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Abstract

A positive integer n is called an exceptional totient number if the set Re(n) =
{x ∈ Z : 1 ≤ x < n, gcd(n, x) = gcd(n, x − 1) = 1} can be partitioned into two
disjoint subsets of equal sum. Take, for example, Re(7) = {2, 3, 4, 5, 6}. This can
be partitioned into the subsets {2, 3, 5} and {4, 6} whose elements each add to 10.
In this article, we provide a complete classification of exceptional totient numbers.

1. Introduction

Let n be a positive integer and let R(n) be the set of positive integers less than n that

are relatively prime to n. In 2017, Ali and Mahmood defined n to be super totient if

R(n) can be partitioned into two disjoint sets of equal sum [1]. In 2020, Harrington

and Wong classified all super totient numbers with the following theorem [5].

Theorem 1. A positive integer n is super totient if and only if it is not in the set

{1, 2, 4, 6, 18} ∪ {pr : r ∈ N and p is prime with p ≡ 3 (mod r)}.

Recognizing R(n) as the set of units modulo n, in this article we let Re(n) =

{x ∈ R(n) : gcd(n, x− 1) = 1}: the set of exceptional units modulo n. Exceptional

units were introduced by Nagell [7] in 1969. The interested reader is directed to

articles [2, 3, 6, 8, 9] for examples of recent research on exceptional units.

If Re(n) can be partitioned into two disjoint subsets of equal sum, we say that n is

an exceptional totient number. The following theorem, which we prove in Section 3,
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provides a complete classification of all exceptional totient numbers and is the main

result of this paper.

Theorem 2. A positive integer n is an exceptional totient number if and only if it

is not in the set {3, 15} ∪ {x : x ≡ 1 (mod 4)}.

2. Preliminary Results, Notation, and Lemmas

It is well known that Euler’s ϕ-function counts the number of elements of R(n). In

2010, Harrington and Jones introduced the function ϕe, which counts the number

of elements of Re(n), and provided the following lemma [4].

Lemma 1. For an integer n > 1, let n = pt11 · p
t2
2 · · · p

tk
k be the prime factorization

of n. Then

ϕe(n) =

k∏
j=1

p
tj−1
j (pj − 2).

We note that Lemma 1 implies that |Re(n)| = ϕe(n) = 0 for even values of n.

In this case, Re(n) = ∅ = ∅ ∪ ∅ can be partitioned into two disjoint subsets, each of

sum 0. Hence, the following theorem follows immediately from Lemma 1.

Theorem 3. All even positive integers are exceptional totient numbers.

With Theorem 3 in mind, our main focus through the remainder of this section

will be on odd positive integers. The following lemma provides a lower bound on

ϕe(n) when n is odd.

Lemma 2. For an odd positive integer n, ϕe(n) < 6 if and only if

n ∈ {1, 3, 5, 7, 9, 15, 21}.

Proof. The theorem can be checked computationally for n ≤ 21. So, the proof will

follow by showing that ϕe(n) ≥ 6 when n > 21. If n is divisible by a prime p ≥ 11,

then ϕe(n) ≥ 9 by Lemma 1. So, suppose that n = 3t · 5r · 7s, where t, r, and s are

non-negative integers. If t ≥ 3, r ≥ 2, or s ≥ 2, then ϕe(n) ≥ 9. Thus, we are left

to show that the theorem holds when t ∈ {0, 1, 2}, r ∈ {0, 1}, and s ∈ {0, 1}. Since

n > 21, the proof is finished by noticing that ϕe(35) = 15, ϕe(45) = 9, ϕe(63) = 15,

ϕe(105) = 15, and ϕe(315) = 45.

We now turn our attention to showing that for a fixed odd positive integer n,

Re(n) contains several key elements.

Lemma 3. Let n be a positive integer. If a ∈ Re(n), then n + 1− a ∈ Re(n).
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Proof. Let a ∈ Re(n). Then gcd(a, n) = gcd(a − 1, n) = 1. Suppose p is a prime

divisor of n. Then

n + 1− a ≡ 1− a (mod p)

≡ −(a− 1) (mod p).

Since p divides n and gcd(a − 1, n) = 1, we deduce that n + 1 − a is not divisible

by p. Therefore, gcd(n + 1− a, n) = 1. Similarly,

(n + 1− a)− 1 ≡ −a (mod p)

implies that gcd((n + 1− a)− 1, n) = 1. Hence, n + 1− a ∈ Re(n).

Lemma 4. Let n be an odd positive integer. Then (n + 1)/2 ∈ Re(n).

Proof. Suppose p1 is a prime divisor of (n + 1)/2. Then there exists an integer t1
such that n = 2p1t1 − 1. Thus, n ≡ −1 (mod p1), and therefore p1 does not divide

n. Hence, gcd(n, (n+1)/2) = 1. Similarly, if p2 is a prime that divides (n+1)/2−1,

then there exists some integer t2 such that n = 2p2t2 +1. We deduce from this that

gcd(n, (n + 1)/2− 1) = 1. Hence, (n + 1)/2 ∈ Re(n).

Lemma 5. Let n ≡ 3 (mod 4) be a positive integer not divisible by 3. Then (n +

1)/4 ∈ Re(n)

Proof. Suppose p1 is a prime divisor of (n + 1)/4. Then there exists an integer t1
such that n = 4p1t1 − 1. Thus, n ≡ −1 (mod p1), and therefore p1 does not divide

n. Hence, gcd(n, (n+1)/4) = 1. Similarly, if p2 is a prime that divides (n+1)/4−1,

then there exists some integer t2 such that n = 4p2t2 + 3, and n ≡ 3 (mod p2). We

deduce from this that gcd(n, (n + 1)/4 − 1) = 1 when 3 does not divide n. Hence,

(n + 1)/4 ∈ Re(n) when n is not divisible by 3.

Lemma 6. Let n ≡ 3 (mod 4) be a positive integer that is divisible by 3. If n 6∈
{3, 15}, then there exist distinct elements x and y of Re(n) such that x + y =

(n + 1)/4.

Proof. Let p be a prime divisor of n and notice that (n + 1)/4 − 2 = (n − 7)/4 is

divisible by p only if p = 7. Similarly, (n + 1)/4 − 3 = (n − 11)/4 is divisible by p

only if p = 11. Thus, if n is not divisible by 7 or 11, then

gcd(n, 2) = gcd(n, 1) = gcd

(
n,

n + 1

4
− 2

)
= gcd

(
n,

n + 1

4
− 3

)
= 1.

Further, since (n + 1)/4 − 2 is positive when n > 7 and since n ≡ 3 (mod 4) and

n 6= 3, we deduce that 2 and (n + 1)/4 − 2 are elements of Re(n) when n is not

divisible by 7 or 11. Since n 6= 15, we know that (n + 1)/4 − 2 6= 2. Hence, if n is

not divisible by 7 or 11, then we may let x = 2 and y = (n + 1)/4− 2.
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Let p1, . . . , pt be the prime divisors of n with 3 = p1 < p2 < · · · < pt. For each

pj , we will choose cj ∈ Z to satisfy the following congruence conditions:

cj 6≡ 0 (mod pj)

cj 6≡ 1 (mod pj)

cj 6≡ 4−1 (mod pj)

cj 6≡ −3 · 4−1 (mod pj).

(1)

We let c1 ≡ 2 (mod 3) and since (1) imposes no more than four restrictions on

the congruence class of cj modulo pj , it is clear that there exists such a cj for

each pj ≥ 5. Notice that the conditions in (1) ensure that if x ≡ cj (mod pj)

for each j ∈ {1, 2, . . . , t}, then x ∈ Re(n) and y = (n + 1)/4 − x ∈ Re(n) with

x + y = (n + 1)/4. Thus, our proof will be complete by showing that x can be

chosen to satisfy 0 < x < (n + 1)/4.

If n is divisible by 7 or 11 and n is not divisible by a prime greater than 19,

then we may choose 0 < x < (n + 1)/4 satisfying the conditions in (1) as shown in

Table 1.

We now assume that n is divisible by a prime greater 19. For each j ∈ {1, 2, . . . , t−
1}, let cj satisfy the conditions in (1). Using the Chinese remainder theorem, we

let C satisfy C ≡ cj (mod pj) for all j ∈ {1, 2, . . . , t − 1}, and further ensure that

0 ≤ C < p1p2 · · · pt−1. Again, since (1) imposes no more than four restrictions on

the congruence class of ct modulo pt, there exists a k ∈ {0, 1, 2, 3, 4} so that

ct = C + k ·
t−1∏
j=1

pj

satisfies the conditions in (1) when j = t. Letting x = ct ensures that x ≡ cj
(mod pj) for each j ∈ {1, 2, . . . , t} and since pt ≥ 23, we have that

x = C + k ·
t−1∏
j=1

pj ≤ C + 4

t−1∏
j=1

pj < 5

t−1∏
j=1

pj ≤
pt
4
·
t−1∏
j=1

pj =

t∏
j=1

pj

4
≤ n

4
<

n + 1

4
.

3. Proof of Theorem 2

In this section we use the results established in Section 2 to prove Theorem 2.

Proof of Theorem 2. Let T = {3, 15} ∪ {x : x ≡ 1 (mod 4)}. We begin our proof

by showing that if n ∈ T , then n is not an exceptional totient number. It is easy to
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Prime divisors of n x Prime divisors of n x
3,7 5 3,11 5

3,5,7 17 3,7,11 38
3,5,11 17 3,11,13 59
3,7,13 17 3,11,17 125
3,7,17 38 3,11,19 59
3,7,19 59 3,5,7,11 17

3,5,11,13 422 3,7,11,13 290
3,5,7,13 17 3,7,13,17 626

3,11,13,17 158 3,5,11,17 257
3,7,11,17 752 3,5,7,17 122
3,7,17,19 920 3,11,17,19 1940
3,7,13,19 899 3,11,13,19 158
3,5,11,19 257 3,7,11,19 59
3,5,7,19 122 3,5,7,11,13 3062

3,5,7,13,17 2537 3,7,11,13,17 7451
3,5,11,13,17 587 3,5,7,11,17 3062
3,5,7,17,19 4847 3,7,11,17,19 3062
3,5,11,17,19 3062 3,11,13,17,19 12599
3,7,13,17,19 11273 3,5,7,13,19 3902
3,7,11,13,19 4448 3,5,11,13,19 9167
3,5,7,11,19 3062 3,5,7,11,13,17 58502

3,5,7,11,17,19 3062 3,5,11,13,17,19 56357
3,7,11,13,17,19 187631 3,5,7,13,17,19 99452
3,5,7,11,13,19 28472 3,5,7,11,13,17,19 749192

Table 1: Values of x for Lemma 6 when n is divisible by 7 or 11 and not divisible
by a prime greater than 19.

see that n = 3 and n = 15 are not exceptional totient numbers since Re(3) = {2}
and Re(15) = {2, 8, 14}. Now suppose that n ≡ 1 (mod 4). We know by Lemma 3

that if a ∈ Re(n) then n+ 1− a ∈ Re(n), and by Lemma 4 that (n+ 1)/2 ∈ Re(n).

Further, notice that n + 1 − a = a if and only if a = (n + 1)/2. Thus, there are

(ϕe(n)− 1)/2 pairs {a, n + 1− a}, such that a and n + 1− a are distinct elements

of Re(n). Consequently, ∑
a∈Re(n)

a 6=(n+1)/2

a =
ϕe(n)− 1

2
· (n + 1),
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and therefore, ∑
a∈Re(n)

a =
ϕe(n)− 1

2
· (n + 1) +

n + 1

2

= ϕe(n) · n + 1

2
.

Notice that if n ≡ 1 (mod 4), then this sum is odd. Hence, the elements of Re(n)

cannot be partitioned into two disjoint subsets of equal sum.

We are now left to show that if n 6∈ T , then n is an exceptional totient number.

By Theorem 3, we may restrict our attention to odd values of n.

For the remainder of the proof, assume that n ≡ 3 (mod 4) with n 6∈ {3, 15}.
We will construct sets A and B so that A ⊆ Re(n), B ⊆ Re(n), A ∩B = ∅, and∑

a∈A
a =

∑
b∈B

b.

To begin, we first construct sets A0 and B0 by distributing the pairs {a, n + 1− a}
as evenly as possible so that

|A0| =

{
|B0| if ϕe(n) ≡ 1 (mod 4);

|B0|+ 2 if ϕe(n) ≡ 3 (mod 4),

and therefore

∑
a∈A0

a =



∑
b∈B0

b if ϕe(n) ≡ 1 (mod 4);

n + 1 +
∑
b∈B0

b if ϕe(n) ≡ 3 (mod 4).

Further, if n is not divisible by 3, then by Lemma 5 we ensure that (n+ 1)/4 ∈ A0;

if n is divisible by 3, then we use Lemma 6 to find x, y ∈ Re(n) such that x + y =

(n + 1)/4, and since n 6= 7, and therefore ϕe(n) ≥ 6 by Lemma 2, we can ensure

that both x and y are in A0. Next, we place (n + 1)/2 into the appropriate set so

that ∑
a∈A0

a =
n + 1

2
+
∑
b∈B0

b.

Note that this can be achieved by putting (n + 1)/2 in A0 if ϕe(n) ≡ 1 (mod 4) or

placing it in B0 if ϕ(n) ≡ 3 (mod 4). To finish our construction, we let

A =

{
A0 \

{
n+1
4

}
if 3 - n;

A0 \ {x, y} if 3 | n;
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and we let

B =

{
B0 ∪

{
n+1
4

}
if 3 - n;

B0 ∪ {x, y} if 3 | n.

Hence, if n ≡ 3 (mod 4) and n 6∈ {3, 15}, then n is an exceptional totient number.
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