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Abstract

The Delannoy number d(n) is defined as the number of paths from (0, 0) to (n, n)
with steps (1,0), (1,1), and (0,1), which is equal to the number of paths from (0, 0) to
(2n, 0) using only steps (1, 1), (2, 0) and (1,−1). The Schröder number s(n) counts
only those paths that never go below the x-axis. We discuss some p-adic properties
of the sequences {d(pn)}n→∞, and {d(apn + b)}n→∞ with a ∈ N, (a, p) = 1, b ∈ Z,
and prime p. We also present similar p-adic properties of the Schröder numbers.
We provide several supercongruences for these numbers and their differences. Some
conjectures are also proposed.

1. Introduction

The central Delannoy number d(n) is defined as the number of paths from (0, 0) to

(n, n) in an n× n grid using only steps north, northeast and east (i.e., steps (1,0),

(1,1), and (0,1)). With n ≥ 0 the first few values are: 1, 3, 13, 63, 321, 1683, 8989,

cf. A001850, [8]. It is also the number of paths from (0, 0) to (2n, 0) using only

steps (1, 1), (2, 0) and (1,−1). The corresponding paths are called Delannoy paths.

It is well-known that

d(n) =

n∑
k=0

(
n

k

)(
n+ k

k

)
=

n∑
k=0

(
n

k

)2

2k, n ≥ 0. (1)

We prefer the second definition (cf. [11, Example and Note 3]) in (1) in most cases

below, however, we also use the first definition in some proofs. We note that the

generating function of these numbers is

∞∑
n=0

d(n)xn =
1√

1− 6x+ x2
= 1 + 3x+ 13x2 + 63x3 + 321x4 + ....,

although we do not directly use it in this paper.

https://oeis.org/A001850
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The Schröder number s(n) counts only the Delannoy paths from (0, 0) to (2n, 0)

that never go below the x-axis.

It turns out that d(n) = Pn(3) and s(n) = (−Pn−1(3) + 6Pn(3) − Pn+1(3))/2

with Pn(x) being a Legendre polynomial Pn(x) =
∑n
k=0

(
n
k

)(
n+k
k

) (
x−1
2

)k
. The first

definition in (1) implies that d(p − 1) ≡ 1 (mod p). Via the Legendre polynomial

correspondence several supercongruences are derived in [3] and [4] for the sums

w(n,A,B) =
∑n
k=0

(
n
k

)A(n+k
k

)B
εk where A,B ∈ N and ε = ±1 with N being the

set of non-negative integers. Although [3, Theorem 4] does not provide applica-

ble results for d(n), the methods can be extended to yield supercongruences for

d
(
(mpn − 1)/2

)
with m,n ∈ N, m odd, and p ≡ 1 (mod 4). In this case p can be

written as p = a2 + b2, with a, b ∈ Z. Let a ≡ 1 (mod 4) and i be a p-adic integer

such that i2 = −1. We fix the sign of bi such that a ≡ bi (mod p). For instance,

the congruences

d

(
p− 1

2

)
≡ (−1)(p−1)/42a (mod p)

and

d

(
mpn − 1

2

)
≡ (−1)(p−1)/4(a+ bi) d

(
mpn−1 − 1

2

)
(mod p2n)

hold true according to [4, Theorem 1 and Example 2]. For example, for p = 5 we

get that

d

(
m5n − 1

2

)
≡ − (1− 2·, . . . 2230324312125) d

(
m5n−1 − 1

2

)
(mod 52n),

and the exponent 2n seems to be the best possible. The technical difficulties involved

in the proofs suggest that supercongruences for d(apn+b) might be difficult to come

by, even less to be proven. In this paper, we explore some of these possibilities. We

also included several conjectures.

We note that for primes p > 3, Liu [7] considered modulo p-power congruential

properties of certain sums involving the first p−1 Delannoy and Schröder numbers.

The results are unrelated to ours.

Note that the second definition in (1) implies that

d(n) = [xn](1 + 2x)n(1 + x)n = [xn](1 + 3x+ 2x2)n. (2)

For instance, d(2) = 13 is the coefficient of the quadratic term in 1 + 6x + 13x2 +

12x3 + 4x4. However, the appealing relation (2) involving generalized central trino-

mial coefficients does not seem to help in proving p-adic orders and supercongruences

except if p = 3 (cf. Theorems 10–12).

We prove or conjecture results on the p-adic convergence of the sequences {d(apn+

b)}n→∞ and {s(apn + b)}n→∞ with a ∈ N, (a, p) = 1, b ∈ Z, and prime p. (Here

the notation (a, p) is used to denote the GCD of a and p.)
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The existence of p-adic limits is established or conjectured in Theorem 9, identity

(13), and Conjectures 4 and 7. In some cases the exact limit is determined, e.g.,

identities (3) and (9), and Theorems 10 and 17 provide the limit 0, and Theorems 3

and 15 come with other limit values.

In the proofs we apply various techniques relying on divisibilities properties of bi-

nomial coefficients (cf. Theorems 1 and 2), generating functions (cf. identities (11)

and (29) used in Theorems 12 and Theorem 17, respectively), and infinite incon-

gruent disjoint covering systems (in Theorem 13).

Regarding the Delannoy numbers, Section 2 contains the main results, Theo-

rems 3, 5, 8–14 and Corollary 1, while Section 3 is devoted to the proofs. The-

orems 3 and 4 deal with the case of p = 2, Theorems 5–12 cover the case with

p = 3, and Theorems 13 and 14 take care of the odd primes, in general. In the

last section we derive three results, Theorems 15, 17–18 and Corollary 2, on the

Schröder numbers.

We will repeatedly use the so called power-lifting lemma from mathematical

folklore.

Lemma 1. If 2 - n, p is an odd prime, p - A, p - B, and p | A ± B, then

νp(A
n ±Bn) = νp(A±B) + νp(n).

We also need an improved version of Lucas’ theorem on binomial coefficients

taken modulo pq+1 where q is the p-adic order of the binomial coefficient.

Theorem 1 (Anton, 1869, Stickelberger, 1890, Hensel, 1902, cf. [5]). Let N =

n0+n1p+· · ·+ndpd,M = m0+m1p+· · ·+mdp
d and R = N−M = r0+r1p+· · ·+rdpd

with 0 ≤ ni,mi, ri ≤ p − 1 for each i, be the base p representations of N,M, and

R = N −M , respectively. Then with q = νp
((
N
M

))
,

(−1)q
1

pq

(
N

M

)
≡
(

n0!

m0!r0!

)(
n1!

m1!r1!

)
· · ·
(

nd!

md!rd!

)
(mod p).

We also use a generalization of the Jacobstahl–Kazandzidis congruences that

involve the Bernoulli numbers Bn.

Theorem 2 ([1, Corollary 11.6.22]). Let M and N such that 0 ≤ M ≤ N and p

prime. We have

(
pN

pM

)
≡


(

1− Bp−3

3 p3NM(N −M)

)(
N
M

)
(mod p4NM(N −M)

(
N
M

)
), if p ≥ 5,

(1 + 45NM(N −M))
(
N
M

)
(mod p4NM(N −M)

(
N
M

)
), if p = 3,

(−1)M(N−M)P (N,M)
(
N
M

)
(mod p4NM(N −M)

(
N
M

)
), if p = 2,

where P (N,M) = 1+6NM(N−M)−4NM(N−M)(N2−NM+M2)+2(NM(N−
M))2.
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Remark 1 ([6, Remark 3.7]). It is well known that νp(Bn) ≥ −1 by the von

Staudt–Clausen theorem.

2. Main Results

This section contains the main results.

Theorem 3. For n ≥ 2 and a ≥ 1 odd, we have that

ν2(d(a2n)− 1) ≥ 2n+ 2.

It follows that the 2-adic limit limn→∞ d(a2n) = 1.

Corollary 1. For p = 2 and n ≥ 2 even, we have that

d(n) ≡ 1 (mod 22ν2(n)).

The proof of Theorem 3 guarantees the corollary while the exponent can be

improved by an additional term of 2 if 4 | n.

The next conjectures and theorem provide exact 2-adic orders. Apparently, the

proofs of the conjectures might be difficult.

Conjecture 1. For a ≥ 1 odd and n ≥ 2, we have that

ν2(d(a2n)− 1) = 3n

and

ν2(d(a2n − 1) + 1) = 3n.

With respect to the second part we have the much stronger

Conjecture 2. For m ≥ 0 we have that

ν2(d(4m+ 3) + 1) = 3(ν2(m+ 1) + 2).

Equivalently, we can also write that ν2(d(m) + 1) = 3ν2(m + 1) if m ≡ 3

(mod 4),m ≥ 3. By setting a2n − 1 = 4m + 3, n ≥ 2, i.e., m = a2n−2 − 1,

this conjecture claims that ν2(d(a2n − 1) + 1) = 3(ν2(a2n−2) + 2) = 3n.

We note that although one can directly guess the above conjecture, however, we

used the IntegerSequences Mathematica package (cf. [9]) to guess the underlying

structure and then we formulated the conjecture based on our finding.

It is easy to see the next lemma which covers the cases with n = 1.
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Lemma 2. For m ≥ 0, we have

ν2(d(2m+ 1) + 1) = 2, if 2 | m,

and

ν2(d(2m) + 1) = 1.

In a similar spirit, we have another conjecture and lemma that take care of the

first part of the original conjecture, Conjecture 1.

Conjecture 3. For m ≥ 0 we have that

ν2(d(2m)− 1) = 3ν2(2m), if 2 | m.

Lemma 3. For m ≥ 0, we have

ν2(d(2m)− 1) = 2, if 2 - m,

and

ν2(d(2m+ 1)− 1) = 1.

Theorem 4. For b ≥ 1 odd, we have that ν2(d(a2n + b)− 1) = 1 with n ≥ 1, and

ν2(d(a2n + 3) + 1) = 6 with n ≥ 3.

Conjecture 4. For a ≥ 1 odd and n sufficiently large, we have that

ν2(d(a2n+1 + b)− d(a2n + b)) =

{
3n, if b = 0 or − 1,

n+ 2ν2(b(b+ 1)), otherwise.

The conjecture suggests that the 2-adic limit of the sequence {d(a2n + b)}n→∞
exists.

Now we are moving to odd primes.

Theorem 5. For any odd prime p ≥ 5 and n ∈ N we have that

νp(d(pn)− 3) ≥ 1,

i.e., the least significant p-adic digit of d(pn) is 3: d(pn) ≡ 3 (mod p). For p = 3

and n ≥ 0, we have the supercongruence

d(3n) ≡ 3n+1 (mod 3n+2); (3)

and thus,

ν3(d(3n)) = n+ 1. (4)

For an alternative proof of (3) and (4) see Theorem 10.
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Remark 2. Numerical experimentation suggests the 3-adic limit

lim
n→∞

d(3n)/3n+1 = ...1112021212220213.

Other interesting cases with p = 3 are covered in the next seven theorems and a

conjecture.

Theorem 6. For n ≥ 0, we have the congruence

d(3n − 1) ≡ 1 (mod 3); (5)

and thus,

ν3(d(3n − 1)) = 0. (6)

Theorem 7. For n ≥ 1, we have the congruence

d(3n − 2) ≡ 3 (mod 9); (7)

and thus,

ν3(d(3n − 2)) = 1. (8)

Theorem 8. For n ≥ 1, we have the supercongruence

d(3n + 1) ≡ 2 · 3n (mod 3n+1); (9)

and thus,

ν3(d(3n + 1)) = n. (10)

The next theorem provides two supercongruences for differences of certain De-

lannoy numbers.

Theorem 9. For n ≥ 1, we have that

d(3n+1)− d(3n) ≡ 2 · 3n+1 (mod 3n+2)

and

ν3(d(3n+1)− 3d(3n)) ≥ n+ 3.

We also have that

d(3n+1 + 1)− d(3n + 1) ≡ 3n (mod 3n+1)

and

ν3(d(3n+1 + 1)− 3d(3n + 1)) ≥ n+ 2.
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In order to generalize some of the above results, Theorems 5 and 8, to d(a3n+ b)

in Theorems 10–12, we apply (2) and binomial expansion in the form

(3x+ (1 + 2x2))a3
n+b =

a3n+b∑
k=0

(
a3n + b

k

)
(3x)k(1 + 2x2)a3

n+b−k;

therefore,

d(a3n + b) = [xa3
n+b](3x+ (1 + 2x2))a3

n+b (11)

=

a3n+b∑
k=0

a3n+b−k even

(
a3n + b

k

)
3k
(
a3n + b− k
a3n+b−k

2

)
2

a3n+b−k
2 ,

Identity (11) is instrumental in the full characterization of ν3(d(a3n + b)) with

fixed integers a and b and sufficiently large n.

Remark 3. We note that identity (11) provides an alternative proof of Theorem 8

with a = b = 1, k = 0, and n ≥ 1. In fact,(
3n + 1
3n+1

2

)
2

3n+1
2 ≡ 2 · 3n (mod 3n+1)

since (
3n + 1
3n+1

2

)
≡ (−1)n3n (mod 3n+1)

by Theorem 1, and 3n+1
2 ≡ n − 1 (mod 2) (for (4 − 1)n + 3 ≡ (−1)n + 3 ≡ 2n

(mod 4)). We also observe that

ν3

((
3n + 1

k

)
3k
)
≥

{
n− ν3(k − 1) + k, if k ≡ 1 (mod 3)

n+ k, if k 6≡ 1 (mod 3)
≥ n+ 2

for k ≥ 2.

In a similar fashion, we get that d(3n + 2) ≡ 3n+1 (mod 3n+2), ν3(d(3n + 2)) =

n+ 1 for n ≥ 1 with k = 1 and d(3n+ 3) ≡ 2 ·3n−1 (mod 3n), ν3(d(3n+ 3)) = n−1

for n ≥ 2 with k = 0. Note that the last congruence can be also derived by

the previous two congruences via a standard holonomic recurrence for the central

Delannoy numbers, d(n) = (3(2n− 1)d(n− 1)− (n− 1)d(n− 2)) /n.

Remark 4. Alternative proofs of (6) and (8) are provided by Theorem 12. Other

alternative proofs of (3) and (4) as well as (10) follow by Theorems 10 and 11,

respectively.

For the special case with b = 0 we mention the following theorem.
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Theorem 10. For a ≥ 1 odd with (a, 3) = 1, we have that

d(a3n) ≡ a
(
a− 1
a−1
2

)
3n+12

a−1
2

≡


(a−1

a−1
2

)
3n+1 (mod 3

n+2+ν3

(
(

a−1
a−1
2

)
)
), if a ≡ 1, 11 (mod 12),

2
(a−1

a−1
2

)
3n+1 (mod 3

n+2+ν3

(
(

a−1
a−1
2

)
)
), if a ≡ 5, 7 (mod 12);

and therefore,

ν3(d(a3n)) = n+ 1 + ν3

((
a− 1
a−1
2

))
for any sufficiently large n. For a ≥ 1 even with (a, 3) = 1 and n sufficiently large

n, we have that

d(a3n) ≡ (−1)a/2
(
a
a
2

)
(mod 3

ν3
(
( a

a
2
)
)
+1

);

and thus,

ν3(d(a3n)) = ν3

((
a
a
2

))
.

Note that (3) and (4) of Theorem 5 follow by applying Theorem 10 with a = 1.

We can also use identity (11) to prove the next two theorems. Theorem 11

generalizes Theorem 8 and Remark 3.

Theorem 11. For b > 0 and k = 0 or 1, we set

c = c(b, k) =

{
log3(b− k) + 1, if b− k = 3m for some integer m ≥ 0,

dlog3(b− k)e, otherwise.

For a ≥ 1 odd with (a, 3) = 1, b ≥ 1 odd, and n sufficiently large, we have that

k = 0 provides the smallest 3-adic order in (11) and

ν3(d(a3n + b)) = n− c+ ν3

((
3c + b
3c+b
2

)(
a− 1
a−1
2

))
.

For a ≥ 2 even with (a, 3) = 1, b ≥ 2 even, and n sufficiently large, we have that

k = 0 provides the smallest 3-adic order in (11) and

ν3(d(a3n + b)) = ν3

((
b
b
2

)(
a
a
2

))
.

For a ≥ 2 even with (a, 3) = 1, b ≥ 1 odd, and n sufficiently large, we have that

k = 1 provides the smallest 3-adic order in (11) and

ν3(d(a3n + b)) = 1 + ν3(b) + ν3

((
b− 1
b−1
2

)(
a
a
2

))
.
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For a ≥ 1 odd with (a, 3) = 1, b ≥ 2 even, and n sufficiently large, we have that

k = 1 provides the smallest 3-adic order in (11) and

ν3(d(a3n + b)) = n− c+ 1 + ν3(b) + ν3

((
3c + b− 1

3c+b−1
2

)(
a− 1
a−1
2

))
.

The next theorem generalizes Theorems 6 and 7 for other negative values of b in

d(a3n + b).

Theorem 12. For b < 0 and k = 0 or 1, we set

c = c(b, k) =

{
log3 |b− k|+ 1, if |b− k| = 3m for some integer m ≥ 0,

dlog3 |b− k|e, otherwise.

For a ≥ 1 odd with (a, 3) = 1, b < 0 odd, and n sufficiently large, we have that

k = 0 provides the smallest 3-adic order in (11) and

ν3(d(a3n + b)) = ν3

((
3c + b
3c+b
2

)(
a− 1
a−1
2

))
.

For a ≥ 2 even with (a, 3) = 1, b < 0 even, and n sufficiently large, we have that

k = 0 provides the smallest 3-adic order in (11) and

ν3(d(a3n + b)) = n− c+ ν3

((
2 · 3c + b

2·3c+b
2

)(
a
a
2

))
.

For a ≥ 2 even with (a, 3) = 1, b < 0 odd, and n sufficiently large, we have that

k = 1 provides the smallest 3-adic order in (11) and

ν3(d(a3n + b)) = n− c+ 1 + ν3(b) + ν3

((
2 · 3c + b− 1

2·3c+b−1
2

)(
a
a
2

))
.

For a ≥ 1 odd with (a, 3) = 1, b < 0 even, and n sufficiently large, we have that

k = 1 provides the smallest 3-adic order in (11) and

ν3(d(a3n + b)) = 1 + ν3(b) + ν3

((
3c + b− 1

3c+b−1
2

)(
a− 1
a−1
2

))
.

Remark 5. In each case, we obtain the lower bound ν3(d(a3n + b)) ≥ n − c

(with c defined in Theorems 11 and 12) or ν3(d(a3n + b)) = c′ with some constant

c′ = c′(a, b) ≥ 0, for any sufficiently large n. In Theorems 11 and 12 we did not

include supercongruences for d(a3n + b). They can be derived the same way as in

Theorem 10. These theorems imply the upper bound ν3(d(a3n + b)) ≤ n+ c′′ with

some constant c′′ = c′′(a, b), for any sufficiently large n.

The next conjecture provides the exact 3-adic valuations in certain cases.
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Conjecture 5. For a ≥ 1 odd and b = 0, or a = 2 and b = −1, and n sufficiently

large, we have that

ν3(d(a3n+1 + b)− 3d(a3n + b)) = 3(n+ 1).

For a ≥ 1 odd and b ≥ 1, or a ≥ 2 even and b < 0, and n sufficiently large, we have

that

ν3(d(a3n+1 + b)− 3d(a3n + b)) = 2n+ c′′

with some integer constant c′′ = c′′(a, b).

We generalize Theorems 5 and 9 for arbitrary odd prime p in the following

theorem.

Theorem 13. For any odd prime p, we have that

d(pn) ≡ 1 + 2p
n

(mod p2), if n ≥ 1; (12)

d(pn+1)−d(pn) ≡ 2p
n

(2(p−1)p
n

−1) = 2p
n

Qp(2)pn+1 (mod pn+2), if n ≥ 0; (13)

νp(d(pn+1)− d(pn)) = νp(2
(p−1)pn − 1),

and νp equals n+ 1 if νp(Qp(2)) = 0 holds for the Fermat quotient Qp(2) = (2p−1−
1)/p while it is at least n+ 2 otherwise for νp(2

(p−1)pn − 1) = n+ 1 + νp(Qp(2)).

Now we turn to the differences of the quantities d(apn + b). We define

∆n = ∆n(a, b, p) = d(apn+1 + b)− d(apn + b)

=

apn+1+b∑
k=0

(
apn+1 + b

k

)2

2k −
apn+b∑
k=0

(
apn + b

k

)2

2k

with (a, p) = 1. The goal is to prove a congruential relationship between ∆n+1 and

∆n. The next theorem takes care of the case with a = 1 and b = 0.

Theorem 14. For n ∈ N and odd prime p, we have that

∆n+1(1, 0, p) ≡ p2(p−1)p
n−1

∆n(1, 0, p) (mod pn+2).

We conclude this section with a conjecture on ∆n(a, b, p) and its relation to

∆n+1(a, b, p).

Conjecture 6. For any odd prime p, a ≥ 1 with (a, p) = 1, b ∈ Z, and n sufficiently

large, we have that νp (∆n(a, b, p)) is a linear function of n and

νp

(
∆n+1(a, b, p)− p2(p−1)p

n−1

∆n(a, b, p)
)

= 2n+ 2.
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3. Proofs

This section contains the proofs.

Proof of Theorem 3. For n ≥ 2 and 1 ≤ k ≤ a2n we have

ν2

((
a2n

k

)2

2k

)
≥ 2n.

In fact, if 1 ≤ k ≤ 2n then

ν2

((
a2n

k

)2

2k

)
= 2(n− ν2(k)) + k, (14)

which is at least 2n, while if 2n < k ≤ a2n then ν2(2k) > 2n ≥ 2n; thus, ν2(2k) ≥
2n + 2 if k is even, while the same lower bound trivially follows if k is odd. Note

that for n ≥ 2 the proof and Conjecture 1 suggest that

ν2(d(a2n)− 1) = ν2

 ∑
1≤k≤3n+2 log2 a

(
a2n

k

)2

2k

 ;

moreover,

d(a2n)− 1 ≡
∑

1≤k≤3n+2 log2 a

(
a2n

k

)2

2k (mod 23n+1).

By considering the terms k = 1, 2, and 4 we can easily improve the lower bound,

2n. Note that the corresponding 2-adic orders are 2n+ 1, 2n, and 2n, respectively

by (14), and it is easy to determine these terms modulo 22n+3. The other terms

clearly have 2-adic orders at least 2n+ 2.

Proof of Theorem 4. We have

d(a2n + b)− 1 =

a2n+b∑
k=1

(
a2n + b

k

)2

2k ≡ (a2n + b)22 = 2b2 (mod 4),

and clearly, ν2(2b2) = 1. On the other hand, easy calculation shows that

d(a2n + 3) + 1 ≡ 2 +

6∑
k=1

(
a2n + 3

k

)2

2k ≡ 26

(
1 +

(
a2n + 3

6

)2
)
≡ 26 (mod 27)

since ν2

((
a2n+3

6

))
> 0 for n ≥ 3.
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Proof of Theorem 5. By identity (1) we obtain

d(pn) = 1 +

pn−1∑
k=1

(
pn

k

)2

2k + 2p
n

≡ 3 (mod p),

since νp
((
pn

k

)2
2k
)

= 2(n − νp(k)) ≥ 2 for 1 ≤ k ≤ pn − 1 and 2p
n ≡ 2 (mod p) by

repeated application of 2p ≡ 2 (mod p).

For p = 3, we have

d(3n) =

3n∑
k=0

(
3n

k

)2

2k = 1 + 23
n

+

n−1∑
m=0

3n−m∑
t=1

(t,3)=1

(
3n

t3m

)2

2t3
m

(15)

and observe that ν3

((
3n

t3m

)2)
= 2(n−m) for (t, 3) = 1. In the very last summation

3n−m∑
t=1

(t,3)=1

(
3n

t3m

)2

2t3
m

(16)

of (15) we pair up the terms with t3m and 3n − t3m in the binomial coefficients to

yield

ν3

((
3n

t3m

)2

2t3
m

+

(
3n

3n − t3m

)2

23
n−t3m

)
= 2(n−m) + ν3

(
2t3

m

+ 23
n−t3m

)
= 2(n−m) + ν3

(
1 + 23

n−2t3m
)

= 2(n−m) + (1 +m) = 2n−m+ 1
(17)

if t3m < 3n − t3m (and similarly, if t3m > 3n − t3m) by Lemma 1. We get that

ν3

1

2

 3n−m∑
t=1

(t,3)=1

(
3n

t3m

)2

2t3
m

+

(
3n

3n − t3m

)2

23
n−t3m


 ≥ 2n−m+ 1.

When we sum up the sums described in (16) for all m : 0 ≤ m ≤ n − 1 we obtain

that the 3-adic order of
(∑3n

k=0

(
3n

k

)2
2k
)
− (1 + 23

n

) is at least n + 2 by identity

(15), which proves that d(3n) ≡ 1 + 23
n

(mod 3n+2). Then (3) follows by binomial

expansion and n− ν3(k) + k ≥ n+ 2 if k ≥ 2 since

1 + (3− 1)3
n

=

3n∑
k=1

(
3n

k

)
3k(−1)3

n−k ≡ 3n+1 (mod 3n+2).
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Remark 6. Note that typically, νp
(
1 + 2p

n−2tpm) = m + 1 does not apply for

primes p > 3 in (17); thus, we can only partially generalize Theorem 5 in Theo-

rem 13.

In the next two proofs we use the first definition of d(n) in (1).

Proof of Theorem 6. Clearly, d(0) = 1. If n ≥ 1 then we use the first summation

in (1). The term with k = 0 evaluates to 1 and
(
3n−1
k

)(
3n−1+k
3n−1

)
≡ 0 (mod 3) if

1 ≤ k ≤ 3n − 1 by the second factor.

Proof of Theorem 7. Clearly, d(1) = 3. If k = 0 or 1 then we have the terms 1 and(
3n−2

1

)(
3n−1
3n−2

)
= (3n − 2)(3n − 1) ≡ 2 (mod 3n+1) in the first summation of (1).

If n ≥ 2 then we get that
(
3n−2
k

)(
3n−2+k
3n−2

)
≡ 0 (mod 3) if 2 ≤ k ≤ 3n − 2.

However, we need the modulo 9 remainders. Let a be either 1 or 2. The remainder

is 6 (mod 9) if k = a3n−1 + b and b = 0 and it is 3 (mod 9) if b = 1. In fact,(
3n−2
k

)
≡
(
2
a

)
(mod 3) by the Lucas’ theorem and

(
3n−2+k
3n−2

)
/3 ≡ 1 (mod 3) if a+ b

is odd and 2 (mod 3) if a+ b is even since
(
3n−2+k
3n−2

)
/3 ≡ −1/(2a!) (mod 3) if b = 0

and −1/a! (mod 3) if b = 1 by Theorem 1.

For other values of k we immediately have
(
3n−2+k
3n−2

)
≡ 0 (mod 9) for the second

factor. The result follows by combining the terms.

Proof of Theorem 8. The statement is true for n = 1. Therefore, we can assume

that n ≥ 2. We prove that

d(3n + 1)− d(3n) ≡ 2 · 3n (mod 3n+1),

which fact, combined with the congruence (3), already guarantees that d(3n + 1) ≡
2 · 3n (mod 3n+1).

In a similar fashion to (15), we use identity

d(3n + 1) =

3n+1∑
k=0

(
3n + 1

k

)2

2k =

n∑
m=0

3n−m+1∑
t=1

(t,3)=1

(
3n + 1

t3m

)2

2t3
m

(18)

and consider the difference d(3n + 1)− d(3n) in different ranges, for 1 ≤ m ≤ n− 1,

m = n, and m = 0.

In the difference d(3n + 1)− d(3n) we focus on the terms

b(t,m) =

(
3n + 1

t3m

)2

2t3
m

−
(

3n

t3m

)2

2t3
m

=

((
3n + 1

t3m

)
−
(

3n

t3m

))((
3n + 1

t3m

)
+

(
3n

t3m

))
2t3

m

=

(
3n

t3m − 1

)((
3n + 1

t3m

)
+

(
3n

t3m

))
2t3

m

(19)
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with 1 ≤ t ≤ 3n−m + 1, (t, 3) = 1, and 0 ≤ m ≤ n. The 3-adic order of each term

is at least n+ (n−m) = 2n−m except if t3m = 1 or t3m = 3n + 1, corresponding

to the cases with t = 1, m = 0 and t = 3n + 1, m = 0, respectively.

If 1 ≤ m ≤ n−1 then the 3-adic order of (19) is at least n+ (n−m) = 2n−m ≥
2n− (n− 1) = n+ 1.

If m = n then t = 1, t3m = 3n and b(1,n) =
((

3n+1
3n

)2
−
(
3n

3n

)2)
23

n

= ((3n + 1)2−
1)23

n ≡ 23
n+1 · 3n (mod 32n); thus,

b(1,n) ≡ −2 · 3n (mod 3n+1), (20)

since φ(3n+1) = 2 · 3n with the Euler φ-function and 2 is a primitive root modulo

any power of 3. Therefore,

23
n

≡ −1 (mod 3n+1). (21)

Now we assume that m = 0. We have two cases with t ≡ 1 (mod 3) and t ≡ 2

(mod 3). For d(3n) we have the pairing in (17) which results in

ν3

 3n∑
t=1

(t,3)=1

(
3n

t

)2

2t

 ≥ 2n+ 1.

On the other hand, in the summation for d(3n+1), if t ≡ 2 (mod 3) then clearly

the 3-adic order of each term in
(
3n+1
t

)2
2t is at least 2n. If t ≡ 1 (mod 3) then

for d(3n+1) we use a slightly different pairing from that of (17) which involves the

terms

at =

(
3n + 1

t

)2

2t +

(
3n + 1

3n + 2− t

)2

23
n+2−t

= (3n + 1)22t

(
1

t2

(
3n

t− 1

)2

+
1

(3n + 2− t)2

(
3n

3n + 1− t

)2

23
n+2−2t

)
with t ≤ (3n + 1)/2. Since t ≡ 1 (mod 3), we can write t = c3r + 1 with either

c ≥ 1, (c, 3) = 1, and 1 ≤ r ≤ n − 1 (since t ≤ (3n + 1)/2) or with c = 0, i.e.,

t = 1, and observe that 1/t2 ≡ 1− 2c3r (mod 32r) and 1/(3n + 2− t)2 ≡ 1 + 2c3r

(mod 32r). Therefore, it follows that

at = (3n + 1)22t
(

3n

t− 1

)2 (
1 + 23

n−2c3r (mod 3r)
)
.

If r ≥ 1 then we obtain that ν3(at) ≥ 2(n− r) + r = 2n− r by Lemma 1, and it is

at least n+ 1 since r ≤ n− 1. However, if c = 0, i.e., t = 1, then

a1 = (3n + 1)22 + 23
n+1 ≡ 4 · 3n (mod 3n+1) (22)
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by (21).

Combining the congruences (20) and (22) of the cases with m = n and m = 0,

the result follows.

Proof of Theorem 9. We use the congruence (3) of Theorem 5 to yield d(3n+1) −
d(3n) ≡ 2 · 3n+1 (mod 3n+2). In a similar fashion, we apply (3) twice:

3d(3n) ≡ 3 · 3n+1 (mod 3n+3)

and

d(3n+1) ≡ 3n+2 (mod 3n+3),

and then take the difference.

The proofs involving d(3n + 1) are similar and based on (9).

We combine the proofs of three theorems below.

Proof of Theorems 10–12. All cases rely on identity (11) which has the terms

Ak = A(a, b, n, k) =

(
a3n + b

k

)
3k
(
a3n + b− k
a3n+b−k

2

)
2

a3n+b−k
2

with 0 ≤ k ≤ a3n + b and a3n + b − k even. We prove that the 3-adically unique

dominant term has k = 0 or k = 1 depending on the parity of a3n + b, i.e., that of

a+ b. We set

l =

{
0, if a+ b is even,

1, if a+ b is odd.

We assume that k ≡ l (mod 2) and prove for 0 ≤ k ≤ 3n − 3 + b that

ν3(Ak+2/Ak) =

{
2 + 2ν3(b− k)− ν3((k + 1)(k + 2)), if b 6= k,

2 + 2n− ν3((k + 1)(k + 2)), if b = k.
(23)

Indeed,

Ak+2

Ak
=

(
a3n+b
k+2

)(
a3n+b
k

)32

(a3n+b−k−2
a3n+b−k−2

2

)
(a3n+b−k

a3n+b−k
2

) 2
a3n+b−k−2

2

2
a3n+b−k

2

= 32
(a3n + b− k)2

8(k + 1)(k + 2)
.

Clearly, ν3(Al) < ν3(Al+2). For k ≥ 2 we write

Ak = Al

k−2∏
m=l

m≡l (mod 2)

Am+2

Am
;
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and thus,

ν3(Ak) = ν3(Al) +

k−2∑
m=l

m≡l (mod 2)

ν3(Am+2/Am) ≥ ν3(Al) + bk/2c,

where we used the identity (23) and the inequality ν3(k!) < k/2. It follows that

ν3(Al) < ν3(Ak) for l + 2 ≤ k ≤ 3n − 3 + b. Otherwise, we observe that ν3(Ak) ≥
3n − 3 + b ≥ 3n ≥ ν3(Al) for any sufficiently large n. Now

d(a3n + b) ≡ Al (mod 3ν3(Al)+1) (24)

follows for any sufficiently large n.

We can derive the exact 3-adic orders and corresponding congruences in the

different cases given in Theorems 10–12 by using Theorem 1.

Proof of Theorem 13. We modify the proof of Theorem 5 by writing

d(pn) = 1 +

pn−1∑
k=1

(
pn

k

)2

2k + 2p
n

= 1 + 2p
n

+

n−1∑
m=0

pn−m∑
t=1

(t,p)=1

(
pn

tpm

)2

2tp
m

.

The congruence (12) immediately follows.

We provide the proof of (13) based on the proof of [6, Theorem 2.5] to obtain

information on the p-adic order of the difference d(pn+1) − d(pn). However, this

time we are able to determine the exact p-adic order if νp(Qp(2)) = 0. This fact

demonstrates that the technique originally outlined for Motzkin numbers might be

effectively used to find exact p-adic orders for differences of other combinatorial

quantities. We use the same infinite incongruent disjoint covering system that we

used in the mentioned proof. We rewrite the difference as

d(pn+1)− d(pn) =

pn∑
k=1

((
pn+1

pk

)2

2pk −
(
pn

k

)2

2k
)

+

p−1∑
i=1

( pn+1∑
k≡i (mod p)

(
pn+1

k

)2

2k
)

=

n−1∑
q=0

p−1∑
i=1

( ∑
k=ipq+Kpq+1

0≤K≤ pn−q−i
p

((
pn+1

pk

)2

2pk −
(
pn

k

)2

2k
))

(25)

+ 2p
n+1

− 2p
n

(26)

+

p−1∑
i=1

( pn+1∑
k≡i (mod p)

(
pn+1

k

)2

2k
)
. (27)
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The term in (25) can be expressed as

n−1∑
q=0

p−1∑
i=1

∑
k=ipq+Kpq+1

0≤K≤ pn−q−i
p

((
pn+1

pk

)2

2pk −
(
pn

k

)2

2k
)

=

n−1∑
q=0

p−1∑
i=1

∑
k=ipq+Kpq+1

0≤K≤ pn−q−i
p

((
pn+1

pk

)2

(2pk − 2k) +

((
pn+1

pk

)2

−
(
pn

k

)2)
2k

)
.

Note that with the Fermat quotient Qp(2) = (2p−1 − 1)/p we have 2p
n+1 − 2p

n

=

2p
n

(2(p−1)p
n −1) ≡ 2p

n

Qp(2)pn+1 (mod pn+2) by 2p−1 ≡ 1 +Qp(2)p (mod p2) and

binomial expansion. It yields that νp(2
(p−1)pn − 1) = n+ 1 + νp(Qp(2)). It is n+ 1

if νp(Qp(2)) = 0.

We consider the p-adic order of the terms in the last summation. For the first

part we obtain Ak = νp
((
pn+1

pk

)2
(2pk−2k

)
= 2((n+1)−(q+1))+νp(2

i(p−1)pq−1) ≥
2(n − q) + (q + 1 + νp(Qp(2))) ≥ 2n − q + 1 ≥ n + 2 unless q = n, i.e., k = pn

and Apn = νp(2
pn+1 − 2p

n

) ≥ n + 1, which case is represented in (26). In fact,

Apn = n+ 1 if νp(Qp(2)) = 0.

For the second part we obtain that νp
((
pn+1

pk

)2
−
(
pn

k

)2)
2k = 3(n + 1) if p ≥ 5

and 3n + 2 if p = 3 by [6, Corallary 3.4] applied with the settings a = 1, m = 2,

k = ipq+Kpq+1 and substituting n+1 for n. The corollary is proven by Theorem 2

in [6].

The p-adic order of every term in (27) is 2(n+ 1), and thus, (13) follows.

Proof of Theorem 14. The proof is a straightforward consequence of Theorem 13.

4. The Schröder Numbers

The (large) Schröder number s(n) is defined as the number of paths from (0, 0) to

(n, n) with steps (1,0), (1,1), and (0,1) which never cross the main diagonal. It is

also the number of paths from (0, 0) to (2n, 0) using only steps (1, 1), (2, 0) and

(1,−1) that never go below the x-axis. With n ≥ 0 the first few values are: 1, 2, 6,

22, 90, 394, 1806, cf. A006318, [8]. It is well-known (cf. [10]) that s(0) = 1 and

s(n) =

n∑
k=0

1

k + 1

(
n

k

)(
n+ k

k

)
=

n∑
k=1

1

k

(
n− 1

k − 1

)(
n

k − 1

)
2k

=
1

n

n∑
k=1

(
n

k

)(
n

k − 1

)
2k, n ≥ 1. (28)

https://oeis.org/A006318
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Note that the last definition (28) implies that for n ≥ 1 we have that

s(n) = [xn+1]
1

n
((1 + 2x)n − 1) (1 + x)n = [xn+1]

(1 + 3x+ 2x2)n

n
, (29)

which yields that

s(n) =
1

n

n∑
k=0

n+1−k even

(
n

k

)
3k
(
n− k
n+1−k

2

)
2

n+1−k
2 .

Identity (29) shows the inherent similarities in the behaviors of the Delannoy and

Schröder numbers. We mention a conjecture and three theorems with sketches of

their proofs.

Theorem 15. For p = 2, a ≥ 1 odd, and n ≥ 1, we have that

ν2(s(a2n)− 2) = ν2(s(a2n + 1)− 2) = n+ 1,

ν2
(
s(a2n)− (2− a2n+1)

)
= 2n+ 1, (30)

and if n ≥ 3 then

ν2
(
s(a2n + 1)− (2 + a2n+1)

)
= 2n+ 2.

The proof is based on identity (28). We note that Cao and Pan proved the

following theorem.

Theorem 16 (Theorem 2, [2]). For any N ≥ 1 and n ≥ 2,

s(N + 2n) ≡ s(N) + (−1)b
N−1

2 c2n+1 (mod 2n+3).

For a ≥ 3 odd and n ≥ 1, identity (30) of Theorem 15 improves this to

s(a2n) ≡ s((a− 1)2n)− 2n+1 (mod 22n+1),

and 2n+ 1 is the best possible exponent.

The next corollary follows by (30) and (28).

Corollary 2. For p = 2 and n ≥ 2 even, we have

s(n) ≡ 2− 2n (mod 22ν2(n)+1),

and the exponent in the modulus is best possible. If n ≥ 1 is odd then

s(n) ≡ 2 (mod 4),

and 4 is the best possible modulus if n ≡ 3 (mod 4).
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Now we consider the odd primes.

Theorem 17. For p = 3 and n ≥ 1, we have that

s(3n + 1) ≡ 3n+1 (mod 3n+2); (31)

thus,

ν3 (s(3n + 1)) = n+ 1.

In addition, if a ≥ 1 odd and (a, 3) = 1 then we have that

s(a3n + 1) ≡ a
(
a− 1
a−1
2

)
3n+1(−1)n2

a3n−1
2

≡


a
(a−1

a−1
2

)
3n+1 (mod 3

n+2+ν3

(
(

a−1
a−1
2

)
)

), if a ≡ 1 (mod 4),

2a
(a−1

a−1
2

)
· 3n+1 (mod 3

n+2+ν3

(
(

a−1
a−1
2

)
)

), if a ≡ 3 (mod 4);

thus,

ν3 (s(a3n + 1)) = n+ 1 + ν3

((
a− 1
a−1
2

))
.

The proof of Theorem 17 is based on identity (29). In fact,

s(a3n + 1) =
1

a3n + 1

a3n+1∑
k=0

a3n+2−k even

(
a3n + 1

k

)
3k
(
a3n + 1− k
a3n+2−k

2

)
2

a3n+2−k
2 ,

and the 3-adically unique dominant term has k = 1. Therefore, we obtain the

statements by Theorem 1 and noting that (−1)n 1
2!2

3n+1
2 ≡ 1 (mod 3), and in a

similar fashion to the proof of Theorems 10–12 by applying identity (11).

Theorem 18. For any odd prime p and n ≥ 1, we have that

s(pn) ≡
pn−1∑
k=0

k≡0 or p−1 (mod p)

(
pn

k

)2
2k+1

k + 1

(
1− k

pn

)
(mod pn). (32)

The terms not included in the summation in (32), i.e., those with k ≡ 1, 2, . . . , p−
2 (mod p), have p-adic order of n. We note that it is easy to see that

s(n) =

n−1∑
k=0

(
n

k

)2
2k+1

k + 1

(
1− k

n

)
.

The p-adic limit of s(pn) as n→∞ exists according to the following conjecture and

Theorem 15. The calculation of the limit can be simplified by Theorem 18. We

note that the proving technique outlined in the proof of Theorem 13 does not seem

to work for (33). The p-adic limit of {s(apn + b)}n→∞ also exists if p is an odd

prime by the conjecture.
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Conjecture 7. For any odd prime p and sufficiently large n, we have that

νp(s(p
n+1)− s(pn)) = n. (33)

In addition, if a ≥ 1 with (a, p) = 1 and b ∈ Z then we have that νp(s(ap
n+1 + b)−

s(apn + b)) = n+ c′′′ with some constant c′′′ = c′′′(a, b).

Acknowledgement. The author wishes to thank the referee for careful reading,
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