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Abstract

Genetic programming is the practice of evolving formulas using crossover and mu-
tation of genes representing functional operations. Motivated by genetic evolution
we introduce and solve two combinatorial games, and we demonstrate some advan-
tages and pitfalls of using genetic programming to investigate Grundy values. We
conclude by investigating a combinatorial game whose ruleset and starting positions
are inspired by genetic structures.

1. Introduction

The fundamental unit of biological evolution is a gene, which represents a small

piece of information, and the genome is a collection of genes that encodes an or-

ganism’s complete genetic information. Within the context of biological evolution,

the genes of the most fit organisms survive and are passed on to the next genera-

tion, with their chromosomes modifying over time to better fit their environment

through competition. This modification occurs through the processes of mutation

and crossover, wherein individual genes are altered and pairs of chromosomes trade

information, respectively, as organisms pass down their genetic information to their

progeny (see Figure 1).

This set of mechanisms in biological evolution has been co-opted as a model for

algorithmic development of heuristic solutions to a variety of problems, like antenna

design [14], the Traveling Salesman Problem [7], and graph coloring [10]. In these

problems a chromosome encodes information about the structure and properties of

1Supported by the Natural Sciences and Engineering Research Council of Canada (funding
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Figure 1: A pair of chromosomes undergoing crossover then mutation. In general,
as exemplified by a grey gene, this process is not restricted to two values.

working solutions. These solutions are the results of genetic algorithms. When the

chromosome instead represents a function or program the process is called genetic

programming. Genetic programming is often used when a user has a collection of

data points and is looking for a function to fit them. The fitness of a particular

program is therefore related to the error between the data points and the program.

This mechanism is similar to that of regression in statistical methods (Figure 2).

Given a set of data points, both tools are used to minimize the error between these

data points and the associated function values. Statistical regression requires a

predefined model in which the coefficients are optimized. In genetic programming,

the function itself is iteratively adjusted, via specified operations called crossover

and mutation, using a pool of elementary functions and constants. No predefined

model is necessary. If the resulting function better fits the data, the change is

likely to be accepted and the process continues. The process stops evolving based

on a predetermined number of iterations or when a particular fitness threshold is

reached.

Figure 2: A curve with poor fit to data points (left) and another with much better
fit (right).

There are a number of different structures used in genetic programming to rep-
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resent a chromosome, the simplest being a linear structure and a tree structure.

A linearly organized chromosome can be visualized much like a biological chromo-

some (see Figure 1). One example of such a structure is in [16], which introduces

Multi-Expression Programming. Chromosomes represented by trees have some ad-

vantages over the linear approach, and we will discuss them further in Section 1.1.

As the structures representing a chromosome undergo crossover and mutation, the

functions associated with them exhibit smaller errors and better fit the goal data.

Genetic algorithms have been applied to combinatorial games, (see [6, 13, 18]).

However, these efforts have been focused on using genetic programming to develop

strategies rather than finding a formula for the Grundy values. We are interested

in examining whether genetic programming could be a useful tool for determining

values of combinatorial game positions. The only model for this type of project

in the literature is in [16], which uses the Multi-Expression Programming model

with a linear chromosome. This method does not precisely fit our needs, as the

author of that paper focuses on the outcome class classification problem instead of

Grundy values, and restricts their investigation to nim. However, the project and

its success serve as a strong motivator for the application of genetic programming to

combinatorial games, and we hope we have done it justice in extending their results

and adding to the body of work combining these two mathematical endeavors. An

automated conjecturing tool was examined in [6] within the context of the game

chomp, also focused on outcome classes.

Recall that the Grundy value of an impartial game position is the smallest non-

negative integer not included in the Grundy values of its options [19, 11]. For

more information about combinatorial game theory, see [1, 2, 3, 4, 5, 8]. In this

project we generate data points of the form (H, g), where H ∈ Zn is a list of

integers representing a game position, and g ∈ Z is the associated Grundy value.

A key challenge of this project is the fact that heuristics are not often useful for

calculating Grundy values. In truth, either a function completely determines the

value of a game or it is incorrect. This leaves us with the difficult task of devising

a fitness function that represents distance, not a natural concept in the space of

impartial game values, and at the same time leads to eventual convergence with an

error of zero.

The paper proceeds as follows. We first give necessary background for genetic

programming, framed within the context of the Python package gpLearn and the

methodology for the conducted experiments. We then introduce, in sequence, three

impartial rulesets motivated by genetic structures. The first two games use simpli-

fied structures to allow for computational analysis. In Section 2, we utilize gpLearn

as a tool to help conjecture a pattern within the sequence of game values. This

then points us in the direction of the known game kayles, to which we prove its

equivalence. Next, in Section 3, we introduce a two-point crossover game and again

implement our computational methods to obtain conjectured formulas for Grundy
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values based on the number of heaps. Although this alone does not prove the gen-

eralized formula, the program provides a direction for the structure of a general

formula which we prove in Theorem 3.2. Lastly, we examine a game whose ruleset

is inspired by more typical genetic changes, and includes both crossover and muta-

tion moves. In Theorem 4.3 we prove its equivalence to a subset of arc kayles

positions and in Theorem 4.5 we prove their game values. We conclude with future

directions.

1.1. Genetic Programming: Methods

Since we are interested in data points that are computationally inexpensive to de-

termine, we have chosen to use the Python package gpLearn [20]. This package

uses the tree model of chromosome representation, introduced in the introduction

to Section 1, wherein each leaf is associated with a primitive (a constant or a sin-

gle input parameter), and each internal node a function on its child node(s). The

root node is therefore recursively associated with a single function on the set of

primitives (see Figure 3).

Figure 3: A chromosome in tree format representing the function f(x, y) = ln(2+x)
x(0−y) .

Mutation is represented by pseudo-randomly replacing a node with a different

function or primitive (or one of another set of mutation-like actions), as appropriate.

Crossover between chromosomes is enacted by swapping sub-trees.

For the games in Sections 2 and 3 we examined a number of different sets of

hyper-parameters, and the most reasonable for both convergence and computation

time were heap sizes up to 10 on positions with anywhere from one to five heaps.

The package gpLearn is intended for fitting real-valued functions of several real

variables to data points using standard elementary functions and binary operations

over the reals. We modified the default set of functions to instead focus on discrete

functions of several discrete variables. We wrote and included the following binary

and unary operations, which operate bitwise on integer inputs: XOR, AND, OR, NOT.

We also included MOD, LOG2, and PLUS1, whose operations are self-explanatory. Fi-

nally, we introduced logical operators EQUAL, LESS, and GREATER to return 0 for

False and 1 for True. Default functions included SUB for subtraction, ADD, TIMES,
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and DIVIDE. Our fitness function computed the total absolute difference between

each genetic program and the computed Grundy values, so that a lower fitness value

represents a better fit, although we experimented with measuring distance using the

nim-sum.

Populations ranged from 1,000 to 10,000 individual programs, and we restricted

most runs to 20 generations. Elites, relatively highly fit programs in each generation,

were retained unmodified between generations. We also experimented with rates of

mutation, settling on higher values to prevent getting stuck in local minima.

2. A Single-point Crossover and Mutation Game

There are two primary methods of crossover used in genetic algorithms, one-point

and two-point. For the former, consider a pair of bit strings of length n, B1 =

(a1, . . . , an) and B2 = (b1, . . . , bn). An integer k ∈ [1, n) is chosen pseudo-randomly,

and the sub-strings (a1, . . . , ak) and (b1, . . . , bk) are swapped, leading to the new

bit strings

B′1 = (b1, . . . , bk, ak+1, . . . , an), B′2 = (a1, . . . , ak, bk+1, . . . , bn).

After crossover there is a possible mutation, depending on the chosen mutation rate,

turning, say, B′1 into B′′1 = (b1, . . . , bi−1, 1− bi, bi+1, . . . , bk, ak+1, . . . , an).

Motivated by these processes we define a new impartial combinatorial game, ga1.

In order to simplify both rules and analysis we define a position as a single bit string.

A mutation move flips a single bit in the string, and while there is no real crossover

in a single string we consider the flip of a sequence of bits to be representative of

this operation.

Ruleset 2.1 (ga1). A position in ga1 is a bit string of length n. There are two

move options. Crossover consists of choosing an integer k, 1 ≤ k ≤ (n− 1), wherein

all bits from position 1 through k are flipped. A mutation move is simply the flip of

any single bit in the string. A move is legal only if the total number of sub-strings

of the form 01 and 10 increases.

This latter restriction, that ‘disorder’ increases, serves two purposes. Firstly, it

ensures that the game ends in a finite number of moves. Secondly, it represents the

tendency of chromosomes to combine in ever more complex ways over time. We

define the condition of increasing sub-strings 01 and 10 formally as follows.

Definition 2.2. The entropy of a bit string game is the number of sub-strings of

the form 01 and 10.

The game ga1 is equivalent to a heap game in the following way. If we consider

a run in a bit string to be a maximal sub-string consisting of all 0s or all 1s, then
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any bit string can be converted into a list of integers representing run sizes. For

example, the string 001000111 becomes (2, 1, 3, 3). Although this representation

loses information about which bits are associated with each integer, the symmetry

of the ruleset makes this lost information unnecessary to the game analysis. We

can simplify the ruleset further by Proposition 2.3.

Proposition 2.3. If H = (h1, . . . , hk) is a list of heaps representing a bit string in

ga1, then the following hold.

1. Any heap equal to 1 can be removed.

2. The order of the heaps does not affect the Grundy value.

3. Each move is equivalent to one of the following.

(a) Split any heap hi > 3 into two heaps of size at least 2 each.

(b) Remove 1 from any heap hi ≥ 3.

(c) Remove 1 from any heap hi ≥ 5 and split the remainder into two heaps

of at least 2 each.

(d) Remove any heap of size 2 or 3.

Proof. We will prove each part of Proposition 2.3 separately.

1. A single bit between two runs of the opposite value or at the end of a string is

represented by a heap of size 1. No move that increases entropy has an effect

on this heap, and thus its removal has no effect on game play nor the Grundy

value of the position. Thus it can be removed.

2. Say that heaps hi and hj switch positions in H resulting in H ′. Any mutation

or crossover point k chosen within hi in H is equivalent to the index k′ in

H ′, where k′ = k − (hj + hj+1 + · · · + hi−1) if hj precedes hi in H, and

k + (hi+1 + · · · + hj−1 + hj) otherwise. This results in identical game play.

Therefore the order of the heaps in H does not affect the game value.

3. For the move equivalences, note that in order to make a legal crossover move

in ga1 a player must choose the crossover point in the midst of a run. This

effectively splits the run into two, and leaves the others alone (other than

switching the bits in the affected sub-string). This is equivalent to splitting a

heap into two and if one or both of the resulting heaps have size 1 then they

can be removed from play. Similarly, a legal mutation move must also occur

in the midst of a run, splitting a heap into either two or three with at least

one heap of size 1. Again, these size 1 heaps can be removed.
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As a direct result of Proposition 2.3 we need only consider single heap positions,

since the Grundy value of a list of heaps is equal to the nim-sum of the Grundy

values of the individual heaps.

The package gpLearn was employed as described in Section 1.1. In particular,

game values were computed using positions of the form (h1, h2, . . . , hn) with varying

values for the number of heaps n and each heap hi. These solutions were set as

ground truth for the genetic programming implementation. The system generated

random chromosomes, each associated with a function from Nn to N, and utilized

crossover and mutation to progressively reduce the error between the values of these

functions and the ground truth values. While no exact formula was found, after 14

generations a local minimum on the total absolute error was reached. Modifying

hyper-parameters and running for another 7 generations led to the formula

MOD(1+h,MOD(h+1,3) + 1) - MOD(h-1,4) + MOD(1+h,3) + 4

where h is the size of a single heap and MOD(x,n) represents x (mod n). While

not a particularly accurate formula, we do see the presence of both modulo 3 and

modulo 4. This leads us to examine the exact computed Grundy values closely

for periodicity of order twelve and find a striking similarity with the values of the

combinatorial game kayles.

Ruleset 2.4 (kayles [9]). In kayles a player may remove one or two stones from

any heap, and if any stones remain these may be split into two heaps.

kayles has octal code 0.77 [8] and has been well-studied. In particular, it is

known that the Grundy values for a single heap game of kayles of size n is periodic

with period 12 after n = 71 [12].

Theorem 2.5. The Grundy value of a single heap game of size n in ga1 is equal

to the value of a heap of size (n− 1) in kayles.

Proof. This is easy to compute for n ≤ 3. If n ≥ 4 then the options are {(j, n− j) :

2 ≤ j ≤ (n − j)} ∪ {(k, n − k − 1) : 2 ≤ k ≤ n − k − 1} ∪ {(n − 1), (n − 2)}.
The options for an (n − 1)-sized heap in kayles are {(j, n − j − 2) : 1 ≤ j ≤
(n − j − 2)} ∪ {(k, n − k − 3) : 1 ≤ k ≤ n − k − 3} ∪ {(n − 2), (n − 3)}. We can

therefore consider a move in ga1 to be equivalent to the following process:

1. Remove a stone from a heap,

2. Make a kayles move in the resulting heap of size (n− 1),

3. Add a stone back to all resulting heaps.

Therefore the game ga1 reduces to a game of kayles, and thus the Grundy

values are computable in the same manner as those for kayles.
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While our genetic programming method did not determine a precise error-free

formula for the Grundy values of ga1, it did inform our understanding of the game

by pointing us to its periodic nature.

3. A Two-point Crossover Game

Next we consider a similar impartial game based on genetic crossover, this time

using two positions instead of one. Consider a pair of bit strings

B1 = (a1, . . . , an) and B2 = (b1, . . . , bn).

If 1 ≤ x < y ≤ n are integers then the two-point crossover using positions x and y

results in the bit strings

B′1 = (a1, . . . , ax−1, bx, . . . , by−1, ay, . . . , an)

and

B′2 = (b1, . . . , bx−1, ax, . . . , ay−1, by, . . . , bn).

That is, a sub-string with matching indices from each bit string is swapped. We wish

to define an impartial game motivated by two-point crossover as a move mechanic.

As we did with ga1, we play only in a single bit string. This also means that

defining mutation-type moves is redundant since any such move would be equivalent

to crossover with x = y − 1.

Ruleset 3.1 (ga2). A position in ga2 is a bit string of length n. On their turn

a player chooses two integers x, y ∈ [1, n], x < y, wherein all bits from position x

through (y − 1) are flipped. A move is legal only if the total number of sub-strings

of the form 01 and 10 increases.

As with ga1 we can reduce ga2 to a game on heaps. Note that, again, a run

of bits can be represented by an integer. A legal move requires that at least one of

{x, y} is chosen within a run. The possible options are

1. Both x and y are within the bounds of a single run, equivalent to splitting a

single heap into three heaps,

2. x and y are each within the bounds of different runs, equivalent to splitting

any two heaps into two each,

3. x and y are chosen so that exactly one single heap is split into two.

Just as with Proposition 2.3 we see that heaps of size 1 are negligible, as is the

order of the heaps. However, since players can alter multiple heaps in a single
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move, we cannot compute the Grundy value by simply computing the nim-sum of

the Grundy values of single heap games.

As in Section 2, we applied gpLearn with the modified function list to computa-

tionally determined Grundy values, without first examining these values. Once the

number of non-zero heaps was included as a primitive value in games with more

than two heaps (e.g. (3, h1, h2, h3) is a three-heap game, while (4, h1, h2, h3, h4) rep-

resents a four-heap position), genetic programming proved much more successful,

yielding the formulas below with 100% accuracy:

1. For a single-heap game with heap size h,

MOD(SUB(h,1),PLUS1(PLUS1(1)))

which is equivalent to (h− 1) (mod 3).

2. With two heaps h1, h2

MOD(PLUS1(SUB(ADD(h1, h2), XOR(h1, h1))),

PLUS1(PLUS1(EQUAL(h1, h1))))

which is equivalent to (h1 + h2 + 1) (mod 3).

3. For a three-heap game with inputs 3, h1, h2, h3 we found

MOD(ADD(ADD(h3, h1), h2), ADD(3, SUB(0, 0)))

which reduces to (h1 + h2 + h3) (mod 3).

While these results themselves do not provide a generalized formula, they do

generalize easily to the following.

Theorem 3.2. Let H = (h1, . . . , hn) be an n-heap position in ga2, and let t be

the smallest non-negative integer such that (n + t) ≡ 0 (mod 3). Then the Grundy

value of H is

(
t +

n∑
i=1

hi

)
(mod 3).

Proof. Note first that while we can eliminate heaps of size 1 in our analysis of ga2

just as we did in Proposition 2.3 for ga1, we are not compelled to do so. In fact,

not removing them makes for a simpler analysis here.

In the case of a single stone it is clear that the Grundy value is 0 as no moves

are possible. It is also easy to see that the claim holds when all heaps have size

1 except possibly a single heap of size 2, so we need only consider the remaining

cases. We proceed now by minimum counter-example. Assuming that the claim

is false, let m be the smallest integer such that not all games on m-many stones

follow the statement of the theorem. Among all such games with m stones, let

H = (h1, . . . , hj) be a position with the greatest number of heaps.

For a positive integer x, let {x1, x2} and {x1, x2, x3} represent all sets of positive

integers satisfying x1 + x2 = x and x1 + x2 + x3 = x. For any i, k with 1 ≤ i <

k ≤ j, the options of H are H \ {hi} ∪ {hi1, hi2}, H \ {hi} ∪ {h1
i , h

2
i , h

3
i }, and

H \ {hi, hk} ∪ {hi1, hi2, hk1, hk2}; i.e., all positions in which any one heap, hi, of
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sufficient size is removed and replaced with two or three heaps whose sum is hi, and

those in which any two heaps hi, hk ≥ 2, are removed and each replaced with two

heaps whose sums are hi, hk respectively.

All options contain m total stones since we have not removed any. Further,

every option has more heaps than does H, and therefore, by the choice of minimal

counter-example, adhere to the statement of the claim. Thus their Grundy values

are all equal to (m + t− 1) (mod 3) and (m + t− 2) (mod 3). If there is a heap of

size at least three then it can be split into two heaps via a crossover move or three

heaps via mutation (changing only one bit). Similarly, if there are two heaps of

size at least two then these can become four heaps through crossover or three heaps

through mutation. Therefore H has options with one more and two more heaps,

and hence both values (m + t− 1) (mod 3) and (m + t− 2) (mod 3), respectively,

are present among the options. Thus, H must have Grundy value (m+ t) (mod 3),

contradicting the choice of H as a minimal counter-example.

Once again, as with ga1, our genetic programming implementation informed a

conjecture about the Grundy values of ga2, which we were then able to prove. In

this case the formula provided by the system was exact.

4. The Crossover-Mutation Game

In order to represent both crossover and mutation more accurately, we now consider

a game played on a pair of bit strings.

Ruleset 4.1 (crossover-mutation (cm)). A position in crossover-mutation

is a pair of bit strings of length n, B1 = (a1, . . . , an) and B2 = (b1, . . . , bn). There

are two move options. Crossover consists of choosing an integer k, 1 ≤ k ≤ (n− 1),

wherein all bits 1 through k from B1 are swapped with the bits 1 through k of B2.

In particular, leading to the new bit strings

B′1 = (b1, . . . , bk, ak+1, . . . , an), B′2 = (a1, . . . , ak, bk+1, . . . , bn).

Mutation involves choosing a single gene ci from either of the bit strings and flipping

it to 1 − ci. In both cases, the move is legal if the total number of sub-strings of

the form 01 and 10 increases.

A position in crossover-mutation is composed of a pair of binary strings, in

contrast to the single string for each of ga1 and ga2. This results in a higher di-

mensional domain space for game positions, even when binary strings are converted

to heaps as above. Our genetic programming approach proved unable to account

for so many inputs and, hence, we used standard CGT methods.
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a1 a2 a3 a4

a1 a2 a3 a4va3a4

vb3b4

e3,4

b1 b2 b3 b4

b1 b4

Figure 4: Example of an arc kayles position which is equivalent to a position in
crossover-mutation.

Firstly, we note a reduction to a known combinatorial game ruleset. All positions

of crossover-mutation are equivalent to certain positions from another game

called arc kayles. We first present the ruleset, then prove the equivalence.

Ruleset 4.2 (arc kayles [17]). Let G be a graph. On a player’s turn, they remove

an edge of G along with all edges incident to it.

Theorem 4.3. Let G be a cm position. G is equivalent to an arc kayles position.

Proof. Let GCM be a cm position of length n as B1 = (a1, . . . , an) and B2 =

(b1, . . . , bn). We will first construct the arc kayles position, GAK . Then we will

prove its equivalence by showing that there is a bijection between the options of the

games.

First consider B1 of GCM . For each mutation, its representation in GAK is an

edge. Edges are incident in GAK if the corresponding bits in GCM were adjacent in

B1. Similarly for B2. We label the edges of GAK by the corresponding bit labels in

B1 or B2 respectively. For the crossover moves in GCM , if there exists a crossover

move at ai, ai+1 and bi, bi+1 then in GAK there are vertices, call them vai,ai+1
and

vbi,bi+1
, between respectively labelled edges. Denote the edge connecting vai,ai+1

and vbi,bi+1 by ei,i+1. See Figure 4 for an example of the equivalence in which we

have represented the bits as colored and uncolored vertices.

To show that GAK is equivalent to GCM via this construction, we need to show

that there exists a bijection between the options. In particular, that GCM −GAK =
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ai−1 ai ai+1

bi−1 bi bi+1

ei,i+1ei−1,i

ai−1 ai ai+1

bi−1 bi bi+1

ai−1 ai ai+1

bi−1 bi bi+1

ei,i+1ei−1,i

ai−1 ai ai+1

bi−1 bi bi+1

Figure 5: Mutation: The result of a mutation move at ai in crossover-mutation
(top right) and the corresponding resulting position after a move in arc kayles
(top left). Crossover: The result of a crossover move at i − 1 in crossover-
mutation (bottom right) and the corresponding resulting position after a move in
arc kayles (bottom left). Dashed lines represent the edges which were eliminated
by moving in arc kayles.

0. Since the rulesets are impartial, we consider GCM+GAK . Suppose the first player

moves in GCM with a mutation at ai. By the existence of this mutation, it means

that both ai−1 and ai+1 were the same as ai (if they exist), otherwise the entropy

would not have increased. After the turn, neither can be mutated thereafter because

again, it would not increase the entropy. Also, this move disallows future crossover

at ai because it will not increase the entropy. Player 2 responds by removing the

edge ai ∈ GAK . This has the effect of removing all incident edges, in particular,

ai−1, ai+1, ei−1,i, and ei,i+1, if they exist (see Figure 5). If instead Player 1 chose

a crossover move in GCM at position i− 1, this eliminates the possibility of future

mutations at positions ai, ai−1, bi, and bi−1. The corresponding move for Player 2

is to respond in GAK by removing the edge ei−1,i, which also removes all edges ai,

ai−1, bi, and bi−1 (see Figure 5).

If instead Player 1 moved in GAK , we simply reverse the roles in the above

argument and Player 2 will always have a response. Thus Player 2 will win this

game under normal play. Hence GCM and GAK are equivalent.
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Figure 6: An arc kayles position; equivalent to a position in crossover-
mutation when h0 is present. Here the dashed line represents an edge that may
or may not be present.

If the cm position is of a certain form, in particular every entry ai of B1 is the

same, and every entry of B2 is 1 − ai, the proven equivalence to a subset of arc

kayles positions allows us to immediately deduce the game values.

Theorem 4.4 ([4]). Let G be a position in arc kayles in the form of a 2 × n

grid graph. Then G has value 0 if n even and value ∗ if n odd. Furthermore, this

game value does not change under the addition of up to two tufts (i.e., induced stars

whose center is a vertex of the grid graph).

We can extend this result to find values for other cm positions.

Theorem 4.5. Let G(k) be a position in arc kayles in the form of a 2× k grid

graph with pendant edges adjacent to 3 or 4 of the four corners (see Figure 6). Then

G(2k + 1) has game value ∗2 if k ∈ {0, 1} and ∗ if k ≥ 2, and G(2k) has value 0

for all k ≥ 1 when h0 is present.

Proof. Note that if k ≤ 1 then the possible values of G(2k + 1) are easily demon-

strated by exhaustion. The value of G(2k) is just as easily found to be in P by

considering an involution strategy, whereby the second player responds to a play on

edge e with a play on the edge equivalent to e under 180◦ rotational symmetry. We

now proceed by induction on k to find the remaining values of G(2k + 1) whether

or not edge h0 is present.

Let e be an edge in G(2k + 1), and consider H(e) to be the option yielded by

play on e (see Figure 7). We demonstrate that no option of G(2k + 1) has value ∗.

H(h1): Play on edge x results in a graph of the form 2×(2k−1) with three pendant

edges. If k is sufficiently large this graph has value ∗ by inductive assumption, and

hence H(h1) does not have value ∗. Otherwise, the value can be checked exhaus-

tively for the base case of G(5), when k = 2, to have value ∗ with or without the
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Figure 7: The options of G(2k + 1) from Figure 6.

presence of h0. Hence, H(h1) does not have value ∗.

H(h2): Play on the edge x results in a position with value ∗ by Theorem 4.4. There-

fore H(h2) does not have value ∗.

H(h3): If h0 is not present then play on edge y yields a path with value ∗ discon-

nected from a 2× (2k − 2) grid graph with two pendant edges which, by Theorem

4.4, has value 0. If h0 is present then play on edge z yields the sum of a small graph

with value ∗ and a 2× (2k − 4) grid graph with two pendant edges. In both cases,

the resulting sums are ∗. Therefore, H(h3) does not have value ∗.

H(h4): Here h4 can be any horizontal edge to the right of h3. Play on edge w

results in a game with a sum of two positions with opposite parity. Hence has value

∗+ 0 = ∗ by Theorem 4.4, so H(h4) does not have value ∗.

H(v1): This graph has value 0 by Theorem 4.4.

H(v2): If h0 is present then we have the sum of a path with value ∗2 and a game

with value ∗ by Theorem 4.4. If h0 is not present then the path has value ∗. So

H(v2) has value ∗3 or 0.

H(v3): We invoke Theorem 4.4 yet again, as the resulting graph is a pair of grid

graphs with one or two pendant edges each, both with value ∗ or both with value

0. Therefore H(v3) has value 0.



INTEGERS: 21B (2021) 15

Since no option of G(2k + 1) has value ∗ and G(2k + 1) ∈ N, we see that it has

value ∗ for k ≥ 2.

Theorem 4.5 leads directly to the following corollary about a family of crossover-

mutation positions.

Corollary 4.6. The cm game composed of a length-n string of all 1s and a length-n

string of all 0s has value 0 if n is odd, ∗2 if n ∈ {2, 4}, and ∗ otherwise.

Proof. This position is equivalent to the arc kayles position G(n − 1) with h0

present, as indicated in Theorem 4.5.

It turns out that cm is also closely related to another well-studied game.

Ruleset 4.7 (cram [4]). In the impartial game cram players take turns filling a

pair of empty orthogonally adjacent spaces in a grid. See Figure 8.

Figure 8: Example of a 3× 5 cram position that is equivalent to the arc kayles
and cm positions in Figure 4.

The reader may recognize cram as the impartial version of domineering. All

cm positions are also associated with 2 × n cram positions, except for a few with

extra pendant edges which, if realized in cram, require a board of width at least

three. This association is produced by first considering the associated arc kayles

position. See Figure 8 for a cram position which is equivalent to the arc kayles

position pictured in Figure 4. Note that this position cannot be realized by a 2× n

cram position, for any n.

To a cm position (B1, B2) with B1 = (a1, . . . , an), B2 = (b1, . . . , bn), we associate

an arc kayles position as above, resulting in a subgraph of a 2×(n−1) grid graph

with up to four pendant edges at the corners. A 2 × n grid graph in arc kayles

is equivalent to a 2× n grid in cram, as the removal of a vertical (horizontal) edge

and its neighbors relates to adding a vertical (horizontal) game piece to the cram

board. A single vertex missing from this position is equivalent to a blocked square

in the associated grid, and the pendant edges associate to extra spaces that each

share an edge with one of the four corner spaces, without sharing edges with any

other spaces.
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Most remaining cm positions are equivalent to 2 × n positions in cram which,

while remaining unsolved, have been addressed in the literature [4]. It is worth

noting that all cm positions in which no crossover move is possible are simply rep-

resented by a disjunctive sum of paths in arc kayles, whose values are known [15].

5. Conclusion and Further Research

We have seen the possible application of genetic programming to the determination

of Grundy values of impartial combinatorial games. In addition, we have seen it both

provide an exact function and simply inform our own mathematical analysis. Note

that the game for which it proved most useful, ga2, could likely have been solved

without the use of genetic programming and instead through a simple examination

of the computed Grundy values. But we have also seen that it was solved through

the use of genetic programming, and therefore this method could prove useful in the

future. At the very least, it could be utilized to reduce the time and effort taken to

conjecture formulas for Grundy values.

We are curious whether or not genetic programming can be used for problems

within CGT that a mathematician simply examining a list of values is unlikely to

solve. To answer this we suggest more efforts into this practice. It will be very

useful, for example, to compile a database of impartial combinatorial games with

known and as yet unknown solutions. This could help inform the choice of default

functions to include in future genetic programming attempts.

There are modifications that we suggest be made to future GP for CGT projects.

Firstly, it would be beneficial to develop a more robust fitness function. As there

is no obvious metric over the set of nimbers outside of the nim-sum, an analytical

approach to metrics over impartial games would be helpful. Secondly, the method

for fitness employed in [16] does not use pre-computed data points at all. Instead the

author determines the fitness of a program by comparing the computed outcome

classes of a set of positions with those of its options, and relating the fitness to

the number of deviations from the basic tenets of impartial games that are found

among these computations. Something similar could be used for Grundy value

programming, involving the mex (minimum excludant) function. However, the

distance between actual value and computed value remains a possible stumbling

block.
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