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Abstract

We show that deciding the equality of two Dedekind sums S(c, b), S(d, b) is equiv-
alent to deciding whether a Dedekind sum defined by b, c, d takes a certain value.
By means of this result we construct infinite sequences of pairwise equal Dedekind
sums. Moreover, we prove a result that says how many Dedekind sums S(d, b),
1 ≤ d ≤ b− 1, may be equal to a given S(c, b) if b is a square-free number.

1. Introduction

Let b be a natural number and c an integer such that (c, b) = 1. The classical

Dedekind sum s(c, b) is defined by

s(c, b) =

b∑
k=1

((k/b))((ck/b)). (1)

Here

((x)) =

{
x− bxc − 1/2 if x ∈ Rr Z;

0 if x ∈ Z

(see [10, p. 1]).

Dedekind sums first appeared in the theory of modular forms; see [1]. But these

sums have also interesting applications in a number of other fields, so in connection

with class numbers, lattice point problems, topology, and algebraic geometry (see,

for instance, [2, 3, 8, 10, 12, 13]).

In this paper we work with the normalized Dedekind sum

S(c, b) = 12s(c, b).

The number b is called the modulus and c the argument of S(c, b).

Our aim is the study of equal values of Dedekind sums belonging to the same

modulus b but to different arguments c, d. Two cases of equality can be considered
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as trivial. First,

S(c, b) = S(c′, b)

if c ≡ c′ mod b (this justifies calling b the modulus of S(c, b)). Second, let c∗ denote

an inverse of c mod b, i.e., an the integer such that cc∗ ≡ 1 mod b. Of course, c∗

is determined only up to the addition of multiples of b. It is an easy consequence

of the definition (1) that

S(c, b) = S(c∗, b);

see [10, p. 26].

Cases of nontrivial equality, i.e., S(c, b) = S(d, b) and d 6≡ c, c∗ mod b, do not

occur frequently. For example, for b = 33 ·11 = 297, S(c, b) takes 41 distinct positive

values, but only five of them give rise to nontrivial equality, namely, 3076/b, 1712/b,

1460/b, 1456/b, and 1136/b. If b = pm1
1 · · · pmr

r , the pi being distinct primes, then

the number of cases of nontrivial equality seems to increase with r and the exponents

mi.

Suppose that the modulus b and two arguments c, d are given, d 6≡ c, c∗ mod b.

So far no simple condition is known that is equivalent to S(c, b) = S(d, b). One has

only necessary conditions for this equality like

(c− d)(cd− 1) ≡ 0 mod b; (2)

see [7]. Indeed, the condition (2) is equivalent to S(c, b) ≡ S(d, b) mod Z; see [6].

This criterion was extended to a condition for S(c, b) ≡ S(d, b) mod 8Z; see [11].

However, the latter condition is no more quite simple, because it may involve up to

two Jacobi symbols that must be evaluated.

In the present paper we prove the following theorem, which is based on an adap-

tion of a result of U. Dieter; see Section 2.

Theorem 1. Let c, d ∈ Z, (c, b) = (d, b) = 1, c 6≡ d mod b. Suppose that b, c, d

satisfy condition (2). Let t > 0 be such that t ≡ c−d mod b. Then S(c, b) = S(d, b)

if, and only if,

S(1 + ct, bt) =
2 + t2

bt
− 3.

If we want to decide whether two Dedekind sums with the same modulus are

equal, we may, instead, decide whether a certain Dedekind sum takes a certain

value, as the theorem says. We think that the latter task is not simpler in most

cases. But, due to this theorem, it seems to be plausible that no simple necessary

and sufficient condition for nontrivial equality exists.

In this paper we present two applications of Theorem 1. The first application is

the construction of infinite sequences of pairwise equal Dedekind sums. To this end

let c, d ∈ Z, c 6= d, with (c, b) = (d, b) = 1. We say that {c, d} is a suitable set for

(the modulus) b if, and only if, d 6≡ c, c∗ mod b and S(c, b) = S(d, b) 6= 0.
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Theorem 2. In the above setting, let {c, d} be a suitable set for b. Let t > 0 be

such that t ≡ d− c∗ mod b. Put b1 = bt, c1 = 1 + ct, d1 = 1 + dt. Then b1 > b and

{c1, d1} is a suitable set for b1.

By Theorem 2, we can define an infinite sequence of strictly increasing moduli

bi, i ≥ 0, together with sets {ci, di} suitable for bi, provided that one suitable

set {c, d} is known. Indeed, put b0 = b, c0 = c, d0 = d and t0 = t. Define,

recursively, bi+1 = biti, ci+1 = 1 + citi, di+1 = 1 + diti, i ≥ 0. Then define ti+1 > 0

by ti+1 ≡ di+1 − c∗i+1 mod bi+1 (the inverse is to be understood mod bi+1). In

particular, we obtain di 6≡ ci, c∗i mod bi and

S(ci, bi) = S(di, bi) 6= 0

for all i ≥ 0.

Example. Put b = 7 · 11 = 77, c = 16, d = 60. Then d 6≡ c, c∗ mod b and

S(c, b) = S(d, b) = 300/77. Obviously, the set {c, d} is suitable for b. Since d−c∗ ≡ 7

mod b we may take t = 7 and form the sequences bi and {ci, di}, i ≥ 0, in the above

way, where ti is chosen in {1, . . . , bi − 1}. We obtain

b0 = 77, c0 = 16, d0 = 60,

b1 = 539, c1 = 113, d1 = 421,

b2 = 260337, c2 = 54580, d2 = 203344,

b3 = 6412881321, c3 = 1344469141, d3 = 5008972753,

b4 = 36852630635308805163, c4 = 7726203273338872624,

d4 = 28784849350658189860.

One sees that these numbers grow rapidly. The first values of ti are t0 = 7, t1 = 483,

t2 = 24633, t3 = 5746657203.

How can we find suitable sets {c, d} to initiate sequences like the above? A partial

answer is given by the following theorem, whose proof involves another application

of Theorem 1.

Theorem 3. Let 1 ≤ k ≤ r and p1, . . . , pk be distinct primes, each of which is

congruent ±1 mod 5. Put b0 = p1 · · · pk and let pk+1, . . . , pr be distinct primes,

each of which is congruent 1 mod b0. Let b = p1 · · · pr and t = pk+1 · · · pr. Then∣∣∣∣{c : 1 ≤ c ≤ b− 1, (c, b) = 1, S(c, b) =
t2 + 2

b
− 3

}∣∣∣∣ = 2k.

On observing that t = 1 if k = r, we have the following corollary.

Corollary 1. Let 1 ≤ r and p1, . . . , pr be distinct primes, each of which is congruent

±1 mod 5. Let b = p1 · · · pr. Then∣∣∣∣{c : 1 ≤ c ≤ b− 1, (c, b) = 1, S(c, b) =
3

b
− 3

}∣∣∣∣ = 2r.
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It is easy to see that the common value (t2 + 2)/b − 3 of the Dedekind sums in

Theorem 3 cannot vanish; see the end of the proof of Theorem 2 in Section 3.

The proof of Theorem 3 shows how to find the numbers c in question by means of

the Chinese remainder theorem; see Section 3. Suppose, for a moment, that b is as in

Corollary 1 with r = 3. Then we have eight numbers c such that S(c, b) = 3/b− 3.

These numbers give us 24 suitable sets for the modulus b. Section 3 contains

additional examples of suitable sets and a few remarks on the above sequences of

suitable sets.

Given b and c, (c, b) = 1, we consider the number

N(c, b) = |{d : 1 ≤ d ≤ b− 1, (d, b) = 1, S(d, b) = S(c, b)}|. (3)

Suppose that b is a square-free number consisting of r primes, i.e., b = p1 · · · pr,

the pi being distinct. It is known that N(c, b) ≤ 2r; see [6, Theorem 3]. Theorem 3

exhibits the 2-powers 2k, 1 ≤ k ≤ r, as possible values of N(c, b) for this case. At

the end of Section 3 we will see that there may be values greater than 1 of N(c, b)

different from the aforesaid 2-powers for a number b of this kind.

2. The Criterion

The proof of Theorem 1 is based on the following proposition.

Proposition 1. Let c, d ∈ Z, (c, b) = (d, b) = 1, c 6≡ d mod b. Let t > 0 be such

that t ≡ c− d mod b. Then

S(1 + d∗t, bt)−
(
t2 + 2

bt
− 3

)
= S(d, b)− S(c, b). (4)

Of course, the identity (4) may also serve as a criterion for the equality of S(c, b)

and S(d, b). It is, however, less simple than Theorem 1 since it involves the inversion

of d mod b. This inversion involves more work than checking the condition (2) (as

required by Theorem 1).

Proposition 1 can be found, in a rather disguised form, in a paper of U. Dieter; see

[4, Satz 4]. In particular, it is not obvious that Dieter’s version contains a criterion

for the equality of Dedekind sums. Dieter obtained his result as an application of

his three-term relation; see [4, Satz 1]. We prefer deriving Proposition 1 directly

from this well-known relation since adapting Dieter’s Satz 4 would not be simpler.

Proof of Proposition 1. The three-term relation, in its most convenient form for the

present purpose, reads as follows; see [5]. Let B and D be natural numbers, A and

C integers with (A,B) = (C,D) = 1. Suppose that

Q = AD −BC > 0.
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Let j and k be integers such that

−Cj +Dk = 1.

Define R by

R = Aj −Bk.
Then

S(A,B) = S(C,D) + S(R,Q) +
B2 +D2 +Q2

BDQ
− 3. (5)

Let b, c, d, and t be as in the proposition. Let c′ ≡ c mod b be such that c′−d = t.

We put B = D = b, A = c′, and C = d. Then Q = bt > 0. Since −Cj+Dk = −dj+

bk = 1, j = −d∗ for an inverse d∗ of d mod b and k = (1− dd∗)/b. We obtain R =

−1−d∗t. Since−S(R,Q) = S(1+d∗t, bt) and (B2+D2+Q2)/(BDQ) = (t2+2)/(bt),

the identity (5) gives (4), but with c′ instead of c. However, S(c′, b) = S(c, b), and

the other quantities in the identity (4) depend only of t and b. Hence the equation

(4) holds in the above form.

Lemma 1. Suppose that b, c, d satisfy the congruence (2). Then

c− d ≡ d∗ − c∗ mod b.

Proof. Indeed, suppose b = pm1
1 · · · pmr

r , where the pi are distinct primes. It suffices

to show

c− d ≡ d∗ − c∗ mod pmi
i for all i ∈ {1, . . . , r}.

We fix i for the time being. So we write p = pi, m = mi. The congruence (2)

implies

(c− d)(cd− 1) ≡ 0 mod pm.

If we multiply this congruence by c∗, we obtain

(1− c∗d)(d− c∗) ≡ 0 mod pm.

Accordingly, 1 − c∗d ≡ 0 mod pj , d − c∗ ≡ 0 mod pk, where the nonnegative

integers j, k are such that j + k ≥ m. Since c∗ ≡ d mod pk, we have c ≡ d∗

mod pk. If we write c = d∗ + upk, 1− c∗d = vpj , u, v ∈ Z, we obtain

c(1− c∗d) = d∗(1− c∗d) + uvpj+k

and c− d ≡ d∗ − c∗ mod pj+k.

Proof of Theorem 1. Let t > 0, t ≡ c − d mod b. Because b, c, d satisfy the

condition (2), Lemma 1 yields t ≡ d∗ − c∗ mod b. We replace, in the setting of

Proposition 1, the number c by d∗ and d by c∗. This gives

S(1 + ct, bt)−
(
t2 + 2

bt
− 3

)
= S(c∗, b)− S(d∗, b) = S(c, b)− S(d, b),

whence the assertion follows.
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3. Suitable Sets

Proof of Theorem 2. Let t > 0 be as in Theorem 2, i.e., t ≡ c − d∗ mod b. Since

S(c, b) = S(d∗, b), the numbers c and d∗ satisfy the condition (2), and Theorem 1

gives

S(1 + ct, bt) =
t2 + 2

bt
− 3. (6)

By Lemma 1, we also have t ≡ d − c∗ mod b. Since S(d, b) = S(c∗, b), Theorem 1

yields

S(1 + dt, bt) =
t2 + 2

bt
− 3.

Accordingly, S(c1, b1) = S(d1, b1) for b1 = bt, c1 = 1 + ct, and d1 = 1 + dt.

It remains to be shown that d1 6≡ c1, c∗1 mod b1, t > 1, and S(c1, b1) 6= 0.

First we check d1 6≡ c1 mod b1. Since d − c 6≡ 0 mod b, we have (d − c)t 6≡ 0

mod bt. However,

d1 − c1 ≡ (d− c)t mod bt,

whence the assertion follows.

We also have to exclude that d1 is an inverse of c1 mod b1. From

(1 + ct)(1 + dt) ≡ 1 mod bt

we obtain

cdt2 + (c+ d)t ≡ 0 mod bt and cdt+ c+ d ≡ 0 mod b.

If we use t ≡ c − d∗ mod b in the last congruence, we obtain c2d + d ≡ 0 mod b,

and so c2 ≡ −1 mod b. But this implies S(c, b) = 0 (see [9, Satz 1]), which we

excluded.

Now we show (t, b) > 1. The congruences c − d∗ ≡ t mod b and d − c∗ ≡ t

mod b imply cd − 1 ≡ td mod b and cd − 1 ≡ tc mod b. In particular, td ≡ tc

mod b. Thus, if (t, b) = 1, we have c ≡ d mod b, which we excluded. In particular,

t = 1 is impossible.

If S(c1, b1) = 0, then t2 + 2− 3bt = 0, by (6). Therefore, t | 2, and so t = 2, since

t = 1 is excluded. If t = 2, we have 6 − 6b = 0, which implies b = 1. But in this

case a suitable set {c, d} does not exist.

Remark 1. Recall the definition of the sequences bi, {ci, di}, i ≥ 0, of Section 1.

The congruence ti+1 ≡ di+1 − c∗i+1 mod bi+1 implies ti+1 ≡ di+1 − c∗i+1 mod ti.

Since ci+1 ≡ di+1 ≡ 1 mod ti, this gives ti+1 ≡ 0 mod ti for all i ≥ 0. So the

numbers ti form an ascending chain t0 | t1 | t2 · · · of divisors.
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Remark 2. If we are looking for a suitable set in order to start with a sequence of

this type, we will be successful, as it seems, if we restrict our search to square-free

numbers b ≥ 70 consisting of exactly two primes ≥ 5. We present a small table of

such numbers b together with suitable sets {c, d}. In all cases the Dedekind sum

belonging to the suitable set is positive.

b 77 85 91 95 115 119 133 143

c 9 7 5 33 18 31 54 8

d 16 22 31 52 78 45 73 73

Remark 3. Suppose that we restrict ti to the range 1 ≤ ti ≤ bi in the above se-

quence. It would be interesting to understand the limiting behaviour of the sequence

S(ci, bi), which, by (6), is equivalent to the behaviour of ti/bi.

Remark 4. Note that every set {c, d} suitable for b defines three additional suit-

able sets, namely, {c, d∗}, {c∗, d}, and {c∗, d∗}. Each of these four sets defines an

appropriate number t. Even if we restrict t to the range 1 ≤ t ≤ b, we obtain, as

a rule, four possibilities for {c, d} and t. Of course, one may use these possibilities

for the construction of {ci, di} and ti in each step i ≥ 0. In this way one obtains,

instead of an infinite sequence, an infinite cascade of pairwise equal Dedekind sums.

Proof of Theorem 3. In the setting of this theorem, let i ∈ {1, . . . , k}. Since 5 is a

quadratic residue mod pi, there is an integer αi such that α2
i ≡ 5 mod pi. Define

c ∈ {1, . . . , b} by

c ≡ (3 + αi)/2 mod pi, i = 1, . . . , k, and c ≡ 1 mod pi, i = k + 1, . . . , r

(here 1/2 stands for an inverse of 2 mod pi). Let d ∈ {1, . . . , b} be a solution of the

congruence (2). This means that

(c− d)(cd− 1) ≡ 0 mod pi,

for all i ∈ {1, . . . , r}. If i ∈ {k + 1, . . . , r}, this congruence is equivalent to (1 −
d)(1− d) ≡ 0 mod pi, i.e., d ≡ 1 ≡ c mod pi. If i ∈ {1, . . . , k}, d must satisfy one

of the congruences

d ≡ (3 + αi)/2 mod pi or d ≡ (3− αi)/2 mod pi,

since (3 − αi)/2 is an inverse of (3 + αi)/2 mod pi. Altogether, d can be defined

by the congruences

d ≡ (3 + (−1)jiαi)/2 mod pi, i = 1, . . . , k, and d ≡ 1 mod pi, i = k + 1, . . . , r,

where ji ∈ {0, 1} may be arbitrary for each i ∈ {1, . . . , k}. Accordingly, we have

exactly 2r distinct numbers d ∈ {1, . . . , b − 1} such that the congruence (2) holds.
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Observe that (c, b) = 1 since an inverse c∗ of c mod b is given by c∗ ≡ (3 − αi)/2

mod p1, i = 1, . . . , k, and c∗ ≡ 1 mod pi, i = k+1, . . . , r. Because the condition (2)

is equivalent to S(c, b)−S(d, b) ∈ Z, there are exactly 2k integers d ∈ {1, . . . , b− 1}
such that S(c, b)− S(d, b) ∈ Z.

Recall that t = pk+1 · · · pr. We have to show that S(c, b) = S(d, b) = (t2+2)/b−3

for all these integers d. Given such an integer d, we define m ∈ {1, . . . , b0} by

m ≡ d − 1 mod pi, i = 1, . . . , k. In other words, m ≡ (1 + (−1)jiαi)/2 mod pi
for these numbers i. Then m is invertible mod b0, an inverse m∗ being defined by

m∗ ≡ ((−1)jiαi−1)/2 mod pi for these i. In particular, m−m∗ ≡ 1 mod b0. Now

t ≡ 1 ≡ m−m∗ mod b0. Since S(m, b0) = S(m∗, b0), Theorem 1 can be applied to

b0, m, and m∗. It gives

S(1 +mt, b0t) =
t2 + 2

b0t
− 3.

Here 1 + mt ≡ 1 + m ≡ d mod pi, i = 1, . . . , k, and 1 + mt ≡ 1 ≡ d mod pi,

i = k + 1, . . . , r, because pi | t for these i. In other words, 1 + mt ≡ d mod b, and

so S(d, b) = (t2 + 2)/b−3. In particular, S(c, b) also takes this value, since this case

corresponds to j1 = · · · = jk = 0.

Remark 5. Let b be a square-free number consisting of r primes. For an integer

c with (c, d) = 1 let N(c, b) be defined as in (3). Let r = 3. Hence N(c, b) ≤ 8, as

we said at the end of Section 1. Theorem 3 says that 2, 4, and 8 are possible values

greater than 1 of N(c, b). It is not difficult to see that, for a square-free number b,

N(c, b) either equals 1 or is even. Therefore, the only possible value greater than 1

not in this list is N(c, b) = 6. In the case b = 455 = 5 · 7 · 13 we find N(c, b) = 6 for

c = 32. On the other hand, there are no integers c with N(c, b) = 8 in this case.
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[13] G. Urzúa and J. I. Yáñez, Characterization of Kollár surfaces, Algebra Number Theory 12
(2018), 1073–1105.


