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Abstract

Domineering is a well-studied tiling game in which one player places vertical domi-
noes and a second places horizontal dominoes, alternating turns until someone can-
not place on their turn. Previous research has found game outcomes and values for
certain rectangular boards under normal play (last move wins); however, nothing
has been published about domineering under misère play (last move loses). We
find optimal-play outcomes for all 2×n boards under misère play: these games are
Right-win for n > 12. We also present algebraic results including sums, inverses,
and comparisons in misère domineering.

1. Introduction

The game of domineering has two players alternately placing dominoes to tile a

checkerboard or any other grid. The player called Left can only place dominoes

in a vertical orientation, and the player called Right can only place horizontally.

Domineering is a combinatorial game because there is perfect information and no

chance, and it is partizan (as opposed to impartial) because the two players have

different move options. In normal-play combinatorial games, the first player unable
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to move on their turn loses; under misère play, the first player unable to move is

the winner. This paper considers domineering under misère play.

A game G is defined by the sets of Left options and Right options that the

corresponding player can reach with a single move. We use Gm×n to denote a game

of domineering on an empty m × n board. So, for example, G2×2 has one Left

option to G2×1 and one Right option to G1×2.

Given any game position G, the outcome o(G) is the winner under optimal play.

There are four possibilities:

o(G) =


L, if Left wins G whether she goes first or second;
R, if Right wins G whether he goes first or second;
N , if the next player to move in G wins;
P, if the previous player (i.e. not the next player) wins.

We use o−(G) to denote the outcome of G under misère play and o+(G) for the

outcome under normal play. For example, o−( ) = N and o+( ) = R. The

zero game, in which there are no moves for either player (e.g., a 1 × 1 board in

domineering), has o−(0) = N and o+(0) = P. The negative of a game G, denoted

−G, is the game G with the roles of Left and Right swapped; in domineering, this

is equivalent to rotating G by 90 degrees. The disjunctive sum of two games G and

H is the game G+H in which, on their turn, a player can choose to play in G or in

H. In domineering, as players place pieces, a single connected board often breaks

into a disjunctive sum of disjoint boards: for example, if Left plays in the third

column of G2×6, the new position is G2×2 + G2×3.

Two games G and H are equal if they can be interchanged in any sum without

affecting the outcome: that is, if o(G + X) = o(H + X) for any sum of games X.

Inequality is defined by G > H if o(G+X) > o(H+X) for all X, where outcomes are

ordered according to preference by Left: L > N > R and L > P > R, with N and

P incomparable. Equality and inequality are dependent on the ending condition;

games can be equal or comparable in normal play but not in misère play, etc. In

normal play, G + (−G) = 0 for all games G.

Normal-play domineering has been the subject of numerous papers by mathe-

maticians and computer scientists. Elwyn Berlekamp found normal-play outcomes

and values for positions in 2×n and 3×n domineering in his 1988 paper [2]. Since

that time, computer programs have been developed to find the normal-play outcome

of rectangular boards: up to 9× 9 was solved by the computer program developed

in [3]; this was extended to 10 × 10 by [4], and finally to 11 × 11 by [10] . In [5],

theoretical and computational techniques were used to determine outcomes of all

2× n boards under normal play: for n > 28, the boards are all Right-win.

What about misère play? The primary purpose of this paper is to find outcomes

of all 2×n games of domineering under misère play. In general, misère play is much

less studied; although the standard definitions of addition, negation, equality, and

inequality can be applied, there are many problems with the algebra. For example,
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if G 6= 0, then G and −G never sum to zero in general misère play [7], and even

in restricted play (see Section 3), most games are not invertible. Another problem

is that knowing the misère outcome of two games gives no information about the

misère outcome of their sum [7]; in Section 3.1, we show that this property is

true even when restricted to domineering positions. For these and other reasons,

it is much more difficult to analyze misère games using the usual game theoretic

techniques. Indeed, our solution for 2× n boards is purely combinatorial.

The remainder of the paper is structured as follows. Section 2 presents the

solution for 2×n domineering. Section 3 considers a number of algebraic properties

of misere domineering, including outcomes of sums (3.1), invertibility (3.2), and

comparisons (3.3) of certain 2×n positions. Section 4 gives a summary and further

discussion.

2. Misère Outcomes of 2 × n Domineering

Let kG denote a disjunctive sum of k copies of the same position G. Consider the

following two games:

+

2G2×2 G2×4

Note that in normal-play, is its own additive inverse and + = 0; in misère

play, even restricting only to domineering positions, + is not zero.4 We claim

that Right will always prefer the 2 × 4 board5. The intuition is this: if Right has

a good strategy on 2G2×2, then when playing on G2×4, Right can just pretend the

board has been sliced down the middle, and follow his good strategy on 2G2×2. So

Right will do at least as well on the 2 × 4 board as on two disjoint 2 × 2 boards.

The intuition generalizes to more than two copies of G2×2, but note that it is not

obvious or immediate: who is to say that Left cannot force Right to play across the

imaginary boundaries? We will show that Right can control the game in this way,

when desired. To see when that might be, we first determine the misère outcome

of multiple copies of G2×2.

Lemma 1. The misère outcome of (2k)G2×2 is next-win, and the misère outcome

of (2k + 1)G2×2 is previous-win.

4To see + 6= 0 in misère play, we need a ‘distinguishing’ game X with o( + +X) 6=
o(0+X). Let X = 2G2×1. The misère outcome of + + + is P, while the misère outcome

of + is R.
5‘Right prefers G2×4 over G2×2 + G2×2’ is equivalent to the inequality G2×2 + G2×2 > G2×4.

We will show this is true (modulo a restricted set of games) in Section 3.3, using a result from [6].
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Proof. We show winning strategies for Right, and the strategies for Left follow by

symmetry. Right playing first on an even sum of 2× 2 boards should use his first k

moves to ‘claim’ half of the boards, placing one piece in each of k different boards.

Left cannot prevent this. Right should use the next k moves to play a second piece

in each of those boards (i.e., Right plays in all the positions he just created). In

total, Right places 2k pieces. During this time, there are exactly 2k moves available

for Left among the other k boards. Left as the second player will get the last move,

and so Right wins.

The same strategy works for Right playing second on an odd sum of 2×2 boards:

this time, after Left and Right have each made 2k moves, there is an extra 2 × 2

board remaining (or possibly two 2 × 1 boards), and it is Left’s turn next. Left is

forced to move to , and Right wins.

We now analyze 2 × n boards. A program was written in Python to determine

the outcome of m× n domineering boards under misère play (see the Appendix for

other computational results with m > 2). The following outcomes were determined

by hand and confirmed computationally:

n 0 1 2 3 4 5 6 7 8 9 10 11
o−(G2×n) N R P L N R P N N R R N

These initial cases do not indicate a pattern in the outcomes; fortunately, the

next 12 (solved computationally) do:

n 12 13 14 15 16 17 18 19 20 21 22 23
o−(G2×n) R R R R R R R R R R R R

As in normal play, Right appears to have the advantage in a 2× n domineering

board, for large enough n. Indeed, we will now show that for n > 12, all 2 × n

boards are Right-win. (Interestingly, in normal play, other outcomes are possible

until n > 28.) The strategy for Right depends on the congruency of n modulo 4,

and so we prove the result across four separate theorems (Theorems 1, 2, 3, 4).

To begin, we define some standards moves for Right in 2 × n domineering (see

Figure 1). Two Right pieces are adjacent if they are in the same row and occupy

consecutive columns, stacked if they are in the same two columns of different rows,

and staggered if they are in different rows and share exactly one column. We say

“Right makes a stacked move” to mean Right places a piece that creates a pair of

stacked pieces. In some of the strategies described below, Right places two adjacent

pieces in order to guarantee that he can make a staggered move later in the game.

We must show that Left cannot prevent Right from placing one or two pairs of

adjacent pieces, as needed, as long as n is sufficiently large; this is done in Lemma

2.

Lemma 2. In a game of domineering on an empty 2× n board:
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Figure 1: Adjacent, stacked, and staggered Right moves.

(i) Right moving first can place his first two pieces adjacent, if n > 6.

(ii) Right moving second can place his first two pieces adjacent, if n > 12.

(iii) Right moving first can place his first four pieces as two disconnected pairs of

adjacent pieces, if n > 19.

(iv) Right moving second can place his first four pieces as two disconnected pairs

of adjacent pieces, if n > 24.

Proof.

(i) If n > 6 then Right moving first can play in the middle of an empty 2 × 6

section of the board. Left can only reply on one side or the other, and then

Right’s second piece can be placed on the opposite side, adjacent to his first

piece. See Figure 2.

Figure 2: Right playing first in a 2× 6 can place two pieces adjacent.

(ii) If n > 12 and Left plays first, then there is an empty 2× 6 section on one side

or the other of Left’s first piece. By (i), Right can place two pieces adjacent

in that section.

(iii) If n > 19 then Right’s first move should be in the middle of the first 2 × 6

section of the board (i.e., across columns 3 and 4).

If Left’s first move is within that 2×6 section, Right should immediately place

the adjacent piece as in (i). Now, there is still at least an empty 2×12 section

of the board starting after column 7, and so Right playing second from here

can place another two adjacent pieces after column 7, by (ii). Note that Right
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may have to avoid the 7th column to ensure the pairs of adjacent pieces are

not connected.

If Left’s first move is not in the original 2×6 section, but rather somewhere in

columns 7 to 19, then as in (ii), Right can play in an empty 2×6 section within

the last 12 columns. Right can place his third and fourth pieces adjacent to

his first and second pieces (or in the other order, if threatened by Left).

(iv) If n > 24 then Right moving second can place a piece in the middle of the

first 2×6 section of the board, assuming (without loss of generality) that Left

placed her first piece in the second half of the board.

If Left replies within that section, Right will place his adjacent piece as in (i).

Left then makes a third move, with at most two in the latter 24 − 7 = 17

columns of the board (Right will avoid the 7th column to ensure the pairs

of adjacent pieces are not connected). At most two Left moves in a 2 × 17

section will necessarily leave an empty 2×6 section, with Right to move next,

so Right can place another two adjacent pieces by (i).

If Left does not reply in the first 2×6 section, then after her second move, Left

has placed two pieces in the rightmost 2 × 18 section of the board; this still

guarantees an empty 2 × 6 section in the rightmost 2 × 17 section (avoiding

column 7), in which Right can place his second piece. As in (iii), Right can

place his third and fourth pieces adjacent to his first and second (or second

and first, if necessary).

As noted above, Right’s strategy for G2×n will depend on the congruency of n

modulo 4. In several cases, the strategy will lead to a position of the form shown

in Figure 3: a 2 × n position whose empty squares consist of an equal number of

2 × 1 and 1 × 4 sections, where the 1 × 4 sections are not adjacent to each other

(but may be connected by one or more of the 2× 1 sections). Lemma 3 shows that

Right can always win these particular end-game positions.

Lemma 3. If the empty squares in a 2×n domineering position consist of an equal

number of 2× 1 and 1× 4 sections, with no two 1× 4 sections adjacent, then Right

can win this position playing first.

Proof. Right should play in the middle of each 1 × 4 section; meanwhile, Left has

no choice but to take the 2×1 sections one at a time. Right may temporarily create

a piece like or or , but Left will play in the 2× 1 section(s) of those

before Right runs out of 1× 4 middle moves, because there are the same number of

(2× 1)s as (1× 4)s. When Left takes the last 2× 1, there are no moves remaining

and Right wins.

We are now ready for the main results.
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(a)

(b)

(c)

Figure 3: Positions in 2 × n domineering whose empty squares consist of non-
adjacent 1 × 4 pieces and the same number of (possibly connected or connecting)
2× 1 pieces.

Theorem 1. If n ≡ 0 (mod 4) and n > 12 then a 2 × n domineering board is

Right-win under misère play. That is,

o−(G2×4k) = R, for n = 4k > 12.

Proof. Assume n = 4k > 12. If Right plays first on a 2×n board, he should pretend

that the board is cut into 2 × 2 pieces and play the winning next-player strategy

(as per Lemma 1). Right can do this by first placing k pieces anywhere along the

bottom row, effectively claiming k 2 × 2 boards, and then playing directly above

those k pieces. Left cannot prevent Right from making these stacked moves. With

each of the first k Right-Left moves, three bottom-row spaces are taken, so that

after Left’s kth move, exactly k of the 4k columns remain empty. Left will be forced

to take all k of these spaces as Right plays his k stacked moves in the top row, and

since Right went first, Right will run out of moves first.

Right playing second is not as straightforward; Right should not play as if the

board were cut into (2k)G2×2 because that is a next-win position. Right must

change the parity using a staggered move. To set himself up for a staggered move

at the end of the game, Right will place two pieces adjacent, which we know he

can do by Lemma 2 (ii). Here is Right’s strategy: place two adjacent pieces in the

bottom row and then place k−2 more bottom pieces, for a total of k bottom pieces,

as before. Since Left went first, after Right’s kth move there are 4k− 3k = k empty

columns. Now Left has to begin taking those empty columns. Right plays k − 2

stacked moves above all but his first two pieces, and after that there are two empty

columns remaining, as well as an empty 1× 4 section above Right’s first two pieces.

It is Left’s turn: she takes one column, leaving exactly one 1 × 4 and one 2 × 1,

possibly connected. By Lemma 3, Right wins from here with a staggered move.

We see for n ≡ 0 (mod 4) that Right playing first is ‘easy’ and involves only

stacked moves for Right, while Right playing second requires Right to break parity
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using a staggered move. We will see the same situation (but vice versa) for n ≡ 2

(mod 4). The hardest case is n ≡ 3 (mod 4), where staggered moves are required

for Right going first and second. It turns out that n ≡ 1 (mod 4) is the simplest

case: Right only ever needs to place stacked pieces, going first or second.

Theorem 2. If n ≡ 1 (mod 4) then a 2× n domineering board is Right-win under

misère play. That is,

o−(G2×4k+1) = R, for n = 4k + 1.

Proof. The case n = 1 is clear. For larger n = 4k + 1, Right playing first or second

should follow the ‘cut up’ strategy from the 4k case: that is, Right should place

his first k pieces in the bottom row and then place k stacked pieces. After each

player has made 2k moves, Right has occupied 2k columns and Left has occupied

2k columns, leaving exactly one column empty. If it is Right’s turn next, he has no

move and wins; if it is Left’s turn next, she takes the last empty column and then

Right wins.

Theorem 3. If n ≡ 2 (mod 4) and n > 22, then a 2 × n domineering board is

Right-win under misère play. That is,

o−(G2×4k+2) = R, for n = 4k + 2 > 22.

Proof. For n = 4k + 2 > 22, Right playing second should place k pieces in the

bottom row followed by k stacked moves in the top row. After Right’s (2k)th move,

each player has taken 2k columns, so that only 2 columns remain, with Left to

move. The columns could be adjacent, forming a 2 × 2 square, or not; either way,

Left moving next loses.

Recall that the first player in an odd sum of 2 × 2 boards not only loses, but

loses with another move to spare; e.g., if Right playing first here places only stacked

pieces, then Left will run out of moves and there will still be another 1× 2 position

remaining. So to prevent Left from winning, it will not be enough to make a single

staggered move as in the 4k case; Right will have to arrange to make two staggered

moves to force Left into the last move. Right should use his first four moves to place

two pairs of adjacent pieces in the bottom row, not all adjacent, as per Lemma 2

(iii). Right should then place another k− 3 pieces in the bottom row, for a total of

k + 1 moves (across 2k + 2 columns), and then place k− 3 stacked pieces above the

latter bottom moves. In this time, Left has taken 2k−2 columns, so that two empty

columns remain, along with two empty 1×4 sections above Right’s first four moves.

By Lemma 3, Right wins playing first from here with two staggered moves.

Theorem 4. If n ≡ 3 (mod 4) and n > 27, then a 2 × n domineering board is

Right-win under misère play. That is,

o−(G2×4k+3) = R, for n = 4k + 3 > 27.
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Proof. Assume n = 4k + 3 > 27. Right playing first will aim to set himself up to

make a staggered move at the end of the game. Since n > 6, Lemma 2 (i) tells us

that Right can place his first two pieces adjacent in the bottom row. Right should

then place another k− 1 pieces in the bottom row, for a total of k + 1 moves; after

these k + 1 Right–Left moves, 3(k + 1) spaces have been taken in the bottom row,

leaving (4k + 3) − (3k + 3) = k empty columns. Next, Right makes k − 1 stacked

moves above his latter k−1 bottom moves, while Left places in k−1 columns, leaving

exactly one empty column, along with one empty 1 × 4 section above Right’s first

two pieces. By Lemma 3, Right wins playing first from here with a staggered move.

Right playing second will set himself up to make two staggered moves at the end

of the game. By Lemma 2 (iv), Right playing second with n > 27 can use his first

four moves to place two pairs of adjacent pieces, not all adjacent, in the bottom

row. Right should then make another k− 3 moves in the bottom row, for a total of

k + 1; after these k + 1 Left–Right moves, there are (4k + 3)− 3(k + 1) = k empty

columns. Now Right makes k − 3 stacked moves while Left takes k − 3 columns,

leaving three empty columns, along with two empty 1 × 4 sections above Right’s

first four moves, with left to move. Left has to take one of the empty columns,

which leaves two empty columns and two empty 1 × 4s. By Lemma 3, Right wins

from here with two consecutive staggered moves.

With Theorems 1–4 and the base cases (n = 14, 15, 18, 19, 23) obtained compu-

tationally, we have the following main result.

Corollary 1. If n > 12 then a 2× n domineering board is Right-win under misère

play:

o−(G2×n) = R, for n > 12.

3. The Algebra of Misère Domineering

3.1. Sums

In normal play, outcomes of sums are somewhat dictated by the outcomes of the

summands: for example, the sum of two Left-win games is always Left-win, the

sum of a next-win and a Left-win is either Left-win or next-win, and more. An

interesting and unfortunate fact about misère play, first proven by [7], is that the

outcome of a sum of two games is completely independent from the outcomes of

each game: for any outcomes O1,O2,O3 ∈ {P,N ,L,R}, there are games G,H such

that

o−(G) = O1, o
−(H) = O2, and o−(G + H) = O3.

We have found that this property of misère games holds even if restricted to dom-

ineering; in fact, our examples (given in Table 1) are restricted to domineering

positions that fit within 2× n and n× 2 boards.
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L N P R

P + P + + ( + ) + +

P +N + + ( + ) + 0 +

P + L + + ( + ) + +

P +R + + ( + ) + +

N +N ( + ) + 0 + 0 ( + ) + ( + ) +

N + L 0 + + + +

N +R 0 + + + +

L+ L +
(

+
)
+ ( + ) + ( + ) +

L+R + + ( + ) + + ( + )

R+R + ( + ) + ( + ) + ( + ) +

Table 1: Outcomes of sums of domineering positions, demonstrating the lawless
addition of misère play.

3.2. Invertibility

For this and the next subsection, we need to define equivalence and inequality in

restricted game play. Two games are equivalent modulo U for a set (universe) of

games U if they can be interchanged in any sum of games from U without affecting

the outcome:

G ≡U H if for all X ∈ U , o(G + X) = o(H + X)[9].

Note that this equivalence relation is weaker than the usual equality of games, for

which U is taken to be any sum of game positions.

In general misère play (i.e., when U is the set of all games), G + (−G) is not

equal to zero for any nonzero G [7], but games may be invertible modulo restricted

universes. Let E be the universe of dead-ending games, defined by the following

property: if a player is currently unable to move in a position, then they are never

subsequently able to move in that position, even after play by the opponent. For

example, John Conway’s game Hackenbush is dead-ending, while Richard Guy’s

Toads and Frogs is not6. Domineering is dead-ending. From [8], we know all ends

6The position T F F has no available move for Left (Toad), but if Right (Frog) jumps,
Left will have a move.
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(games in which at least one player has no move) are invertible modulo E ; there-

fore, all 1 × n domineering boards are invertible. However, most positions are not

invertible, even modulo E . For example, the game ∗, which occurs as the board

in domineering, is not invertible modulo E 7.

It is an open question to classify all invertible dead-ending positions. We have

found the positions given in Theorem 5 to be the only modulo-E invertible domineer-

ing boards with game trees of depth 2 (i.e., games of rank 2). This was determined

computationally using a recursive test from [6] to check G + (−G) for equivalence

to zero modulo E , but we prove the invertibility here directly, with the definition of

equivalence.

Theorem 5. If G is a domineering position of rank 2 and G+ (−G) ≡E 0, then G

is one of the following boards or their negatives:

(1) (2) (3) (4) (5) (6)

Proof. We will show each of these positions satisfies G + (−G) ≡E 0; i.e., that

o(G +−G + X) = o(X) for all X ∈ E . For all other rank-2 domineering boards G,

the position G + (−G) can be distinguished from 0 with X = or X = .

(1) The position has the same game tree as + , and so is actually equivalent

to zero modulo E .

(2) The position has the same game tree as + , which we know to be

invertible as it is an end.

(3) To show − ≡E 0, we will show o( − + X) = o(X) for

all dead-ending games X. Suppose Left wins X playing first (playing second

follows analgously). Left should follow the same strategy on − +X;

if Right plays in the − component, Left can reply with the inverse, as

all options of are invertible, bringing that component to zero. Left then

resumes winning on X. If Right does not play in − , then when Left

runs out of moves in X, say at a left end X ′, she should play − +X ′

to + X ′, leaving a position with no Left moves and at least one Right

move. By the definition of dead-ending games, Left has no further moves, and

so wins.

(4) Because all options of are invertible, the proof for − ≡E 0 is almost

identical to the proof for (3). The only additional consideration is when Left

runs out of moves in X, say at X ′. At that point, Left should play in the

, bringing the position to + +X ′. From here, Right has at least two

moves and Left has only one, so Left will win.

7The game ∗ is not invertible in any universe containing the game ‘1’ ( in domineering).[1]
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(5) The proof for − ≡E 0 is similar, except that Right could play in

the − + X to − + X. Left cannot just play to − + X,

because − is not equivalent to zero. Instead, Left should take the and

leave − +X. If Right plays in − , Left can can bring that position to

zero and resume winning on X; otherwise, Left runs out of moves in X and

plays − to , leaving a left end with at least one move for Right.

(6) The proof for is nearly identical to the proof for .

3.3. Comparisons

Inequality modulo U is defined by

G >U H if for all X ∈ U , o(G + X) > o(H + X).

Comparability is much less common and much harder to prove in misère play than

in normal play. Even among just domineering positions, we cannot say that Left

would always prefer the zero game to the position — there are situations in which

Left would rather have an extra move than not, including when playing first on .

In Section 2 we claimed that + >E . We give the justification here.

It requires a series of inequalities that build upon each other and the hand-tying

principle. The hand-tying principle says that if G and H have identical Right

options, and the Left options of H are a nonempty8 subset of the Left options of

G, then G > H. This is true because if Left has a good move in H, then that same

move is available in G. Similarly, if G and H have identical Left options and the

Right options of G are a nonempty subset of the Right options of H, then G > H,

because Right prefers H.

The inequalities in Proposition 1 follow from Theorem 6, a weaker version of the

3-part comparison test for E proven in [6]. Let GL (GR) denote a single Left (Right)

option of G.

Theorem 6. If G,H ∈ E and

(1) for every GR there is an HR such that HR 6E GR, and

(2) for every HL there is a GL such that GL >E HL,

then G >E H.

Proof. Let X ∈ E and assume Right wins G+X. We must show Right wins H +X.

Right should follow his strategy for G + X. If at some follower H + X ′ the good

Right move in G+X ′ would be GR +X ′, then there is an HR 6E GR, so Right will

do just as well playing to HR + X ′. Otherwise, if Right does not move in the H

8This is required in misère play; in normal play, inequality holds even if this set is empty.
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component first, then at some point Left moves to HL +X ′. But for this HL there

is a GL >E HL, so HL + X ′ is better for Right than GL + X ′, and Right would

have a winning reply to any such GL + X ′. So Right wins from HL + X ′.

The following inequalities can now be verified using the hand-tying principle,

Theorem 6, and earlier inequalities.

Proposition 1. The following comparisons are true modulo E, the set of dead-

ending games.

1. + >E (i.e., 0 >E )

2. + >E

3. + >E

4. + >E

Note that ‘splitting’ a board does not always produce a better game for Left.

For example, Left does not prefer + over ; playing each in a sum with ,

Left likes better.

4. Summary and Discussion

In this paper we have shown that all 2×n domineering boards are Right-win under

misère play, after n > 12. We have also found some interesting properties for misère

domineering more generally: e.g., even among only 2×n and n× 2 positions, there

is no predictability about the outcome of G + H based on the outcomes of G and

H. We have identified the invertible rank-2 domineering boards and have proven

some inequalities among 2× n positions, all modulo dead-ending games.

The strategy described for 2×n boards has Right placing two adjacent pieces at

the start of the game, in order to guarantee that he can make a staggered move at

the end of the game. We suspect it is also possible (and more efficient) for Right to

make the staggered move(s) right away. This would reduce the lower bounds for n,

which come directly from Right needing room to place one or two pairs of adjacent

pieces (Lemma 2). This strategy seems to work for small boards that we have tried

by hand: Right can either box in the 2× 3 section containing his staggered moves

or can force Left to do so, which makes the board effectively one column shorter,

or if Left prevents this, then we can still find a way for Right to force the win.

However, we could not find a general argument to show Right can always win with

this strategy.

For larger rectangular m×n boards with n > m, our intuition is that the outcome

will always skew in favour of Right, if n is sufficiently larger than m. Interestingly,
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the computational results for m × n boards in Appendix A, Table 2, suggest that

3×n boards become Right-win even sooner than 2×n boards; however, there may

be other outcomes for m = 3, n > 12 that we have not observed.

The next steps for this work would be to determine outcomes for 3×n and larger

boards, and to consider other interactions, such as comparisons and outcomes of

sums, among small (say rank 2 or 3) domineering positions. For the latter, continued

advancements in the larger universe of dead-ending games — e.g., determining which

games are invertible — may provide interesting insights into the algebra of misère

domineering.
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Appendix

Using our (modest) domineering program, we have the following outcomes for m×n
domineering boards under misère play.
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m
n 2 3 4 5 6 7 8 9 10 11 > 12

2 P L N R P N N R R N R
3 R P P L N R R R R R ?
4 N P N P N N N R ? ? ?
5 L R P N R N ? ? ? ? ?
6 P N N L N ? ? ? ? ? ?

Table 2: Misère outcomes for m× n domineering.


