

EXCEPTIONAL TOTIENT NUMBERS

Breille Duncan

Department of Mathematics, Cedar Crest College, Allentown, Pennsylvania bhduncan@cedarcrest.edu

Joshua Harrington

Department of Mathematics, Cedar Crest College, Allentown, Pennsylvania joshua.harrington@cedarcrest.edu

Andrew Vincent Department of Mathematics, Centrode Solutions, Rockford, Illinois andrew@centrodesolutions.com

Received: 4/28/21, Accepted: 8/17/21, Published: 8/27/21

Abstract

A positive integer n is called an exceptional totient number if the set $R_e(n) = \{x \in \mathbb{Z} : 1 \leq x < n, \gcd(n, x) = \gcd(n, x - 1) = 1\}$ can be partitioned into two disjoint subsets of equal sum. Take, for example, $R_e(7) = \{2, 3, 4, 5, 6\}$. This can be partitioned into the subsets $\{2, 3, 5\}$ and $\{4, 6\}$ whose elements each add to 10. In this article, we provide a complete classification of exceptional totient numbers.

1. Introduction

Let n be a positive integer and let R(n) be the set of positive integers less than n that are relatively prime to n. In 2017, Ali and Mahmood defined n to be *super totient* if R(n) can be partitioned into two disjoint sets of equal sum [1]. In 2020, Harrington and Wong classified all super totient numbers with the following theorem [5].

Theorem 1. A positive integer n is super totient if and only if it is not in the set $\{1, 2, 4, 6, 18\} \cup \{p^r : r \in \mathbb{N} \text{ and } p \text{ is prime with } p \equiv 3 \pmod{r}\}.$

Recognizing R(n) as the set of units modulo n, in this article we let $R_e(n) = \{x \in R(n) : \gcd(n, x - 1) = 1\}$: the set of exceptional units modulo n. Exceptional units were introduced by Nagell [7] in 1969. The interested reader is directed to articles [2, 3, 6, 8, 9] for examples of recent research on exceptional units.

If $R_e(n)$ can be partitioned into two disjoint subsets of equal sum, we say that n is an *exceptional totient number*. The following theorem, which we prove in Section 3,

#A87

provides a complete classification of all exceptional totient numbers and is the main result of this paper.

Theorem 2. A positive integer n is an exceptional totient number if and only if it is not in the set $\{3, 15\} \cup \{x : x \equiv 1 \pmod{4}\}$.

2. Preliminary Results, Notation, and Lemmas

It is well known that Euler's φ -function counts the number of elements of R(n). In 2010, Harrington and Jones introduced the function φ_e , which counts the number of elements of $R_e(n)$, and provided the following lemma [4].

Lemma 1. For an integer n > 1, let $n = p_1^{t_1} \cdot p_2^{t_2} \cdots p_k^{t_k}$ be the prime factorization of n. Then

$$\varphi_e(n) = \prod_{j=1}^k p_j^{t_j-1}(p_j-2).$$

We note that Lemma 1 implies that $|R_e(n)| = \varphi_e(n) = 0$ for even values of n. In this case, $R_e(n) = \emptyset = \emptyset \cup \emptyset$ can be partitioned into two disjoint subsets, each of sum 0. Hence, the following theorem follows immediately from Lemma 1.

Theorem 3. All even positive integers are exceptional totient numbers.

With Theorem 3 in mind, our main focus through the remainder of this section will be on odd positive integers. The following lemma provides a lower bound on $\varphi_e(n)$ when n is odd.

Lemma 2. For an odd positive integer n, $\varphi_e(n) < 6$ if and only if

$$n \in \{1, 3, 5, 7, 9, 15, 21\}.$$

Proof. The theorem can be checked computationally for $n \leq 21$. So, the proof will follow by showing that $\varphi_e(n) \geq 6$ when n > 21. If n is divisible by a prime $p \geq 11$, then $\varphi_e(n) \geq 9$ by Lemma 1. So, suppose that $n = 3^t \cdot 5^r \cdot 7^s$, where t, r, and s are non-negative integers. If $t \geq 3$, $r \geq 2$, or $s \geq 2$, then $\varphi_e(n) \geq 9$. Thus, we are left to show that the theorem holds when $t \in \{0, 1, 2\}$, $r \in \{0, 1\}$, and $s \in \{0, 1\}$. Since n > 21, the proof is finished by noticing that $\varphi_e(35) = 15$, $\varphi_e(45) = 9$, $\varphi_e(63) = 15$, $\varphi_e(105) = 15$, and $\varphi_e(315) = 45$.

We now turn our attention to showing that for a fixed odd positive integer n, $R_e(n)$ contains several key elements.

Lemma 3. Let n be a positive integer. If $a \in R_e(n)$, then $n + 1 - a \in R_e(n)$.

INTEGERS: 21 (2021)

Proof. Let $a \in R_e(n)$. Then gcd(a, n) = gcd(a - 1, n) = 1. Suppose p is a prime divisor of n. Then

$$n+1-a \equiv 1-a \pmod{p}$$
$$\equiv -(a-1) \pmod{p}$$

Since p divides n and gcd(a-1,n) = 1, we deduce that n+1-a is not divisible by p. Therefore, gcd(n+1-a,n) = 1. Similarly,

$$(n+1-a) - 1 \equiv -a \pmod{p}$$

implies that gcd((n+1-a)-1, n) = 1. Hence, $n+1-a \in R_e(n)$.

Lemma 4. Let n be an odd positive integer. Then $(n+1)/2 \in R_e(n)$.

Proof. Suppose p_1 is a prime divisor of (n + 1)/2. Then there exists an integer t_1 such that $n = 2p_1t_1 - 1$. Thus, $n \equiv -1 \pmod{p_1}$, and therefore p_1 does not divide n. Hence, gcd(n, (n+1)/2) = 1. Similarly, if p_2 is a prime that divides (n+1)/2 - 1, then there exists some integer t_2 such that $n = 2p_2t_2 + 1$. We deduce from this that gcd(n, (n+1)/2 - 1) = 1. Hence, $(n+1)/2 \in R_e(n)$.

Lemma 5. Let $n \equiv 3 \pmod{4}$ be a positive integer not divisible by 3. Then $(n + 1)/4 \in R_e(n)$

Proof. Suppose p_1 is a prime divisor of (n + 1)/4. Then there exists an integer t_1 such that $n = 4p_1t_1 - 1$. Thus, $n \equiv -1 \pmod{p_1}$, and therefore p_1 does not divide n. Hence, gcd(n, (n+1)/4) = 1. Similarly, if p_2 is a prime that divides (n+1)/4-1, then there exists some integer t_2 such that $n = 4p_2t_2 + 3$, and $n \equiv 3 \pmod{p_2}$. We deduce from this that gcd(n, (n+1)/4 - 1) = 1 when 3 does not divide n. Hence, $(n+1)/4 \in R_e(n)$ when n is not divisible by 3.

Lemma 6. Let $n \equiv 3 \pmod{4}$ be a positive integer that is divisible by 3. If $n \notin \{3, 15\}$, then there exist distinct elements x and y of $R_e(n)$ such that x + y = (n+1)/4.

Proof. Let p be a prime divisor of n and notice that (n + 1)/4 - 2 = (n - 7)/4 is divisible by p only if p = 7. Similarly, (n + 1)/4 - 3 = (n - 11)/4 is divisible by p only if p = 11. Thus, if n is not divisible by 7 or 11, then

$$gcd(n,2) = gcd(n,1) = gcd\left(n,\frac{n+1}{4}-2\right) = gcd\left(n,\frac{n+1}{4}-3\right) = 1.$$

Further, since (n + 1)/4 - 2 is positive when n > 7 and since $n \equiv 3 \pmod{4}$ and $n \neq 3$, we deduce that 2 and (n + 1)/4 - 2 are elements of $R_e(n)$ when n is not divisible by 7 or 11. Since $n \neq 15$, we know that $(n + 1)/4 - 2 \neq 2$. Hence, if n is not divisible by 7 or 11, then we may let x = 2 and y = (n + 1)/4 - 2.

Let p_1, \ldots, p_t be the prime divisors of n with $3 = p_1 < p_2 < \cdots < p_t$. For each p_j , we will choose $c_j \in \mathbb{Z}$ to satisfy the following congruence conditions:

$$c_{j} \neq 0 \pmod{p_{j}}$$

$$c_{j} \neq 1 \pmod{p_{j}}$$

$$c_{j} \neq 4^{-1} \pmod{p_{j}}$$

$$c_{j} \neq -3 \cdot 4^{-1} \pmod{p_{j}}.$$
(1)

We let $c_1 \equiv 2 \pmod{3}$ and since (1) imposes no more than four restrictions on the congruence class of c_j modulo p_j , it is clear that there exists such a c_j for each $p_j \geq 5$. Notice that the conditions in (1) ensure that if $x \equiv c_j \pmod{p_j}$ for each $j \in \{1, 2, \ldots, t\}$, then $x \in R_e(n)$ and $y = (n+1)/4 - x \in R_e(n)$ with x + y = (n+1)/4. Thus, our proof will be complete by showing that x can be chosen to satisfy 0 < x < (n+1)/4.

If n is divisible by 7 or 11 and n is not divisible by a prime greater than 19, then we may choose 0 < x < (n+1)/4 satisfying the conditions in (1) as shown in Table 1.

We now assume that n is divisible by a prime greater 19. For each $j \in \{1, 2, ..., t-1\}$, let c_j satisfy the conditions in (1). Using the Chinese remainder theorem, we let C satisfy $C \equiv c_j \pmod{p_j}$ for all $j \in \{1, 2, ..., t-1\}$, and further ensure that $0 \leq C < p_1 p_2 \cdots p_{t-1}$. Again, since (1) imposes no more than four restrictions on the congruence class of c_t modulo p_t , there exists a $k \in \{0, 1, 2, 3, 4\}$ so that

$$c_t = C + k \cdot \prod_{j=1}^{t-1} p_j$$

satisfies the conditions in (1) when j = t. Letting $x = c_t$ ensures that $x \equiv c_j$ (mod p_j) for each $j \in \{1, 2, ..., t\}$ and since $p_t \ge 23$, we have that

$$x = C + k \cdot \prod_{j=1}^{t-1} p_j \le C + 4 \prod_{j=1}^{t-1} p_j < 5 \prod_{j=1}^{t-1} p_j \le \frac{p_t}{4} \cdot \prod_{j=1}^{t-1} p_j = \frac{\prod_{j=1}^{t} p_j}{4} \le \frac{n}{4} < \frac{n+1}{4}.$$

3. Proof of Theorem 2

In this section we use the results established in Section 2 to prove Theorem 2.

Proof of Theorem 2. Let $T = \{3, 15\} \cup \{x : x \equiv 1 \pmod{4}\}$. We begin our proof by showing that if $n \in T$, then n is not an exceptional totient number. It is easy to

Prime divisors of n	x	Prime divisors of n	x
3,7	5	3,11	5
$3,\!5,\!7$	17	3,7,11	38
3,5,11	17	$3,\!11,\!13$	59
3,7,13	17	$3,\!11,\!17$	125
3,7,17	38	$3,\!11,\!19$	59
3,7,19	59	$3,\!5,\!7,\!11$	17
3,5,11,13	422	3,7,11,13	290
3, 5, 7, 13	17	3,7,13,17	626
$3,\!11,\!13,\!17$	158	$3,\!5,\!11,\!17$	257
3,7,11,17	752	$3,\!5,\!7,\!17$	122
3,7,17,19	920	$3,\!11,\!17,\!19$	1940
3,7,13,19	899	$3,\!11,\!13,\!19$	158
3,5,11,19	257	3,7,11,19	59
3, 5, 7, 19	122	$3,\!5,\!7,\!11,\!13$	3062
3, 5, 7, 13, 17	2537	$3,\!7,\!11,\!13,\!17$	7451
$3,\!5,\!11,\!13,\!17$	587	$3,\!5,\!7,\!11,\!17$	3062
$3,\!5,\!7,\!17,\!19$	4847	3,7,11,17,19	3062
$3,\!5,\!11,\!17,\!19$	3062	$3,\!11,\!13,\!17,\!19$	12599
3,7,13,17,19	11273	$3,\!5,\!7,\!13,\!19$	3902
3,7,11,13,19	4448	$3,\!5,\!11,\!13,\!19$	9167
3, 5, 7, 11, 19	3062	$3,\!5,\!7,\!11,\!13,\!17$	58502
$3,\!5,\!7,\!11,\!17,\!19$	3062	$3,\!5,\!11,\!13,\!17,\!19$	56357
3,7,11,13,17,19	187631	$3,\!5,\!7,\!13,\!17,\!19$	99452
3,5,7,11,13,19	28472	$3,\!5,\!7,\!11,\!13,\!17,\!19$	749192

Table 1: Values of x for Lemma 6 when n is divisible by 7 or 11 and not divisible by a prime greater than 19.

see that n = 3 and n = 15 are not exceptional totient numbers since $R_e(3) = \{2\}$ and $R_e(15) = \{2, 8, 14\}$. Now suppose that $n \equiv 1 \pmod{4}$. We know by Lemma 3 that if $a \in R_e(n)$ then $n + 1 - a \in R_e(n)$, and by Lemma 4 that $(n + 1)/2 \in R_e(n)$. Further, notice that n + 1 - a = a if and only if a = (n + 1)/2. Thus, there are $(\varphi_e(n) - 1)/2$ pairs $\{a, n + 1 - a\}$, such that a and n + 1 - a are distinct elements of $R_e(n)$. Consequently,

$$\sum_{\substack{a \in R_e(n) \\ a \neq (n+1)/2}} a = \frac{\varphi_e(n) - 1}{2} \cdot (n+1),$$

and therefore,

$$\sum_{a \in R_e(n)} a = \frac{\varphi_e(n) - 1}{2} \cdot (n+1) + \frac{n+1}{2}$$
$$= \varphi_e(n) \cdot \frac{n+1}{2}.$$

Notice that if $n \equiv 1 \pmod{4}$, then this sum is odd. Hence, the elements of $R_e(n)$ cannot be partitioned into two disjoint subsets of equal sum.

We are now left to show that if $n \notin T$, then n is an exceptional totient number. By Theorem 3, we may restrict our attention to odd values of n.

For the remainder of the proof, assume that $n \equiv 3 \pmod{4}$ with $n \notin \{3, 15\}$. We will construct sets A and B so that $A \subseteq R_e(n), B \subseteq R_e(n), A \cap B = \emptyset$, and

$$\sum_{a \in A} a = \sum_{b \in B} b.$$

To begin, we first construct sets A_0 and B_0 by distributing the pairs $\{a, n+1-a\}$ as evenly as possible so that

$$|A_0| = \begin{cases} |B_0| & \text{if } \varphi_e(n) \equiv 1 \pmod{4}; \\ |B_0| + 2 & \text{if } \varphi_e(n) \equiv 3 \pmod{4}, \end{cases}$$

and therefore

$$\sum_{a \in A_0} a = \begin{cases} \sum_{b \in B_0} b & \text{if } \varphi_e(n) \equiv 1 \pmod{4}; \\ n + 1 + \sum_{b \in B_0} b & \text{if } \varphi_e(n) \equiv 3 \pmod{4}. \end{cases}$$

Further, if n is not divisible by 3, then by Lemma 5 we ensure that $(n+1)/4 \in A_0$; if n is divisible by 3, then we use Lemma 6 to find $x, y \in R_e(n)$ such that x + y = (n+1)/4, and since $n \neq 7$, and therefore $\varphi_e(n) \geq 6$ by Lemma 2, we can ensure that both x and y are in A_0 . Next, we place (n+1)/2 into the appropriate set so that

$$\sum_{a \in A_0} a = \frac{n+1}{2} + \sum_{b \in B_0} b.$$

Note that this can be achieved by putting (n+1)/2 in A_0 if $\varphi_e(n) \equiv 1 \pmod{4}$ or placing it in B_0 if $\varphi(n) \equiv 3 \pmod{4}$. To finish our construction, we let

$$A = \begin{cases} A_0 \setminus \left\{ \frac{n+1}{4} \right\} & \text{if } 3 \nmid n; \\ A_0 \setminus \left\{ x, y \right\} & \text{if } 3 \mid n; \end{cases}$$

and we let

$$B = \begin{cases} B_0 \cup \left\{\frac{n+1}{4}\right\} & \text{if } 3 \nmid n; \\ B_0 \cup \left\{x, y\right\} & \text{if } 3 \mid n. \end{cases}$$

.

Hence, if $n \equiv 3 \pmod{4}$ and $n \notin \{3, 15\}$, then n is an exceptional totient number.

References

- S. Ali and M. Mahmood, A novel labeling algorithm on several classes of graphs, *Punjab Univ. J. Math. (Lahore)* 49 (1027), no. 2, 23–35.
- [2] Anand, J. Chattopadhyay, and B. Roy, On sums of polynomial-type exceptional units in Z/nZ, Arch. Math. (Basel) 114 (2020), no. 3, 271–283.
- [3] D. Dolžan, The sums fo exceptional units in a finite ring, Arch. Math. (Basel) 112 (2019), no. 6, 581–586.
- [4] J. Harrington and L. Jones, On the iteration of a function related to Euler's φ-function, Integers 10 (2010), A42, 497–515.
- [5] J. Harrington and T. W. H. Wong, On super totient numbers and super totient labelings of graphs, *Discrete Math* 343 (2020), no. 2, 111670, 11pp.
- [6] J. Houriet, Exceptional units and Euclidean number fields, Arch. Math. (Basel) 88 (2007), no. 5, 425–433.
- [7] T. Nagell, Sur un type particulier d'unités algébriques (French), Ark. Mat. 8 (1969), 163-184.
- [8] J. W. Sander, Sums of exceptional units in residue class rings, J. Number Theory 159 (2016), 1-6.
- [9] Q. Yang and Q. Zhao, On the sumsets of exceptional units in \mathbb{Z}_n , Monatsh. Math. 182 (2017), no. 2, 489–493.