣∣∣ = Dx

∣∣∣∣∣ (−
1
p )− (− 1

p )k+1

1− (− 1
p )

+
1

p+ 1

∣∣∣∣∣ (2)

= Dx

∣∣∣∣∣−1 + 1
pk

p+ 1
+

1

p+ 1

∣∣∣∣∣ < 1

pk
Dx <

ε

3
x.

Now suppose that x > pkM . Then for all 0 ≤ i ≤ k we have x/pi > M and

hence (applying the choice of M above),∣∣∣∣(−1)iE(
x

pi
) + (−1)iE(

x

pi+1
)− (−1)iD

x

pi+1

∣∣∣∣ < ε

3

x

pi+1
. (3)

Using the triangle inequality to combine the inequalities (1) and (2) and all the

inequalities (3) for 0 ≤ i < k and dividing through by x, we can conclude that∣∣∣∣E(x)

x
− 1

p+ 1
D

∣∣∣∣ < ε

3

(
k∑
i=1

1

pi

)
+
ε

3
+
ε

3
< ε.

Hence the natural density of A({p} ∪ T, ∅) is 1
p+1D.
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Theorem 1 now follows in the case that P is empty from the above lemma by

induction on the number of elements of T . That it is true when P is finite but not

necessarily empty follows from Lemma 1: in the statement of that lemma replace

P by ∅ and S by P ; then we see that the natural density of A(T, P ) is indeed

dPA(T ∪ P, ∅)∗ =
6

π2

∏
p∈P

p
∏

p∈T∪P

1

1 + p
=

6

π2

∏
p∈T

1

1 + p

∏
p∈P

p

1 + p
.

4. Proof of Theorem 1 when P is Infinite

In this and the next section we will use the simple fact that for all x > 1 we have

1

x
> log(x+ 1)− log x = log

x+ 1

x
>

1

1 + x
>

1

2x
. (4)

We first show that the expression
∏
p∈P

p
1+p is well-defined when P is infinite.

Let p1, p2, p3, · · · be the strictly increasing sequence of elements of P . Since all the

quotients pi/(1 + pi) are less than 1, the partial products of the infinite product∏
i pi/(1 + pi) form a strictly decreasing sequence bounded below by 0; thus the

infinite product
∏
i pi/(1 + pi) converges, say to α. Its limit is also unchanged by

any rearrangement of its factors; this is easy to check if α is zero. Otherwise the

infinite sum ∑
i

log
pi

1 + pi
=
∑
i

log(pi)− log(1 + pi)

converges absolutely (to log(α)) and therefore its value is unchanged under re-

arrangements; hence the corresponding fact is also true of the infinite product∏
i pi/(1 + pi). Thus in all cases the expression

∏
p∈P

p
1+p is well-defined.

We now prove the theorem in the case that T is empty.

First suppose that α 6= 0. Then
∑
p∈P 1/p <∞. After all, we have

− logα =
∑
p∈P

log(1 + p)− log p >
1

2

∑
p∈P

1

p
.

Now observe that A \ A(∅, P ) is the disjoint union

A \ A(∅, P ) = ∪k≥1A({pk}, {p1, · · · , pk−1})

since for all b ∈ A \ A(∅, P ) there exists a least k ≥ 1 with pk dividing b, so that

b ∈ A({pk}, {p1, · · · , pk−1}).
For all n and k we have

A({pk}, {p1, · · · , pk−1})[n]

n
≤ |{j : 1 ≤ j ≤ n and pk|j}|

n
≤ 1

pk
.
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Hence by Tannery’s theorem (see [9, p. 292] or [4, p. 199]) the natural density of

A \ A(∅, P ) is therefore

lim
n→∞

(A \ A(∅, P ))[n]

n
= lim
n→∞

∞∑
k=1

A({pk}, {p1, · · · , pk−1})[n]

n

=

∞∑
k=1

lim
n→∞

A({pk}, {p1, · · · , pk−1})[n]

n
=

∞∑
k=1

6

π2

1

1 + pk

∏
i<k

pi
1 + pi

by the proof in the previous section of the theorem in the case that P is finite.

Writing 1/(1+pk) = 1−pk/(1+pk) we can see that the natural density of A\A(∅, P )

is therefore a limit of telescoping sums

6

π2
lim
L→∞

L∑
k=1

(∏
i<k

pi
1 + pi

−
∏

i<k+1

pi
1 + pi

)

=
6

π2
lim
L→∞

1−
∏
i≤L

pi
1 + pi

 =
6

π2
(1− α)

and thus

A(∅, P )∗ =
6

π2
− 6

π2
(1− α) =

6

π2

∏
p∈P

p

1 + p
,

which proves the theorem in the case that α 6= 0 and T = ∅.
We next consider the case that α =

∏
p∈P p/(1 + p) = 0. Suppose that ε > 0.

By hypothesis there exists a number M with 6
π2

∏
i≤M

pi
1+pi

< ε/2. Then by our

proof of the theorem in the case that P is finite there exists a number L such that

if n > L then

A(∅, {p1, p2, · · · , pM})[n]

n
<
ε

2
+

6

π2

∏
i≤M

pi
1 + pi

.

Thus if n > L we have

0 ≤ A(∅, P )[n]

n
≤ A(∅, {p1, p2, · · · , pM})[n]

n
<
ε

2
+
ε

2
= ε.

Therefore,

lim
n→∞

A(∅, P )[n]

n
= 0 =

6

π2

∏
p∈P

p

1 + p
,

which proves the theorem if α = 0 and T = ∅.
This completes the proof of the theorem in the case that T = ∅. The general case

where T is arbitrary then follows from Lemma 1, applied with T and S replaced

respectively by ∅ and T : A(T, P )∗ equals
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A(∅, P ∪ T )∗/dT =
6

π2

∏
p∈T

1

p

∏
p∈T

p

1 + p

∏
p∈P

p

1 + p
=

6

π2

∏
p∈T

1

1 + p

∏
p∈P

p

1 + p
,

which completes the proof of Theorem 1.

5. Proof of Theorem 2

Let us set P = {p : p ≡ r (mod m)}. It then suffices by Theorem 1 to prove that∏
p∈P p/(1 + p) = 0. For any real number x > 3 we have

∑
x>p∈P

1/p− log log x

φ(m)
= O(1)

(see [1, Exercise 6, page 156]). Hence
∑
p∈P 1/p =∞. Theorem 2 now follows from

the next lemma, which applies to any infinite set P of primes.

Lemma 3. Let P be an infinite set of primes. Then
∑
p∈P 1/p =∞ if and only if∏

p∈P p/(1 + p) = 0. Moreover, if
∑
p∈P 1/p ≤ S < ∞ for a real number S, then∏

p∈P p/(1 + p) ≥ e−S.

Proof. The inequalities of display (4) imply that

1

2

∑
p∈P

1

p
≤ − log

∏
p∈P

p

1 + p
=
∑
p∈P

log
p+ 1

p
≤
∑
p∈P

1

p
.

Our conclusions follow easily.

6. Mersenne Primes

Lemma 4. Let d be a number. Let P = {p1, p2, · · · } be an infinte set of primes

such that for all i ≥ 1 we have pi ≥ 2i− d. Then the set of square-free numbers not

divisible by any element of P has positive natural density.

Proof. The infinite sum
∑
p∈P 1/p converges since it is less than or equal to the

infinite sum
∑
i<∞ 1/(2i − d), which itself converges by the limit comparison test.

Thus by Lemma 3,
∏
p∈P p/(1+p) > 0; the lemma now follows from Theorem 1.

An immediate corollary of this lemma (or just of Theorem 1 if the relevant set

of primes turns out to be finite) is that the natural density of the set of square-free

numbers not divisible by any Fermat prime is positive [3, Section 2.5]. Similarly,
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the natural density of the set of square-free numbers not divisible by any Mersenne

prime is positive. The next theorem allows us to approximate this natural density

closely.

Let qi denote the i-th prime number and let P denote the set of Mersenne primes.

For any number M let

PM = {p ∈ P : p = 2qi − 1 for some i ≤M}

(so, for example, P5 = {3, 7, 31, 127}). Let AM =
∏
p∈PM

p/(1+p) (so, for example,

A5 = 3
4
7
8
31
32

127
128 ≈ .63078). If the number of Mersenne primes is finite, then there

exists some M with P = PM and so AM =
∏
p∈P

p
1+p . In general, we have the

following.

Theorem 3. Whether P is finite or infinite, we have

AM ≥
∏
p∈P

p

1 + p
≥ AM exp

(
− 1

2M

)
.

Proof. For any number i we have qi ≥ i+ 1 so∑
p∈P\PM

1

p
≤
∑
i>M

1

2qi − 1
≤
∑
i>M

1

2i
=

1

2M
,

so by Lemma 3

AM ≥
∏
p∈P

p

1 + p
=
∏
p∈PM

p

1 + p

∏
p∈P\PM

p

1 + p
≥ AM exp

(
− 1

2M

)
.

Thus, for example, taking M = 5 we have

.631 ≥ A5 ≥
∏
p∈P

p

1 + p
≥ exp

(
− 1

25

)
A5 ≥ .611

so the natural density D of the set of square-free numbers divisible by no Mersenne

prime satisfies

.384 ≥ .631
6

π2
≥ D ≥ .611

6

π2
≥ .371.

If we repeat this calculation with M = 17 (so that now

PM = {3, 7, 31, 127, 213 − 1, 217 − 1, 219 − 1, 231 − 1})

[3, Section 2.5], then we find that

.38342 > D > .38341.
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Remark 2. An easy induction shows that for i > 1, qi−2i is an increasing function

of i; hence if i > M > 1 then qi ≥ 2i+qM−2M . Using this bound on qi the argument

in the proof of the above theorem can be modified to show that∑
p∈P\PM

1

p
≤ 3(2qM − 1)

so that by Lemma 3

D ≥ 6

π2
AM exp

(
− 1

3(2qM − 1)

)
≥ 6

π2
AM exp

(
− 1

3(MM log 2 − 1)

)
where we have used Rosser’s Theorem [7] to deduce the last inequality. Thus, for

example, if M = 5 (so qM = 11) we can compute that

D ≥ 6

π2
A5 exp

(
− 1

3(211 − 1)

)
> .383403.
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