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Abstract

For k,m ∈ N, and integers a, b, c with (ab,m) = 1, we prove under the assumption
of the Lindelöf Hypothesis that the congruence

ax1x2 · · ·xk + bxk+1xk+2 · · ·x2k ≡ c (mod m),

has a solution in positive integers xi with

1 ≤ xi �ε,k m
1
k+ε.

The estimate is best possible aside from the possible removal of the ε. For k = 1
we obtain, unconditionally, a solution x, y of integers coprime to m in any interval
of length m

1+κ (1 + o(m)), with κ =
∏
p|m,p-c

p−2
p−1 .

1. Introduction

For k,m ∈ N, and integers a, b, c with (ab,m) = 1 we seek small solutions to the

congruence

ax1x2 · · ·xk + bxk+1xk+2 · · ·x2k ≡ c (mod m). (1)

It was proven in [2] that for prime moduli m = p with p - c, there is a solution of

(1) with

1 ≤ xi �ε p
3
2k+ε.

For general moduli, let r = ω(m), the number of distinct prime factors of m and E

denote the maximum multiplicity of any prime factor of m. The authors established

[6] that for c relatively prime to m, (1) has a solution with 1 ≤ xi ≤ m2/k, for
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m ≥ C(k,E, r), a constant depending on k,E and r, and conjectured that this

could be improved to

1 ≤ xi �ε,k m
1
k+ε, (2)

uniformly in E and r. This estimate is best possible up to the possible removal

of the ε in the exponent; consider for example the case where a = b = 1 and
m
2 < c ≤ m. Here we prove the conjecture under the assumption of the generalized

Lindelöf Hypothesis:

L
(
1
2 + it, χ

)
�ε ((1 + |t|)m)

ε
,

uniformly for all Dirichlet characters χ of conductor m. It is well known that the

generalized Riemann Hypothesis implies the generalized Lindelöf Hypothesis.

Theorem 1. Under the assumption of the generalized Lindelöf Hypothesis, for any

positive integer k, integers a, b, c with (ab,m) = 1 and any ε > 0, there is a solution

of (1) satisfying (2). For odd m, or even m and even c, such a solution exists with

(xi,m) = 1, 1 ≤ i ≤ 2k, while for m even and c odd, such a solution exists with

(x1,m) = 2, (xi,m) = 1, 2 ≤ i ≤ 2k.

Remark 1. i) We note that when m is even and c is odd, there is no solution to (1)

at all with all (xi,m) = 1. Thus the parity conditions in the theorem are necessary.

ii) Whereas the earlier works on this problem [5], [3] required c to be coprime to

m, Theorem 1 allows for arbitrary c.

The theorem was proven in [2] for the case of prime moduli m = p. The strat-

egy was to show that the set of products {x1 · · ·xk (mod p) : 1 ≤ xi ≤ B} has

cardinality exceeding p/2 for B � p
1
k+ε. Thus, by a simple application of the box

principle, the sum of two such sets hits every residue class mod p. For a general

modulus the problem is more subtle since the set of products with the (xi,m) = 1

has cardinality at most φ(m) which in general is less than m/2.

When k = 1, Theorem 1 is trivial. In this case (1) is just a linear congruence

ax+ by ≡ c (mod m), (3)

with (ab,m) = 1. If x, y are restricted to values coprime to m, then plainly there is

no solution if m is even and c is odd. Otherwise, there exist such solutions (x, y),

and the total number is readily seen to be

φ(m)
∏

p|m,p-c

p− 2

p− 1
,

by counting solutions modulo prime powers. It is an interesting question whether

one can obtain such a solution with the variables restricted to an interval 1 ≤ x, y <
B, for some value B less than m. Plainly, one will need at least B > m/2 to have

any hope of a solution for a general value c (consider eg. x+ y ≡ −1 mod m). Here

we obtain a nontrivial result holding for x, y belonging to an interval in arbitrary

position.
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Theorem 2. Suppose that m is odd or that m is even and c is even. In any interval

I = [A + 1, A + B] of integers of length B there exist integers x, y coprime to m

satisfying (3), provided that

B ≥ m

1 + κ
+Oε

(
m

1
2+ε
)
.

where

κ :=
∏

p|m,p-c

p− 2

p− 1
. (4)

Here, κ := 1 if the product over p is empty.

For example if m = pe, a prime power, then κ = 1 if p|c, κ = p−2
p−1 if p - c. The

estimate in the theorem is best possible (B & m
2 ), whenever κ ≈ 1. The theorem is

presented in a more explicit form in Section 4; see (16).

For k = 2 it was shown [1, Theorem 3] that there is a solution of the congruence,

x1x2 + x3x4 ≡ c (mod m)

in any cube of edge length B ≥ 2
√
m + 1 for prime power m, B � m

1
2 log2m, for

general m. We conjecture that a result of the same strength is available for the

general congruence

ax1x2 + bx3x4 ≡ c (mod m), (5)

with (ab,m) = 1. This was established for prime moduli by Garaev and Garcia [9,

Theorem 4], who proved the existence of a solution of (5) for m = p in any cube of

edge length 4
√
p.

For k = 3, using the Burgess character sum estimate, Garaev [8, Theorem 1]

showed that the set

S3 := {x1x2x3 (mod m) : 1 ≤ xi ≤ m
1
3+ε}

has cardinality |S3| = m + O(m1−δ), for some δ = δ(ε). Thus, for m sufficiently

large and any integers a, b, c, with (ab,m) = 1, the sets aS3 and c− bS3 each have

cardinality exceeding m/2, implying a solution of (1) with 1 ≤ xi ≤ m
1
3+ε, but

without the constraint (xi,m) = 1 given in Theorem 1. For k = 4, [8, Theorem 2]

yields an analogous result with 1 ≤ xi ≤ m
1
4+ε for cube-free moduli.

Remark 2. Regarding the modular hyperbola

x1x2 · · ·xk ≡ c (mod m), (6)

with (c,m) = 1, we conjecture that there is always a solution with (2) holding,

but even with the assumption of the Lindelöf Hypothesis we have been unable to

obtain this. What we do show, Lemma 2, is that the number of reduced residues c

represented as in (6) with 1 ≤ xi ≤ m
1
k+ε, is

φ(m) +Oε

(
m1−kε/2

)
.
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2. Lemmas

Let B be a positive integer with 1 ≤ B ≤ m and B′ denote the number of integers

x ∈ [1, B] with (x,m) = 1. By [3, Lemma 3.3], and the estimate of Robin [14] for

ω(m),

B′ =
φ(m)

m
B + θ2ω(m) =

φ(m)

m
B + θ′m.96/ log logm, (7)

for some θ, θ′ with |θ|, |θ′| < 1. For a given ε > 0 we may assume B > mε (else the

results of this section are trivial) and so (7) gives in particular

B′ �ε
B

log logm
. (8)

Indeed, by the work of Iwaniec [10], the lower bound (8) holds for B � (logm)2.

Let N denote the number of solutions of

x1 · · ·xk ≡ y1 · · · yk (mod m), (9)

with 1 ≤ xi, yi ≤ B, (xi,m) = (yi,m) = 1, 1 ≤ i ≤ k, and for any divisor d of m and

integer λ coprime to d, let N(λ, d) denote the number of those solutions satisfying

the additional constraint

x1 · · ·xk ≡ λ (mod d). (10)

Finally, let H(λ, d) denote the number of solutions of (10) alone with 1 ≤ xi ≤ B,

(xi,m) = 1, 1 ≤ i ≤ k.

Lemma 1. Under the assumption of the Lindelöf Hypothesis, for any d|m and

integer λ with (λ, d) = 1, we have

i) N(λ, d) =
B′2k

φ(m)φ(d)

(
1 +Oε

(
φ(d)mkε

Bk/2
+
m1+kεφ(d)

Bk

))
.

ii) N =
B′2k

φ(m)

(
1 +Oε

(
m1+kε

Bk

))
.

iii) H(λ, d) =
B′k

φ(d)
+Oε

(
Bk/2mkε

)
.

Proof. It follows from the Lindelöf Hypothesis that

B∑
x=1

χ(x)�ε B
1
2mε, (11)

uniformly for all non-principal Dirichlet characters χ mod m, as noted for example

in [12, (13.2)], [13, p. 71], or [11, (5.61)].
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Let λ−1 denote the inverse of λ mod d, y−1i the inverse of yi mod m, and χ0

the principal character mod m. Letting χ run through the mod m characters and

ψ run through the mod m characters induced by a mod d character, and writing∑B
xi=1,

∑B
yi=1 for the multiple sums over x1, . . . , xk, y1, . . . , yk respectively with the

xi, yi coprime to m, we have

φ(m)φ(d)N(λ, d) =

B∑
xi=1

B∑
yi=1

∑
χ

χ(x1 · · ·xky−11 · · · y
−1
k )

∑
ψ

ψ(λ−1x1 · · ·xk)

=
∑
ψ

∑
χ

ψ−1(λ)

B∑
xi=1

χψ(xi)

B∑
yi=1

χ−1(yi)

= B′2k + E1 + E2 + E3,

where, using (11),

E1 :=
∑
ψ 6=χ0

∑
χ=χ0

ψ−1(λ)

B∑
xi=1

χψ(xi)

B∑
yi=1

χ−1(yi) = Oε

(
φ(d)B′kBk/2mkε

)
,

E2 :=
∑
ψ 6=χ0

∑
χ=ψ−1

B∑
xi=1

χψ(xi)

B∑
yi=1

χ−1(yi) = Oε

(
φ(d)B′kBk/2mkε

)
,

E3 :=
∑
ψ

∑
χ 6=χ0
χ 6=ψ−1

B∑
xi=1

χψ(xi)

B∑
yi=1

χ−1(yi) = Oε
(
φ(d)φ(m)Bkmkε

)
.

Thus

N(λ, d) =
B′2k

φ(m)φ(d)
+Oε

(
B3k/2mkε

φ(m)
+Bkmkε

)
=

B′2k

φ(m)φ(d)

(
1 +Oε

(
φ(d)mkε

Bk/2
+
m1+kεφ(d)

Bk

))
,

using (8).

For part (ii) we simply apply part (i) with d = 1 and note that in this case

E1 = E2 = 0.

For part (iii), letting ψ again run through the mod m characters induced by a

mod d character, and using (11), we have

φ(d)H(λ, d) =

B∑
xi=1

∑
ψ

ψ(λ−1x1 · · ·xk) = B′k +
∑
ψ 6=χ0

ψ(λ−1)

B∑
xi=1

ψ(xi)

= B′k +Oε

(
φ(d)Bk/2mkε

)
,

completing the proof.
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Let

S := {x1 · · ·xk (mod m) : 1 ≤ xi ≤ B, (xi,m) = 1, 1 ≤ i ≤ k}, (12)

and for any d|m and integer λ with (λ, d) = 1, let

S(λ, d) := {s ∈ S : s ≡ λ (mod d)}.

Using the estimates for N , N(λ, d), S(λ, d) in Lemma 1, the lower bound for B′

in (8) and the inequalities

|S| ≥ B′2k

N
, |S(λ, d)| ≥ H(λ, d)2

N(λ, d)
,

we deduce the following.

Lemma 2. For d|m and integer λ with (λ, d) = 1 we have

i) |S(λ, d)| ≥ φ(m)

φ(d)
−Oε

(
m1+kε

Bk/2
+
m2+kε

Bk

)
.

ii) |S| ≥ φ(m)

(
1−Oε

(
m1+kε

Bk

))
.

An upper bound on S(λ, d) is obtained from the lemma as follows.

|S(λ, d)| = |S| −
d∑
y=1

(y,d)=1,y 6≡λ (mod d)

|S(y, d)|

≤ φ(m)− (φ(d)− 1)
φ(m)

φ(d)
+Oε

(
dm1+kε

Bk/2
+
m2+kεd

Bk

)
=
φ(m)

φ(d)
+Oε

(
dm1+kε

Bk/2
+
m2+kεd

Bk

)
.

Combining the lower bound of the lemma with this upper bound we obtain

Lemma 3. Suppose that ε < 1
2k and that B > m

1
k+2ε. Then for any d|m and

integer λ with (λ, d) = 1 we have

|S(λ, d)| = φ(m)

φ(d)
+Oε

(
dm1−kε) .

3. Proof of Theorem 1

Let a, b, c be integers with (ab,m) = 1, S be the set of products as in (12) and ε be

a given positive real. We may assume ε < 1
2k . The strategy to solve (1) is to show

that the sets c− aS and bS have a nonempty intersection. Let

T := (c− aS) ∩ Z∗m = {c− as : s ∈ S, (c− as,m) = 1}. (13)
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Since T and bS are both subsets of Z∗m we are done if we can show that |T |+ |bS| >
φ(m). Now

|T | =
∑
s∈S

(c−as,m)=1

1 =
∑
s∈S

∑
d|(c−as,m)

µ(d)

=
∑
d|m

µ(d)
∑
s∈S
d|c−as

1 =
∑
d|m

(d,c)=1

µ(d)|S(a−1c, d)|,

where a−1 is the inverse of a mod d, noting that if (d, c) > 1 the sum
∑
s∈S,d|c−as 1

is empty. Using the estimate in Lemma 3 for d < mε/2 and the trivial estimate

|S(a−1c, d)| ≤ m/d for d ≥ mε/2, we get for B > m
1
k+2ε,

|T | =
∑

d|m,(d,c)=1

d<m
ε
2

µ(d)

(
φ(m)

φ(d)
+Oε

(
dm1−kε))+Oε

 ∑
d|m

d>m
ε
2

m/d


=

∑
d|m,(d,c)=1

d<m
ε
2

µ(d)
φ(m)

φ(d)
+Oε

(
m1−kεmε/2τ(m) +m1−ε/2τ(m)

)

= φ(m)
∑
d|m

(d,c)=1

µ(d)

φ(d)
+Oε

(
m1− ε3

)
= φ(m)

∏
p|m
p-c

(
1− 1

p− 1

)
+Oε(m

1− ε3 ).

Now, for B > m
1
k+2ε, we get from Lemma 3 (with d = 1),

|bS| = φ(m) +Oε
(
m1−kε) ,

and so

|bS|+ |T | ≥ φ(m)−Oε
(
m1−kε)+ φ(m)

∏
p|m
p-c

(
1− 1

p− 1

)
−Oε(m1−ε/3). (14)

If m is odd, or m is even and c is even, then∏
p|m
p-c

(
1− 1

p− 1

)
>
∏
p|m

(
1− 1

p

)2

= (φ(m)/m)2

and so

φ(m)
∏
p|m
p-c

(
1− 1

p− 1

)
>
φ(m)3

m2
>

m

27(log logm)3
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for m > 30 (using the estimate for φ(m) in [15]). Thus for m sufficiently large

this term dominates the error terms in (14), and we see that for m > C(ε, k),

|bS|+ |T | > φ(m) as desired.

If m is even and c is odd, the product over p in (14) is zero and thus we fail to

obtain a solution of (1) (as was already noted in the introduction.) In this case we

replace x1 with 2x′1 and allow x′1 to run through a set of reduced residues mod m.

This time we set T = (c − 2aS) ∩ Z∗m, let (2a)−1 denote the inverse of 2a mod d,

and obtain as above that

|T | =
∑
d|m

µ(d)
∑
s∈S

d|(c−2as)

1 =
∑
d|m

(d,2c)=1

µ(d)|S((2a)−1c, d)|

= φ(m)
∏
p|m
p-2c

(
1− 1

p− 1

)
+O(m1− ε3 ).

Thus for m sufficiently large we again conclude that |T |+ |bS| > φ(m).

4. Proof of Theorem 2

We start with the Polya-Vinogradov estimate for character sums, stated for arbi-

trary characters.

Lemma 4. There is an absolute constant co such that for any mod m character χ

of conductor d > 1, and any positive integer B,∣∣∣∣∣
B∑
x=1

χ(x)

∣∣∣∣∣ ≤ co√d τ∗(m/d) log d,

where τ∗(m/d) denotes the number of square-free divisors of m/d.

By the work of Frolenkov and Soundararajan [7], we can take co = .21 for q >

1200. Further improvements in co are available for odd characters and for larger q

using estimates in [7] or the results of Bordignon and Kerr [4].

Proof. The lemma is a well known consequence of the Polya-Vinogradov bound∣∣∣∣∣
B∑
x=1

χ(x)

∣∣∣∣∣ ≤ co√m logm, (15)

for primitive characters. Suppose χ is a mod m character induced by a primitive

mod d character χd with d > 1. Then

B∑
x=1

χ(x) =

B∑
x=1

χd(x)

 ∑
e|(x,m)

µ(e)

 =
∑
e|m

µ(e)

B∑
x=1,e|x

χd(x).
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If (e, d) > 1 the sum over x is zero. Thus,

B∑
x=1

χ(x) =
∑
e|m

(e,d)=1

µ(e)χd(e)
∑

1≤y≤B/e

χd(y).

Inserting the estimate (15) for the sum over y, and letting
∑∗

denote a sum over

square-free divisors, we obtain∣∣∣∣∣
B∑
x=1

χ(x)

∣∣∣∣∣ ≤
∗∑

e|(m/d)

co
√
d log d,

the upper bound of the lemma.

We proceed to solve the linear congruence ax+ by ≡ c mod m with x, y ∈ [1, B].

At the end of the proof, we comment on generalizing it to a displaced interval

[A+ 1, A+B]. Let

S := {x ∈ Z : 1 ≤ x ≤ B, (x,m) = 1}.

Once again our goal is to show |T |+ |bS| > φ(m), where T is the set in (13). Letting

S(λ, d) denote the set of x ∈ [1, B] coprime to m with x ≡ λ mod d, we have (letting

ψ again run through the mod m characters induced by a mod d character),

|S(λ, d)| = 1

φ(d)

B∑
x=1

(x,m)=1

∑
ψ

ψ(λ−1x)

=
1

φ(d)
B′ +

1

φ(d)

∑
ψ 6=χ0

ψ(λ−1)

B∑
x=1

ψ(x) =
1

φ(d)
B′ + E(λ, d),

say where setting e equal to the conductor of ψ, and using Lemma 4,

|E(λ, d)| ≤ 1

φ(d)

∑
e|d

coφ(e)
√
e τ∗(m/e) log e

≤ co
τ∗(m) log d

φ(d)

∑
e|d

φ(e)
√
e ≤ co

τ∗(m) log d

φ(d)
d3/2.

Following the proof of Theorem 1 we then obtain

|T | =
∑
s∈S

(c−as,m)=1

1 =
∑
s∈S

∑
d|(c−as,m)

µ(d) =
∑
d|m

(d,c)=1

µ(d)|S(a−1c, d)|

= B′
∑
d|m

(d,c)=1

µ(d)

φ(d)
+ E = B′

∏
p|m
p-c

(
1− 1

p− 1

)
+ E,
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say, where (again letting
∑∗

denote a sum over square-free divisors),

|E| ≤ co
∗∑
d|m

(d,c)=1

τ∗(m) log d

φ(d)
d3/2 ≤ coτ∗(m) logm

∗∑
d|m

(d,c)=1

d3/2/φ(d)

≤ coτ∗(m) logm
∏

p|m,p-c

(
1 +

p3/2

p− 1

)

≤ coτ∗(m)
√
m logm

∏
p|m,p-c

(
1 +

1
√
p

+
1

p− 1

)
≤ 2 coτ

∗(m)2
√
m logm.

We are done provided that |S|+ |T | > φ(m) which is the case if

B′ +B′
∏
p|m
p-c

(
1− 1

p− 1

)
> φ(m) + 2 coτ

∗(m)2
√
m logm, (16)

that is, with κ as defined in (4),

B′(1 + κ) > φ(m) +Oε

(
m

1
2+ε
)
.

The theorem now follows from the estimate for B′ in (7).

Noting that the estimate for B′ in (7), and the Polya-Vinogradov estimate in

Lemma 4 with co replaced by 2co, both hold as well for a general interval [A +

1, A+B], the proof above holds identically for the general interval.
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