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Abstract
We show that deciding the equality of two Dedekind sums S(c,b), S(d,b) is equiv-
alent to deciding whether a Dedekind sum defined by b, ¢, d takes a certain value.
By means of this result we construct infinite sequences of pairwise equal Dedekind
sums. Moreover, we prove a result that says how many Dedekind sums S(d,b),
1 <d<b-1, may be equal to a given S(c,b) if b is a square-free number.

1. Introduction

Let b be a natural number and ¢ an integer such that (¢,b) = 1. The classical
Dedekind sum s(c, b) is defined by

b
s(e,b) = D ((k/b)((ck/b)). (1)

k=1

Here
Jr—lz]-1/2 ifreRNZ;
(@) = {0 ifzeZ

(see [10, p. 1]).

Dedekind sums first appeared in the theory of modular forms; see [1]. But these
sums have also interesting applications in a number of other fields, so in connection
with class numbers, lattice point problems, topology, and algebraic geometry (see,
for instance, [2, 3, 8, 10, 12, 13]).

In this paper we work with the normalized Dedekind sum

S(c,b) = 12s(c, b).

The number b is called the modulus and ¢ the argument of S(c,b).
Our aim is the study of equal values of Dedekind sums belonging to the same
modulus b but to different arguments ¢, d. Two cases of equality can be considered
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as trivial. First,
S(c,b) = S(c,b)

if c= ¢ mod b (this justifies calling b the modulus of S(c,b)). Second, let ¢* denote
an inverse of ¢ mod b, i.e., an the integer such that cc* =1 mod b. Of course, c*
is determined only up to the addition of multiples of b. It is an easy consequence
of the definition (1) that

S(c,b) = S(c*,b);

see [10, p. 26].

Cases of nontrivial equality, i.e., S(¢,b) = S(d,b) and d # ¢,¢* mod b, do not
occur frequently. For example, for b = 33-11 = 297, S(c, b) takes 41 distinct positive
values, but only five of them give rise to nontrivial equality, namely, 3076/b, 1712/,
1460/b, 1456/b, and 1136/b. If b = p[™ --- pI™r, the p; being distinct primes, then
the number of cases of nontrivial equality seems to increase with r and the exponents
m;.

Suppose that the modulus b and two arguments ¢, d are given, d Z ¢,c* mod b.
So far no simple condition is known that is equivalent to S(c,b) = S(d,b). One has
only necessary conditions for this equality like

(c—d)(ed—1)=0 mod b; (2)

see [7]. Indeed, the condition (2) is equivalent to S(c,b) = S(d,b) mod Z; see [6].
This criterion was extended to a condition for S(c,b) = S(d,b) mod 8Z; see [11].
However, the latter condition is no more quite simple, because it may involve up to
two Jacobi symbols that must be evaluated.

In the present paper we prove the following theorem, which is based on an adap-
tion of a result of U. Dieter; see Section 2.

Theorem 1. Let ¢,d € Z, (¢,b) = (d,b) = 1, ¢ £ d mod b. Suppose that b,c,d
satisfy condition (2). Lett > 0 be such thatt = c—d mod b. Then S(c,b) = S(d,b)
if, and only if,
2+t

bt

If we want to decide whether two Dedekind sums with the same modulus are
equal, we may, instead, decide whether a certain Dedekind sum takes a certain
value, as the theorem says. We think that the latter task is not simpler in most
cases. But, due to this theorem, it seems to be plausible that no simple necessary

S(1 + ct,bt) = - 3.

and sufficient condition for nontrivial equality exists.

In this paper we present two applications of Theorem 1. The first application is
the construction of infinite sequences of pairwise equal Dedekind sums. To this end
let ¢,d € Z, ¢ # d, with (¢,b) = (d,b) = 1. We say that {c,d} is a suitable set for
(the modulus) b if, and only if, d # ¢,¢* mod b and S(c,b) = S(d,b) # 0.
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Theorem 2. In the above setting, let {c,d} be a suitable set for b. Lett > 0 be
such thatt =d—c¢* modb. Putby =bt,c; =1+ct,dy =1+dt. Then by > b and
{c1,d1} is a suitable set for by.

By Theorem 2, we can define an infinite sequence of strictly increasing moduli
bi, i > 0, together with sets {c;,d;} suitable for b;, provided that one suitable
set {c,d} is known. Indeed, put by = b, co = ¢, dy = d and ty = t. Define,
recursively, b;11 = bit;, ¢iy1 = 1+ ¢ity, div1 = 1+ d;t;, © > 0. Then define t;11 > 0
by tit1 = diy1 — ¢jy; mod b1 (the inverse is to be understood mod b;y1). In
particular, we obtain d; # ¢;,¢; mod b; and

S(Ci,bi) = S(dl,bz) 7é 0

for all 7 > 0.
Example. Put b = 7-11 = 77, ¢ = 16, d = 60. Then d # ¢,¢* mod b and
S(e,b) = S(d,b) = 300/77. Obviously, the set {c, d} is suitable for b. Since d—c* =
mod b we may take ¢ = 7 and form the sequences b; and {¢;,d;}, i > 0, in the above
way, where ¢; is chosen in {1,...,b; — 1}. We obtain

bo = 77,60 = 16, do = 60,

b1 =539,c; = 113,d; = 421,

ba = 260337, co = 54580, dy = 203344,

bs = 6412881321, c3 = 1344469141, d3 = 5008972753,

bs = 36852630635308805163, ¢4 = 7726203273338872624,

dy = 28784849350658189860.

One sees that these numbers grow rapidly. The first values of t; are tg = 7, t; = 483,
to = 24633, t3 = 5746657203.

How can we find suitable sets {c,d} to initiate sequences like the above? A partial
answer is given by the following theorem, whose proof involves another application
of Theorem 1.

Theorem 3. Let 1 < k < r and p1,...,px be distinct primes, each of which is
congruent =1 mod 5. Put by = py---pi and let pgy1,...,pr be distinct primes,
each of which is congruent 1 mod by. Let b=p;i---p, and t = px11---pr. Then

242
H“1fcéb—l,<c,b>=1,s<c,b>=tE,F ‘3}‘:2k'

On observing that ¢t = 1 if k = r, we have the following corollary.

Corollary 1. Let1 <7 andp,...,p, be distinct primes, each of which is congruent
+1 mod 5. Letb=p1---p.. Then

Hc: 1§c§b—1,(c,b):1,5(c,b):2—3}’ = 2"
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It is easy to see that the common value (> + 2)/b — 3 of the Dedekind sums in
Theorem 3 cannot vanish; see the end of the proof of Theorem 2 in Section 3.

The proof of Theorem 3 shows how to find the numbers ¢ in question by means of
the Chinese remainder theorem; see Section 3. Suppose, for a moment, that b is as in
Corollary 1 with » = 3. Then we have eight numbers ¢ such that S(c,b) = 3/b — 3.
These numbers give us 24 suitable sets for the modulus b. Section 3 contains
additional examples of suitable sets and a few remarks on the above sequences of
suitable sets.

Given b and ¢, (¢,b) = 1, we consider the number

N(e,b)=[{d:1<d<b—1,(db)=1,5(d,b) = S(c,b)}]. (3)

Suppose that b is a square-free number consisting of r primes, i.e., b = p1---py,
the p; being distinct. It is known that N(c,b) < 27; see [6, Theorem 3|. Theorem 3
exhibits the 2-powers 2¢, 1 < k < r, as possible values of N(c,b) for this case. At
the end of Section 3 we will see that there may be values greater than 1 of N(c,b)
different from the aforesaid 2-powers for a number b of this kind.

2. The Criterion

The proof of Theorem 1 is based on the following proposition.

Proposition 1. Let ¢,d € Z, (¢,b) = (d,b) =1, c £2£d mod b. Let t > 0 be such
thatt =c—d mod b. Then

S(1+d*t, bt) — <t2; 2 _ 3> — S(d,b) — S(c,b). (@)

Of course, the identity (4) may also serve as a criterion for the equality of S(c, b)
and S(d,b). It is, however, less simple than Theorem 1 since it involves the inversion
of d mod b. This inversion involves more work than checking the condition (2) (as
required by Theorem 1).

Proposition 1 can be found, in a rather disguised form, in a paper of U. Dieter; see
[4, Satz 4]. In particular, it is not obvious that Dieter’s version contains a criterion
for the equality of Dedekind sums. Dieter obtained his result as an application of
his three-term relation; see [4, Satz 1]. We prefer deriving Proposition 1 directly
from this well-known relation since adapting Dieter’s Satz 4 would not be simpler.

Proof of Proposition 1. The three-term relation, in its most convenient form for the
present purpose, reads as follows; see [5]. Let B and D be natural numbers, A and
C integers with (A, B) = (C, D) = 1. Suppose that

Q= AD — BC > 0.
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Let j and k be integers such that
—Cj+ Dk =1.

Define R by
R=Aj — Bk.

Then
B2 + D2 + Q2

BDQ
Let b, ¢, d, and t be as in the proposition. Let ¢/ = ¢ mod b be such that ¢/ —d = t.
Weput B=D =b, A=¢,and C =d. Then Q = bt > 0. Since —Cj+ Dk = —dj +
bk =1, j = —d* for an inverse d* of d mod b and k = (1 — dd*)/b. We obtain R =
—1—d*t. Since —S(R, Q) = S(1+d*t,bt) and (B>+D?*+Q?)/(BDQ) = (t*+2)/(bt),
the identity (5) gives (4), but with ¢’ instead of ¢. However, S(c¢/,b) = S(e,b), and
the other quantities in the identity (4) depend only of ¢ and b. Hence the equation
(4) holds in the above form. O

S(A,B) = S(C,D) + S(R,Q) + 3. (5)

Lemma 1. Suppose that b, ¢, d satisfy the congruence (2). Then
c—d=d" —c¢" modb.

Proof. Indeed, suppose b = pJ"* - - - pI~, where the p; are distinct primes. It suffices
to show
c—d=d" —c¢ modp]" forallie{l,...,r}

We fix ¢ for the time being. So we write p = p;, m = m;. The congruence (2)
implies

(c—d)(ed—1)=0 mod p™.
If we multiply this congruence by c¢*, we obtain

(1-c*d)(d—c")=0 mod p™.
Accordingly, 1 — ¢*d = 0 mod p?, d — ¢* = 0 mod p*, where the nonnegative
integers 7,k are such that j + k& > m. Since ¢* = d mod p*, we have ¢ = d*
mod p*. If we write ¢ = d* + up®, 1 — ¢*d = vp’, u,v € Z, we obtain

c(1 —¢*d) = d* (1 — ¢*d) + uvp’**
and ¢ —d = d* — ¢* mod p?tF. O
Proof of Theorem 1. Let t > 0, t = ¢ — d mod b. Because b, ¢, d satisfy the

condition (2), Lemma 1 yields t = d* — ¢* mod b. We replace, in the setting of
Proposition 1, the number ¢ by d* and d by c¢*. This gives

242

S(1+ ct,bt) — ( - 3) = S(c*,b) — S(d*,b) = S(c,b) —S(d,b),

whence the assertion follows. O
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3. Suitable Sets

Proof of Theorem 2. Let t > 0 be as in Theorem 2, i.e., t = ¢ — d* mod b. Since

S(c,b) = S(d*,b), the numbers ¢ and d* satisfy the condition (2), and Theorem 1

gives

t2+2
bt

By Lemma 1, we also have t = d — ¢* mod b. Since S(d,b) = S(c*,b), Theorem 1

yields

S(1+ ct, bt) = 3. (6)

242

S(1 + dt, bt) =

Accordingly, S(c1,b1) = S(dy,by) for by =bt, ¢y =1+ ¢t, and dy = 1 + dt.
It remains to be shown that di # ¢1,¢f mod by, t > 1, and S(eq,b1) # 0.
First we check dy # ¢; mod by. Since d — ¢ Z 0 mod b, we have (d — ¢)t Z 0

mod bt. However,
dy —c1 = (d—c¢)t mod bt,

whence the assertion follows.
We also have to exclude that d; is an inverse of ¢; mod b;. From

(I+ect)(14+dt) =1 mod bt
we obtain
cdt? + (c+d)t =0 mod bt and cdt +c+d=0 mod b.

If we use t = ¢ — d* mod b in the last congruence, we obtain ¢?d +d = 0 mod b,
and so ¢ = —1 mod b. But this implies S(c,b) = 0 (see [9, Satz 1]), which we
excluded.

Now we show (¢,b) > 1. The congruences ¢ —d* = ¢ mod b and d — ¢* =
mod b imply ¢d — 1 = td mod b and ¢d — 1 = tc mod b. In particular, td = tc
mod b. Thus, if (¢,b) = 1, we have ¢ = d mod b, which we excluded. In particular,
t =1 is impossible.

If S(c1,b1) =0, then t2 +2 — 3bt = 0, by (6). Therefore, t|2, and so t = 2, since
t =1 is excluded. If ¢t = 2, we have 6 — 6b = 0, which implies b = 1. But in this
case a suitable set {¢,d} does not exist. O

Remark 1. Recall the definition of the sequences b;, {c;,d;}, i > 0, of Section 1.
The congruence ;11 = dijy1 — ¢jy mod b;41 implies ¢;41 = diy1 — ¢jy; mod ;.
Since ¢;41 = di41 = 1 mod ¢t;, this gives t;11 = 0 mod t; for all ¢ > 0. So the
numbers ¢; form an ascending chain ¢q | ¢1 |t - -+ of divisors.
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Remark 2. If we are looking for a suitable set in order to start with a sequence of
this type, we will be successful, as it seems, if we restrict our search to square-free
numbers b > 70 consisting of exactly two primes > 5. We present a small table of
such numbers b together with suitable sets {c,d}. In all cases the Dedekind sum
belonging to the suitable set is positive.

b| 7785|9195 | 115|119 | 133 | 143

c| 9| 7| 5|33] 18| 31| 54| 8

d|16|22|31 52| 78| 45| 73| 73

Remark 3. Suppose that we restrict ¢; to the range 1 < ¢; < b; in the above se-
quence. It would be interesting to understand the limiting behaviour of the sequence
S(¢i,bi), which, by (6), is equivalent to the behaviour of ¢;/b;.

Remark 4. Note that every set {c,d} suitable for b defines three additional suit-
able sets, namely, {c,d*}, {c*,d}, and {c¢*,d*}. Each of these four sets defines an
appropriate number ¢t. Even if we restrict ¢ to the range 1 < t < b, we obtain, as
a rule, four possibilities for {¢,d} and ¢t. Of course, one may use these possibilities
for the construction of {c;,d;} and ¢; in each step ¢ > 0. In this way one obtains,
instead of an infinite sequence, an infinite cascade of pairwise equal Dedekind sums.

Proof of Theorem 3. In the setting of this theorem, let ¢ € {1,...,k}. Since 5 is a
quadratic residue mod p;, there is an integer a; such that a? =5 mod p;. Define
ce{l,...,b} by

c=B+a;)/2 modp;,i=1,...,k, and ¢=1 modp;, i=k+1,...,r

(here 1/2 stands for an inverse of 2 mod p;). Let d € {1,...,b} be a solution of the
congruence (2). This means that

(c—d)(cd—1)=0 mod p;,

for all 4 € {1,...,7}. If i € {k+1,...,r}, this congruence is equivalent to (1 —
d)(1 —d)=0 mod p;, i.e., d=1=c mod p;. Ifi € {1,...,k}, d must satisfy one
of the congruences

d=B+«®;)/2 modp; or d=(3—«;)/2 mod p;,

since (3 — «;)/2 is an inverse of (3 4+ «;)/2 mod p;. Altogether, d can be defined
by the congruences

d= 3+ (-1)a;)/2 modp;,i=1,....k, and d=1 mod p;,i =k+1,...,7,

where j; € {0,1} may be arbitrary for each i € {1,...,k}. Accordingly, we have
exactly 2" distinct numbers d € {1,...,b — 1} such that the congruence (2) holds.
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Observe that (¢,b) = 1 since an inverse ¢* of ¢ mod b is given by ¢* = (3 — a;)/2
mod py,i=1,...,k,and ¢* =1 mod p;, i = k+1,...,r. Because the condition (2)
is equivalent to S(c, b) — S(d,b) € Z, there are exactly 2¥ integers d € {1,...,b—1}
such that S(c,b) — S(d,b) € Z.

Recall that t = py1 -+ p.. We have to show that S(c,b) = S(d,b) = (t2+2)/b—3
for all these integers d. Given such an integer d, we define m € {1,...,bp} by
m=d—1 modp;, i =1,...,k. In other words, m = (1 + (=1)%;)/2 mod p;
for these numbers i. Then m is invertible mod by, an inverse m* being defined by
m* = ((—1)%a; —1)/2 mod p; for these i. In particular, m—m* =1 mod by. Now
t=1=m—m* mod by. Since S(m,by) = S(m*,by), Theorem 1 can be applied to
by, m, and m*. It gives

2 +2

bt
Here 1+mt =14+m =d modp;, i =1,...,k, and 1 +mt = 1 = d mod p;,
i=k+1,...,r, because p; |t for these i. In other words, 1 + mt = d mod b, and
so S(d,b) = (t*+2)/b— 3. In particular, S(c,b) also takes this value, since this case
corresponds to j; = --- = ji = 0. O

S(l -I-mt,b()t) = 3.

Remark 5. Let b be a square-free number consisting of r primes. For an integer
¢ with (¢,d) =1 let N(c,b) be defined as in (3). Let r = 3. Hence N(c,b) < 8, as
we said at the end of Section 1. Theorem 3 says that 2, 4, and 8 are possible values
greater than 1 of N(c,b). It is not difficult to see that, for a square-free number b,
N(c,b) either equals 1 or is even. Therefore, the only possible value greater than 1
not in this list is N(c,b) = 6. In the case b =455 =5-7-13 we find N(c,b) = 6 for
¢ = 32. On the other hand, there are no integers ¢ with N(c,b) = 8 in this case.
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