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Abstract

In this paper, we give explicit asymptotic formulas for some sums over primes
involving generalized hyperharmonic numbers. Analogous results for numbers with
k-prime factors will also be considered.

1. Introduction and Preliminaries

Let pn be the sequence of prime numbers. Recall that the Prime Number Theorem

states that ∑
pn≤x

1 ∼ x

log x
. (1)

This theorem is proved by Hadamard [6] and de la Vallée Poussin [2] independently

and almost simultaneously in 1896. We recall A(x) ∼ B(x), that is, A(x) is asymp-

totic to B(x), which is equivalent to

lim
x→∞

A(x)

B(x)
= 1 .

Let k ≥ 1 and consider a positive integer n which is the product of just k prime

factors, i.e.,

n = p1p2 · · · pk . (2)

We write τk(x) for the number of such n ≤ x. If we impose the additional restriction

that all the p in Equation (2) shall be different, n is squarefree. We write πk(x) for

the number of these (squarefree) n ≤ x. It was proved by Landau [9] that

πk(x) ∼ τk(x) ∼ x(log log x)k−1

(k − 1)! log x
(k ≥ 2) . (3)

For k = 1, this result would reduce to the Prime Number Theorem, if, as usual, we

take 0! = 1.
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An exercise in a book on analytic number theory [5] states that
∑
p≤x p ∼

x2

2 log x .

This result reminds the author that it would be interesting to consider sums over

primes of types
∑
pn≤x p

α
nf(n)m, where f(n) is an arithmetical function. In fact,

the summation
∑
pn≤x p

α
n had been studied by some mathematicians. Šalát and

Znám [14] obtained asymptotic formulas for
∑
pn≤x p

α
n, i.e.,

∑
pn≤x p

α
n ∼ x1+α

(1+α) log x .

Jakimczuk [7, 8] extended this kind of summation to numbers with k prime factors

and functions of slow increase. With the help of the Prime Number Theorem with

error terms, Gerard and Washington [4] also gave accurate estimates of
∑
pn≤x p

α
n−

x1+α

(1+α) log x .

The hyperharmonic numbers were introduced by Conway and Guy [1] as

h(r)n :=

n∑
j=1

h
(r−1)
j (n, r ∈ N := {1, 2, 3, · · · }) with h(1)n = Hn.

Note that Hn :=
∑n
j=1 1/j are the classical harmonic numbers. Starting from the

classical generalized harmonic numbers H
(p,1)
n = H

(p)
n :=

∑n
j=1 1/jp, Dil, Mező and

Cenkci [3] introduced the generalized hyperharmonic numbers

H(p,r)
n :=

n∑
j=1

H
(p,r−1)
j (n, p, r ∈ N) .

Ömür and Koparal [13] introduced the generalized hyperharmonic numbers H
(p,r)
n

independently and almost simultaneously, and defined two n × n matrices An and

Bn with ai,j = H
(j,r)
i and bi,j = H

(p,j)
i , respectively, and gave some interesting

factorizations and determinant properties of the matrices An and Bn. The author

[10] proved that the generalized hyperharmonic numbers H
(p,r)
n could be expressed

as linear combinations of n’s power times generalized harmonic numbers.

Sums over primes involving arithmetic functions from analytic number theory

(e.g. Mőbius function) have been studied extensively, however it seems that there

are few papers on sums over primes involving arithmetic functions from combinato-

rial number theory. In this paper, we will make some progress toward this direction.

The motivation of the present paper arises from an exercise in a book on analytic

number theory [5] and the recent work [10] on generalized hyperharmonic num-

bers H
(p,r)
n . It seems that sums over primes involving generalized hyperharmonic

numbers has not been considered. In this paper, we give explicit asymptotic for-

mulas for sums over primes involving generalized hyperharmonic numbers of type∑
pn≤x p

α
n(H

(p,r)
n )m. Analogous results for numbers with k-prime factors will also

be considered.
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2. Main Results

We now recall some lemmata.

Lemma 1 ([11]). For all n ∈ N and a fixed order r ≥ 1, when n→∞, we have

h(r)n ∼
1

(r − 1)!
nr−1 log(n) .

Lemma 2 ([10]). For r, n, p ∈ N, we have

H(p,r)
n =

r−1∑
m=0

r−1−m∑
j=0

a(r,m, j)njH(p−m)
n .

If −p+m ≥ 0, then H
(p−m)
n is understood to be the sum

∑n
j=1 j

−p+m. The coeffi-

cients a(r,m, j) satisfy the following recurrence relations:

a(r + 1, r, 0) = −
r−1∑
m=0

a(r,m, r −m− 1)
1

r −m
,

a(r + 1,m, `) =

r−1−m∑
j=`−1

a(r,m, j)

j + 1

(
j + 1

j − `+ 1

)
B+
j−`+1

(0 ≤ m ≤ r − 1, 1 ≤ ` ≤ r −m) ,

a(r + 1,m, 0) = −
m∑
y=0

r−1−y∑
j=max{0,m−y−1}

a(r, y, j)D(r,m, j, y) (0 ≤ m ≤ r − 1) ,

where

D(r,m, j, y) =

j∑
`=max{0,m−y−1}

1

j + 1

(
j + 1

j − `

)
B+
j−`

(
`+ 1

m− y

)
(−1)1+`−m+y

and Bernoulli numbers B+
n are determined by the recursive formula

k∑
j=0

(
k + 1

j

)
B+
j = k + 1 (k ≥ 0)

or by the generating function

t

1− e−t
=

∞∑
n=0

B+
n

tn

n!
.

The initial value is given by a(1, 0, 0) = 1.
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Lemma 3. For r, n, p ∈ N with p ≥ 2, when n→∞, we have

H(p,r)
n ∼ 1

(r − 1)!
nr−1ζ(p) ,

where ζ(p) :=
∑∞
n=1 n

−p denotes the well-known Riemann zeta function.

Proof. By using Lemma 2, we know that the main term of H
(p,r)
n is a(r, 0, r −

1)nr−1H
(p)
n . Note that a(r, 0, r − 1) is independent of p and therefore it can be

evaluated using p = 1. For p = 1, we have H
(1,r)
n = h

(r)
n . From Lemma 1, we know

that h
(r)
n ∼ 1

(r−1)!n
r−1 log(n) . Then it follows that a(r, 0, r − 1) = 1

(r−1)! . Thus we

get the desired result.

Lemma 4 ([7, 8]). Let
∑∞
i=1 ai and

∑∞
i=1 bi be two series of positive terms such

that limn→∞
ai
bi

= 1. Then if
∑∞
i=1 bi is divergent, the following limit holds:

lim
n→∞

∑n
i=1 ai∑n
i=1 bi

= 1 .

Lemma 5. Let pn,k denote the nth squarefree number with just k prime factors and

qn,k denote the nth number with k prime factors counted with multiplicity. Then

the following asymptotic relations hold:

pn,k ∼ qn,k ∼ (k − 1)!
n log(n)

(log log(n))k−1
,

pn,k(log log(pn,k))k−1 ∼ qn,k(log log(qn,k))k−1 ∼ (k − 1)!n log(n) .

For k = 1, we have pn ∼ n log(n) .

Proof. The first asymptotic relation can be found in the paper [7]. From Landau’s

Prime Number Theorem (3), we know that log(pn,k) ∼ log(qn,k) ∼ log(n), and thus

we get the second asymptotic relation.

Lemma 6 ([8]). Let the function f(x) be of slow increase, i.e., f(x) is a function

defined on the interval [a,∞) such that f(x) > 0, limx→∞ f(x) = ∞ and with

continuous derivative f ′(x) > 0, and limx→∞
log(f(x))
log(x) = 0. Then the following

limit holds:

lim
x→∞

∫ x
a
tαf(t)βdt

xα+1

α+1 f(x)β
= 1

for all α > −1 and for all β.

It is not hard to verify that (log(x))m and (log(x))m

(log log(x))k
(m, k ∈ N) are of slow

increase.
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Lemma 7 ([12]). Let a and b be integers with a < b, and let f(x) be a monotonic

function on the interval [a, b]. Then

min{f(a), f(b)} ≤
b∑

k=a

f(k)−
∫ b

a

f(t)dt ≤ max{f(a), f(b)} .

Lemma 8. For m,n, k, x ∈ N, we have

x∑
`=1

`m(log(`))n ∼ xm+1(log(x))n

m+ 1
,

x∑
`=1

`m(log(`))n

(log log(`))k
∼ xm+1(log(x))n

(m+ 1)(log log(x))k
.

Proof. By using Lemma 7, we have

0 ≤
x∑
`=1

`m(log(`))n −
∫ x

1

tm(log(t))ndt ≤ xm(log(x))n .

With the help of Lemma 6, we get the first asymptotic formula. The second asymp-

totic formula can be proved in a similar manner.

Now we will prove our main theorems.

Theorem 1. Define Pk := {p1,k, p2,k, · · · } and Qk := {q1,k, q2,k, · · · }. Let c`,k run

through the elements of Pk or through the elements of Qk, and similarly for d`,k
and e`,k, independently of the choice of sets for the other two. For m, k, n ∈ N, we

have∑
`≤πk(x)

cm`,k(log log(d`,k))m(k−1)(log(e`,k))n∼ x
m+1(log(x))n−1(log log(x))(m+1)(k−1)

(m+ 1)(k − 1)!
,

∑
`≤πk(x)

cm`,k(log log(d`,k))m(k−1)(H`)
n ∼ xm+1(log(x))n−1(log log(x))(m+1)(k−1)

(m+ 1)(k − 1)!
.

Proof. By using Lemma 4, Lemma 5 and Lemma 8, we have∑
`≤πk(x)

cm`,k(log log(d`,k))m(k−1)(log(e`,k))n ∼
∑

`≤πk(x)

((k − 1)!)m`m(log(`))m+n

∼ xm+1(log(x))n−1(log log(x))(m+1)(k−1)

(m+ 1)(k − 1)!
.

The second asymptotic formula can be proved in a similar manner.
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Theorem 2. For α,m, k, r ∈ N, we have

∑
`≤x

pα`,k(h
(r)
` )m ∼ ((k − 1)!)αxα+m(r−1)+1(log(x))α+m

((r − 1)!)m(α+m(r − 1) + 1)(log log(x))α(k−1)
,

∑
p`,k≤x

pα`,k(h
(r)
` )m ∼ xα+m(r−1)+1(log log(x))(m(r−1)+1)(k−1)

((k − 1)!)m(r−1)+1((r − 1)!)m(α+m(r − 1) + 1)

× 1

(log(x))m(r−2)+1
,

∑
p`,k≤x

pα`,k(log(p`,k)m ∼ xα+1(log log(x))k−1(log(x))m−1

((k − 1)!)(α+ 1)
.

Proof. By using Lemma 1, Lemma 4, Lemma 5 and Lemma 8, we have

∑
`≤x

pα`,k(h
(r)
` )m ∼

∑
`≤x

((k − 1)!)α`α+m(r−1)(log(`))α+m

((r − 1)!)m(log log(`))α(k−1)

∼ ((k − 1)!)αxα+m(r−1)+1(log(x))α+m

((r − 1)!)m(α+m(r − 1) + 1)(log log(x))α(k−1)
.

The other two asymptotic formulas can be proved in a similar manner.

Theorem 3. For α,m, k, q, r, s, n ∈ N with q ≥ 2, we have

∑
`≤x

pα`,k(H
(q,r)
` )m ∼ ((k − 1)!)αζ(q)mxα+m(r−1)+1(log(x))α

((r − 1)!)m(α+m(r − 1) + 1)(log log(x))α(k−1)
,

∑
p`,k≤x

pα`,k(H
(q,r)
` )m ∼ ζ(q)mxα+m(r−1)+1(log log(x))(m(r−1)+1)(k−1)

((k − 1)!)m(r−1)+1((r − 1)!)m(α+m(r − 1) + 1)

× 1

(log(x))m(r−1)+1
,

∑
`≤x

pα`,k(H
(q,r)
` )m(h

(s)
` )n ∼ ((k − 1)!)αζ(q)mxα+m(r−1)+n(s−1)+1

((r − 1)!)m((s− 1)!)n

× (log(x))α+n

(α+m(r − 1) + n(s− 1) + 1)(log log(x))α(k−1)
,

∑
p`,k≤x

pα`,k(H
(q,r)
` )m(h

(s)
` )n ∼ ζ(q)mxα+m(r−1)+n(s−1)+1

((r − 1)!)m((s− 1)!)n(α+m(r − 1) + n(s− 1) + 1)

× (log log(x))(m(r−1)+n(s−1)+1)(k−1)

((k − 1)!)m(r−1)+n(s−1)+1(log(x))m(r−1)+n(s−2)+1
.



INTEGERS: 21 (2021) 7

Proof. By using Lemma 3, Lemma 4, Lemma 5 and Lemma 8, we have∑
`≤x

pα`,k(H(q,r)
n )m ∼

∑
`≤x

((k − 1)!)αζ(q)m`α+m(r−1)(log(`))α

((r − 1)!)m(log log(`))α(k−1)

∼ ((k − 1)!)αζ(q)mxα+m(r−1)+1(log(x))α

((r − 1)!)m(α+m(r − 1) + 1)(log log(x))α(k−1)

The other three asymptotic formulas can be proved in a similar manner.
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