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Abstract

We consider flipping coins, a partizan version of the impartial game turning
turtles, played on lines of coins. We show that the values of this game are
numbers, and these are found by first applying a reduction, then decomposing the
position into an iterated ordinal sum. This is unusual since moves in the middle of
the line do not eliminate the rest of the line. Moreover, when G is decomposed into
lines H and K, then G = (H : KR). This is in contrast to hackenbush strings,
where G = (H : K).

1. Introduction

In Winning Ways Volume 3 [3], Berlekamp, Conway, and Guy introduced turning

turtles and considered many variants. Each game involves a finite row of turtles,

either on feet or backs, and a move is to turn one turtle over onto its back, with the

option of flipping a number of other turtles, to the left, each to the opposite of its

current state (feet or back). The number depends on the rules of the specific game.

The authors moved to playing with coins as playing with turtles is cruel.
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These games can be solved using the Sprague-Grundy theory for impartial games

[2], but the structure and strategies of some variants are interesting. The strategy

for: moebius (flip up to five coins) played with 18 coins, involves Möbius trans-

formations; mogul (flip up to seven coins) on 24 coins, involves the miracle octad

generator developed by R. Curtis in his work on the Mathieu group M24 and the

Leech lattice [6, 7]; ternups [3] (flip three equally spaced coins) requires ternary

expansions; and turning corners [3], a two-dimensional version where the corners

of a rectangle are flipped, needs nim-multiplication.

We consider a simple partizan version of turning turtles, also played with

coins. We give a complete solution and show that it involves ordinal sums. This is

somewhat surprising since moves in the middle of the line do not eliminate moves

at the end. Compare this with hackenbush strings [2], and domino shave [5].

We will denote heads by 0 and tails by 1. Our partizan version will be played

with a line of coins, represented by a 0-1 sequence, d1d2 . . . dn, where di ∈ {0, 1}. To

this position, we associate the binary number
∑n

i=1 di2
i−1. Left moves by choosing

some pair of coins di, dj , i < j, where di = dj = 1 and flips them over so that both

coins are 0s. Right also chooses a pair dk, d`, k < `, with dk = 0 and d` = 1, and

flips them over. If j is the greatest index such that dj = 1, then dk, k > j, will be

deleted. For example,

1011 = {0001, 001, 1 | 1101, 111}.

The game eventually ends since the associated binary number decreases with every

move. We call this game flipping coins.

Another way to model flipping coins is to consider tokens on a strip of loca-

tions. Left can remove a pair of tokens, and Right is able to move a token to an

open space to its left. We use the coin flipping model for this game to be consistent

with the literature.

The game is biased to Left. If there are a non-zero even number of 1s in a

position, then Left always has a move; that is, she will win. Left also wins any

non-trivial position starting with 1. However, there are positions that Right wins.

The two-part method to find the outcomes and values of the remaining positions

can be applied to all positions. First, apply a modification to the position (unless it

is all 1s), which reduces the number of consecutive 1s to at most three. After this

reduction, build an iterated ordinal sum, by successively deleting everything after

the third last 1, this deleted position determines the value of the next term in the

ordinal sum. As a consequence, the original position is a Right win, if the position

remaining at the end is of the form 0 . . . 01, and the value is given by the ordinal

sum.

The necessary background for numbers is in Section 2. Section 3 contains results

about outcomes, and it also includes our main results. First, we show that the values

are numbers in Theorem 3.2. Next, an algorithm to find the value of a position is
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presented, and Theorem 3.3 states that the value given by the algorithm is correct.

The actual analysis is in Section 4. It starts by identifying the best moves for

both players in Theorem 4.2. This leads directly to the core result Lemma 4.5, which

shows that the value of a position is an ordinal sum. The ordinal sum decomposition

of G is found as follows. Let GL be the position after the Left move that removes

the rightmost 1s. Let H be the string G \ GL; that is, the substring eliminated

by Left’s move. Let HR be the result of Right’s best move in H. Now, we have

that G = GL : HR. In contrast, the ordinal sums for hackenbush strings and

domino shave [5], involve the value of H not HR.

The proof of Theorem 3.3 is given in Section 4.1. The final section includes a

brief discussion of open problems.

Finally we pose a question for the reader, which we answer at the end of Sec-

tion 4.1: Who wins 0101011111 + 1101100111 + 0110110110111 and how?

2. Numbers

All the values in this paper are numbers and this section contains all the necessary

background to make the paper self-contained. For further details, consult [1, 8].

Positions are written in terms of their options; that is, G = {GL | GR}.

Definition 2.1 ([1, 2, 8]). Let G be a number whose options are numbers and let

GL, GR be the Left and Right options of the canonical form of G.

1. If there is an integer k, GL < k < GR, or if either GL or GR does not exist,

then G is the integer, say n, closest to zero that satisfies GL < n < GR.

2. If both GL and GR exist and the previous case does not apply, then G =
p
2q , where q is the least positive integer such that there is an odd integer p

satisfying GL < p
2q < GR.

The properties of numbers required for this paper are contained in the next three

theorems.

Theorem 2.2 ([1, 2, 8]). Let G be a number whose options are numbers and let

GL, GR be the Left and Right options of the canonical form of G. If G′ and G′′ are

any Left and Right options respectively, then

G′ 6 GL < G < GR 6 G′′.

Theorem 2.2 shows that if we know that the string of inequalities holds, we need

to only consider the unique best move for both players in a number.

We include the following examples to further illustrate these ideas.

(a) 0 = { | } = {−9 | } = {− 1
2 |

7
4};
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(b) −2 = { | −1} = {− 5
2 | −

31
16};

(c) 1 = {0 | } = {0 | 100};

(d) 1
2 = {0 | 1} = { 38 |

17
32}.

For games G and H, to show that G > H, we need to show that G − H > 0.

Meaning, we need to show that G − H is a Left win moving second. For more

information, see Sections 5.1, 5.8, and 6.3 of [1].

Let G and H be games. The ordinal sum of G, the base, and H, the exponent, is

G : H = {GL, G : HL | GR, G : HR}.

Intuitively, playing in G eliminates H but playing in H does not affect G. For

ease of reading, if an ordinal sum is a term in an expression, then we enclose it in

brackets.

Note that x : 0 = x = 0 : x since neither player has a move in 0. We demonstrate

how to calculate the values of other positions with the following examples.

(a) 1 : 1 = {1 | } = 2;

(b) 1 : −1 = {0 | 1} = 1
2 ;

(c) 1 : 1
2 = {0, (1 : 0) | (1 : 1)} = {0, 1 | {1 | }} = {1 | 2} = 3

2 ;

(d) 1
2 : 1 = {0, ( 1

2 : 0) | 1} = {0, 12 | 1} = { 12 | 1} = 3
4 ;

(e) (1 : −1) : 1
2 = ( 1

2 : 1
2 ) = {0, ( 1

2 : 0) | 1, ( 1
2 : 1)} = {0, 12 | 1,

3
4} = { 12 |

3
4} = 5

8 .

Note that in all cases, when base and exponent are numbers, the players prefer

to play in the exponent. In the remainder of this paper all the exponents will be

positive.

One of the most important results about ordinal sums was first reported in

Winning Ways.

Theorem 2.3 (Colon Principle [2]). If K > K ′, then G : K > G : K ′.

The Colon Principle helps prove inequalities that will be useful in this paper.

Theorem 2.4. Let G and H be numbers all of whose options are also numbers,

and let H > 0.

1. If H = 0, then G : H = G. If H > 0, then (G : H) > G.

2. GL < (G : HL) < (G : H) < (G : HR) < GR.
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Proof. For item (1), the result follows immediately by Theorem 2.3.

For item (2), if H > 0 and all the options of G and H are numbers, then

GL < G = (G : 0) 6 (G : HL) < (G : H) < (G : HR). The second, third, and

fourth inequalities hold since H is a number and thus 0 6 HL < H < HR and

by applying the Colon Principle. To complete the proof, we need to show that

(G : HR) < GR. To do so we check that GR − (G : HR) > 0, in words, we check

that Left can always win. Left moving first can move in the second summand to

GR −GR = 0 and win. Right moving first has several options:

1. Moving to GR − GL > 0, since G and its options are numbers. Hence Left

wins.

2. Moving to GR − (G : HRL) > 0, by induction.

3. Moving to GRR−G : HR but Left can respond to GRR−GR > 0 since G and

its options are numbers.

In all cases, Left wins moving second. The result follows.

To prove that all the positions are numbers, we use results from [4]. A set of

positions from a ruleset is called a hereditarily closed set of positions of a ruleset if

it is closed under taking options. This game satisfies ruleset properties introduced

in [4]. In particular, the properties are called the F1 property and the F2 property,

which both highlight the notion of First-move-disadvantage in numbers, and are

defined formally as follows.

Definition 2.5 ([4]). Let S be a hereditarily closed ruleset. Given a position G ∈ S,

the pair (GL, GR) ∈ GL × GR satisfies the F1 property if there is a GRL ∈ GRL

such that GRL > GL or there is a GLR ∈ GLR such that GLR 6 GR.

Definition 2.6 ([4]). Let S be a hereditarily closed ruleset. Given a position G ∈ S,

the pair (GL, GR) ∈ GL×GR satisfies the F2 property if there are GLR ∈ GLR and

GRL ∈ GRL such that GRL > GLR.

As proven in [4], if given any position G ∈ S, all pairs (GL, GR) ∈ GL×GR satisfy

one of these properties, then the value of all positions are numbers. Furthermore,

satisfying the F2 property implies satisfying the F1 property, and it was shown

that all positions G ∈ S are numbers if and only if for any G ∈ S, all pairs

(GL, GR) ∈ GL × GR satisfy the F1 property. Combining these results gives the

following theorem.

Theorem 2.7 ([4]). Let S be a hereditarily closed ruleset. All positions G ∈ S are

numbers if and only if for any position G ∈ S, all pairs (GL, GR) ∈ GL×GR satisfy

either the F1 or the F2 property.
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3. Main Results

Before considering the values and associated strategies, we consider the outcomes;

that is, we partially answer the question: “Who wins the game?” The full answer

requires an analogous analysis to finding the values.

Theorem 3.1. Let G = d1d2 . . . dn. If d1d2 . . . dn contains an even number of 1s,

or if d1 = 1 and there are least two 1s, then Left wins G.

Proof. A Right move does not decrease the number of 1s in the position. Thus,

if in G, Left has a move, then she still has a move after any Right move in G.

Consequently, regardless of d1, if there are an even number of 1s in G, it will be

Left who reduces the game to all 0s. Similarly, if d1 = 1 and there are an odd

number of 1s, Left will eventually reduce G to a position with a single 1; that is, to

d1 = 1 and di = 0 for i > 1. In this case, Right has no move and loses.

The remaining case, d1 = 0 and an odd number of 1s, is more involved. The

analysis of this case is the subject of the remainder of the paper. We first prove the

following.

Theorem 3.2. All flipping coins positions are numbers.

Proof. Let G be a flipping coins position. If only one player has a move, then the

game is an integer. Otherwise, let L be the Left move to change (di, dj) from (1, 1)

to (0, 0). Let R be the Right move to change (dk, d`) from (0, 1) to (1, 0). No other

digits are changed. If all four indices are distinct, then both L and R can be played

in either order. In this case GLR = GRL. Thus, the F2 property holds. If there are

only three distinct indices, then two of the bits are ones. If Left moves first, then

di = dj = dk = 0. If Right moves first, then there are still two ones remaining after

his move. After Left moves, we have di = dj = dk = 0 and hence, GL = GRL. The

F1 property holds.

There are no more cases since there must be at least three distinct indices. Since

every position satisfies either the F1 or F2 property it follows that, by Theorem 2.7,

every position is a number.

Given a position G, the following algorithm returns a value.

Algorithm: Let G be a flipping coins position. Let G0 = G.

1. Set i = 0.

2. Reductions: Let α and β be binary strings, and either can be empty.

(a) If G0 = α013+jβ, j > 1, then set G0 = α101jβ.

(b) IfG0 = α013β, and β contains an even number of 1s, then setG0 = α10β.
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(c) Repeat until neither case applies, then go to Step 3.

3. If Gi is 0r1, r > 0 or 1a0pi10qi1, a > 0 and pi + qi > 0; then go to Step 5.

Otherwise, Gi = α01a0pi10qi1, pi + qi > 1, a > 0 and some α. Set

Qi = 0pi10qi1,

Gi+1 = α01a.

Go to Step 4.

4. Set i = i+ 1. Go to Step 3.

5. If Gi = 0r1, then set vi = −r. If Gi = 1a0pi10qi1, then set vi = ba2 c+ 1
22pi+qi

.

Go to Step 6.

6. For j from i− 1 down to 0, set vj = vj+1 : 1
22pj+qj−1 .

7. Return the number v0.

The algorithm implicitly returns two different results:

1. For Step 3, the substrings, Q0, Q1, . . . , Qi−1, Gi, partition the reduced version

of G;

2. The value v0.

First we illustrate the algorithm with the following example. Consider the posi-

tion G = 10011110110110111011110011. We highlight at each step which reduction

is being applied to the underlined digits; 2(a) is denoted by †, while 2(b) is denoted

by ‡. The algorithm gives that:

10011110110110111011110011 = 10011110110110111011110011(†)
= 100111101101101111010011(†)
= 1001111011011101010011(‡)
= 10011110111001010011(‡)
= 100111110001010011(†)
= 1010110001010011.

Step 3 partitions the last expression into 101(011)(000101)(0011) so that the ordinal

sum is given by

v0 =

((
1

2
:

1

2

)
:

1

64

)
:

1

8

=
10257

16348
.
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Now let H = 01001110110111011101. The reductions give that:

01001110110111011101 = 01001110110111011101

= 010011101110011101

= 0100111100011101

= 01010100011101.

The last expression partitions into 01(0101)(00011)(101) so that

v0 =

((
−1 :

1

4

)
:

1

32

)
: 1

= − 893

1024
.

The next theorem is the main result of the paper.

Theorem 3.3 (Value Theorem). Let G be a flipping coins position. If v0 is the

value obtained by the algorithm applied to G, then G = v0.

In the next section, we derive several results that will be used to prove Theo-

rem 3.3. The proof of Theorem 3.3 will appear in Section 4.1.

4. Best Moves and Reductions

The proofs in this section use induction on the options. An alternate but equivalent

approach is to regard the techniques as induction on the associated binary number

of the positions. The proofs require detailed examination of the positions and we

will use notation suitable to the case being considered. Often, a typical position

will be written as a combination of generic strings and the substring under consid-

eration. For example, 111011000110101 might be parsed as (11101)(100011)(0101),

and written α100011β or more compactly as α10312β.

We require several results before being able to prove Theorem 3.3. We begin by

proving a simplifying reduction, followed by the best moves for each player, and

then the remaining reductions used in the algorithm.

As an immediate consequence of Theorems 3.2 and 2.2 we have the following.

Corollary 4.1. Let α, β, and γ be arbitrary binary strings. We then have that

α1β0γ > α0β1γ. Moreover, for an integer r > 0 we have that β10r1 > β.

Proof. Recall that by Theorem 3.2 all flipping coins positions are numbers. Thus,

Theorem 2.2 applies.

A Right option of α0β1γ is α1β0γ and so we have that α1β0γ > α0β1γ. Simi-

larly, a Left option of β10r1 is β and so we have that β10r1 > β.
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Next we prove the best moves for each player. Right wants to play the zero

furthest to the right and the 1 adjacent to it. Left wants to play the two ones

furthest to the right.

Theorem 4.2. Let G be a flipping coins position, where in G, r and n, r 6= n,

are the greatest indices such that dr = dn = 1. Let s be the greatest index such

that ds = 0. Left’s best move is to play (dr, dn), and Right’s best move is to play

(ds, ds+1).

Proof. We prove this theorem by induction on the options. Note that we use the

equivalent binary representation of the game position. If there are three or fewer

bits, then, by exhaustive analysis, the theorem is true.

Let G be d1d2 . . . dn. We begin by proving Left’s best moves. Let r and n be the

two largest indices, where dr = dn = 1, thus dk = 0 for r < k < n. Let i and j, i < j,

be two indices with di = dj = 1. We use the notation G(di, dj , dr, dn) to highlight

the salient bits. The claimed best Left move is from G(1, 1, 1, 1) to G(1, 1, 0, 0). This

must be compared to any other Left move, represented by moving from G(1, 1, 1, 1)

to G(0, 0, 1, 1). That is, we need to show that G(1, 1, 0, 0)−G(0, 0, 1, 1) > 0.

For the moves to be different, at least three of i, j, r, n are distinct. We first

assume the four indices are distinct. In this case, we have that i < j < r < n. By

applying Corollary 4.1 twice, we have that

G(1, 1, 0, 0) > G(1, 0, 0, 1) > G(0, 0, 1, 1).

We may assume then, without loss of generality, that j = r or j = n. If j = n then

i < r, since there are two distinct moves. Now consider G(di, dr, dn) = G(1, 1, 1).

By Corollary 4.1, we have that if j = r, G(1, 0, 0) > G(0, 0, 1), and if j = n,

G(1, 0, 0) > G(0, 1, 0).

We now prove Right’s best move. There are more cases to consider. Let s be the

largest index such that ds = 0 and therefore ds+1 = 1. Let i, j, i < j be indices with

di = 0 and dj = 1. The claimed best move is ds, ds+1 and this must be compared

to the arbitrary Right move di, dj . For the moves to be different, there must be at

least three distinct indices.

The original position is either

G(di, dj , ds, ds+1) = G(0, 1, 0, 1), i < s

or

G(ds, ds+1, dj) = G(0, 1, 1), i = s, j > s+ 1.

We need to show either D = G(1, 0, 0, 1) − G(0, 1, 1, 0) > 0 or D = G(1, 1, 0) −
G(1, 0, 1) > 0, respectively. Suppose Right plays in the first summand of D. Note

that, by induction, the best moves of Left and Right are known.
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1. First, suppose j < s. By induction, Right’s best move in the first summand of

D, is to D′ = G(1, 0, 1, 0)−G(0, 1, 1, 0). Since i < j, it follows that G(1, 0, 1, 0)

is a Right option of G(0, 1, 1, 0) and thus, D′ is positive by Corollary 4.1.

2. If j = s + 1, then there are only three distinct indices. The original game is

G(di, ds, ds+1) = G(0, 0, 1) and D = G(1, 0, 0)−G(0, 1, 0). Since G(1, 0, 0) is

a Right option of G(0, 1, 0), it follows that D is positive by Corollary 4.1.

3. Suppose j > s+ 1.

If i < s then the original game is of the form

G = αdiβdsds+11adj1
b = α0β011a11b, a > 0, b > 0

and

D = α1β011a01b − α0β101a11b.

Two applications of Corollary 4.1 (applied to the highlighted terms) give

α1β011a01b > α0β111a01b > α0β101a11b.

If i = s then

G = αdsds+11adj1
b = α011a11b, a > 0, b > 0

and

D = α111a01b − α101a11b.

One application of Corollary 4.1 (relevant terms again highlighted) gives

α111a01b > α101a11b.

Thus D > 0.

Next, we consider Right moving in the second summand of D = G(1, 0, 0, 1) −
G(0, 1, 1, 0). Note that by the choices of the subscripts, d` = 1 if n > ` > s+ 1.

1. If n > s + 2, then Right’s best move in the second summand is to change

dn−1, dn from (1, 1) to (0, 0). Left copies this move in the first summand and

the resulting difference game is non-negative by induction.

2. Suppose n = s+ 2.

i. If j < s + 1, then G(di, dj , ds, ds+1, ds+2) = G(0, 1, 0, 1, 1) and D =

G(1, 0, 0, 1, 1) − G(0, 1, 1, 0, 1). Right’s best move is to G(1, 0, 0, 1, 1) −
G(0, 1, 0, 0, 0). Left moves to G(1, 0, 0, 0, 0)−G(0, 1, 0, 0, 0). This is pos-

itive by Corollary 4.1 and Left wins.
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For the next two sub-cases, exactly two 1s will occupy two of the four

indexed positions. Since Right is moving in the second summand, he

is changing two 1s to two 0s. Thus, Left’s best response for each case

is to move in the first summand, bringing the game to G(0, 0, 0, 0) −
G(0, 0, 0, 0) = 0, and she wins. For these cases, we only list the original

position. The strategy for both cases is as just described.

ii. If j = s+1, thenG(di, ds, ds+1, ds+2) = G(0, 0, 1, 1) andD = G(1, 0, 0, 1)−
G(0, 1, 0, 1).

iii. If j = s+2, thenG(di, ds, ds+1, ds+2) = G(0, 0, 1, 1) andD = G(1, 0, 1, 0)−
G(0, 1, 0, 1).

3. Now suppose n = s+ 1.

i. If j < s+ 1, then let ` < s+ 1 be the largest index such that d` = 1.

If j < `, then we have G(di, dj , d`, ds, ds+1) = G(0, 1, 1, 0, 1) and D =

G(1, 0, 1, 0, 1) − G(0, 1, 1, 1, 0). Right’s best move is to G(1, 0, 1, 0, 1) −
G(0, 1, 0, 0, 0). Left moves to G(1, 0, 0, 0, 0)−G(0, 1, 0, 0, 0) which is pos-

itive since G(1, 0, 0, 0, 0) is a Right option of G(0, 1, 0, 0, 0).

If j = `, then G(di, dj , ds, ds+1) = G(0, 1, 0, 1) and D = G(1, 0, 0, 1) −
G(0, 1, 1, 0). Right’s best move is to G(1, 0, 0, 1)−G(0, 0, 0, 0). Left moves

to G(0, 0, 0, 0)−G(0, 0, 0, 0) = 0, and Left wins.

ii. If j = s + 1, then G(di, ds, ds+1) = G(0, 0, 1) and D = G(1, 0, 0) −
G(0, 1, 0). This is positive by Corollary 4.1.

In all cases, Left wins D moving second, proving the result.

Suppose in a position that the bits of the best Right move are different from

those of the best Left move. The next lemma essentially says that the position

before and after one move by each player are equal. It is phrased in a way that

is useful for reducing the length of the position. Recall that a non-trivial position

looks like, G = α01a0p10q1β, where a, p, and q are non-negative integers and α and

β are arbitrary binary strings. For the algorithm, it suffices to prove the result for

β being empty. However, it is useful, certainly for a human, to reduce the length of

the position as much as possible.

Lemma 4.3. Let α be an arbitrary binary string. If a > 0, then we have that

α01111a = α101a.

Proof. Let H = α01111a − α101a. We need to show H = 0. To simplify the proof,

in some cases the second player will play sub-optimal moves. We have several cases

to consider.
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1. If a > 2, then playing the same move in the other summand is a good response.

After two such moves we have either

α01111a−2 − α101a−2 = 0, by induction,

or

α10111a − α1101a−1 = α1101a−1 − α1101a−1 = 0, by induction.

2. If a = 1, then H = α01111− α101. The cases are:

i. Left plays in the first summand to α011 − α101, then Right moves to

α101− α101 = 0.

ii. Right plays in the second summand to α01111 − α, then Left moves to

α011− α. Since (α011)L = α, we have α011 > α.

iii. Right plays in the first summand to α10111− α101, then Left responds

to α101− α101 = 0.

iv. Left plays in the second summand to α01111 − α11, then Right moves

to α10111− α11 = α11− α11 = 0, by induction.

3. If a = 0, then H = α0111− α1. There are several cases to consider.

i. If Left or Right play in the first summand, then the response is in the

first summand giving α1− α1 = 0.

ii. If Left plays in the second summand, then since there is a Left move, we

have α = β01b, b > 0. If b > 0, we have that β01b0111− β01b1 and Left

moves to β01b013−β101b. Here, Right responds to β101b−1013−β101b,

which by induction is equal to β101b−11 − β101b = 0. If b = 0 we

have that β01b0111− β01b1 = β00111− β01 and we want to show that

Right can win moving second. Left plays to β00111−β10 and Right can

respond to β01110− β1 which, by induction, is equal to β1− β1 = 0.

iii. Right plays in the second summand. For a Right move to exist, then

α = β10a, a > 0. Thus, H = β10a0111 − β10a1, and Right moves

to β10a0111 − β. Left responds by moving to β00a011 − β. We then

have that (β00a011)L = β; thus, β00a011 > β. Hence, we find that

β00a011− β > 0.

In all cases, the second player wins H thereby proving the result.

There are reductions that can be applied to the middle of the position, but extra

conditions are needed.
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Lemma 4.4. Let α and β be arbitrary binary strings where either (a) β starts with

a 1, or (b) β starts with 0 and has an even number of 1s. We then have that

α0111β = α10β.

Proof. Let H = α0111β − α10β. We need to show that H = 0. We have several

cases to consider.

1. If β is empty or β = 1a, then H = 0 by Lemma 4.3. Therefore, we may

assume that β has at least one 1 and one 0.

2. If β = 1γ1 (β must end in a 1), then the best moves, in both summands, are

pairs of bits in β and −β. If each player copies the opponent’s move in the

other summand, then this leads to

α0111β − α10β → α0111β′ − α10β′

and the latter expression is equal to 0, by induction.

3. If β 6= 1γ1, then β = 0γ1 and γ1 has at least two 1’s. The best moves are in

β and −β and are the best responses to each other. We then derive that

α0111β − α10β → α0111β′ − α10β′ = 0, by induction.

In all cases H = 0, and this concludes the proof.

In Lemma 4.4, the conditions are necessary. An example is:

3/8 = 011101 6= 1001 = 1/4.

Here, β starts with a 0 and has an odd number of 1s.

These reduction lemmas are important in evaluating a position. The reduced

positions will end in 011 or 01. By considering the exact end of the string, specifi-

cally, if there are at least two 0s (in one special case three 0s), then we can find an

ordinal sum decomposition. The decomposition is determined by where the third

rightmost 1 is situated.

The next result is the start of the ordinal sum decomposition of a position. The

exponent is the value of the Right option of the substring being removed.

Lemma 4.5. Let α be an arbitrary binary string. If a > 1 and p and q are non-

negative integers such that p+ q > 1, then

α01a0p10q1 = α01a :
1

22p+q−1 .
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Proof. We prove that

α01a0p10q1−
(
α01a :

1

22p+q−1

)
= 0.

Note that in Theorem 2.4 we have that playing in the base of α01a : 1
22p+q−1 is

worse than playing in the exponent. We have two cases to consider.

1. Left plays first in the first summand, and Right responds in the second sum-

mand. Or Right plays first in the second summand, and Left responds in the

first summand. In either case, Right has a move in the exponent (moves to

0) since 2p+ q − 1 > 0. In either order, the final position is given by:

α01a − (α01a : 0) = α01a − α01a = 0.

2. Right plays first in the first summand and Left responds in the second sum-

mand. Or Left plays first in the second summand and Right responds in the

first summand. In either case, we consider,

α01a0p10q1−
(
α01a :

1

22p+q−1

)
.

We have two sub-cases.

i. Assume 2p+ q − 1 6= 0. After the two moves we have the position

α01a0r10s1−
(
α01a :

1

22p+q−2

)
,

where 2r + s = 2p+ q − 1. By induction, we have that

α01a0r10s1 = α01a :
1

22r+s−1

= α01a :
1

22p+q−2 .

Thus, α01a0r10s1−
(
α01a : 1

22p+q−2

)
= 0.

ii. Assume 2p+ q − 1 = 0, that is, q = 1, p = 0. The original position is

α01a101− (α01a : 1) .

After the two moves we have the position α01a11− α101a−1 (note that

Left has no move in the exponent). By Lemma 4.3, α01a11 = α101a−1.

Hence, we have that α01a11− α101a−1 = 0 and the result follows.
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The values of the positions not covered by Lemma 4.5 are given next.

Lemma 4.6. Let a, p, and q be non-negative integers. We then have that

0p1 = −p, and 1a0p10q1 =
⌊a

2

⌋
+

1

22p+q
.

Proof. Let G = 0p1. Left has no moves and Right has p. Note that in 1a, Left has

ba2 c moves and Right has none.

Now, let G = 1a0p10q1. We proceed by induction on p + q. In all cases, Left’s

move is to 1a, that is, to ba2 c. If p = 0 and q = 0 then G = 1a11, which has

value ba2 c + 1
20 = ba2 c + 1. Assume that p + q = k, k > 0. If q > 0, then

G = {ba2 c | 1
a0p10q−11}. By induction, we have that

G =

{⌊a
2

⌋ ∣∣∣ ⌊a
2

⌋
+

1

22p+q−1

}
=
⌊a

2

⌋
+

1

22p+q
.

If q = 0, then G = {ba2 c | 1
a0p−11011}. By induction, we have that

G =

{⌊a
2

⌋ ∣∣∣ ⌊a
2

⌋
+

1

22(p−1)+1

}
=
⌊a

2

⌋
+

1

22p
,

and the result follows.

4.1. Proof of the Value Theorem

We now have all of the tools to prove Theorem 3.3.

Proof of Theorem 3.3. Let G be a flipping coins position. Step 2 reduces the

binary string. The reductions in Step 2(a) are those of Lemma 4.3 and Lemma 4.4

part(a). The reductions in Step 2(b) are those of Lemma 4.4 part(b). In all cases,

these lemmas show that each new reduced position is equal to G.

In Step 3, we claim Gi 6= β13 for any β. This is true for i = 0 by Lemma 4.3.

If i > 0, then at each iteration of Step 3, the last two 1s are removed from Gi−1.

Now, the original reduced position would be G0 = β13γ, where γ has an even

number of 1s. Lemma 4.4 part(b) would apply eliminating the three consecutive

1s. Now either Gi is one of 0r1, r > 0 or 1a0pi10qi1, a > 0 and pi + qi > 0, or

Gi = α01a0pi10qi1, pi + qi > 1, a > 0. In the latter case, the index is incremented

and the algorithm goes back to Step 3.

Step 5 applies when Step 3 no longer applies, i.e., Gi is one of 0r1, r > 0 or

1a0pi10qi1, a > 0 and pi + qi > 0. Now, vi is the value of Gi, as given in Lemma

4.6.

Lemma 4.5 shows that for each j < i, Gj = Gj+1 : 1
22pj+qj

, the evaluation in

Step 6. Thus, the value of G is v0, and the theorem follows.



INTEGERS: 21B (2021) 16

The question: “Who wins 0101011111+1101100111+0110110110111 and how?”

from Section 1 can now be answered.

First, we have that

0101011111 = 01011011 =

(
01011 :

1

2

)
=

((
01 :

1

2

)
:

1

2

)
=

((
−1 :

1

2

)
:

1

2

)
= −11

16

1101100111 = 1101101 = (1101 : 1) =

(
1

2
: 1

)
=

3

4

0110110110111 = 0110110111 = 0110111 = 0111 = 0.

Thus, we have that

0101011111 + 1101100111 + 0110110110111 = −11

16
+

3

4
+ 0 =

1

16
.

Left’s only winning move is to

01010111 + 1101100111 + 0110110110111 = −3

4
+

3

4
+ 0 = 0.

Her best moves in the second summand gives a sum of − 11
16 + 5

8 + 0 = − 1
16 , and in

the third yields − 11
16 + 3

4 −
1
8 = − 1

16 . Left loses both times.

5. Future Directions

Natural variants of flipping coins involve increasing the number of coins that

can be flipped from two to three or more. A brief computer search suggests that

the only version where the values are numbers is the game in which Left flips a

subsequence of all 1s and Right a subsequence of 0s ended by a 1. We conjecture

that a similar ordinal sum structure will arise in these variants. Other variants have

values that include switches, tinies, minies, and other three-stop games. However,

some variants, when the reduced canonical values are considered, only seem to

consist of numbers and switches. A more thorough investigation should shed light

on their structures.
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