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Abstract

The Sprague-Grundy theory for finite games without cycles was extended to general

finite games by Cedric Smith and by Aviezri Fraenkel and coauthors. We observe

that the same framework used to classify finite games also covers the case of locally

finite games (that is, games where any position has only finitely many options). In

particular, any locally finite game is equivalent to some finite game. We then study

cases where the directed graph of a game is chosen randomly, and is given by the tree

of a Galton-Watson branching process. Natural families of offspring distributions

display a surprisingly wide range of behavior. The setting shows a nice interplay

between ideas from combinatorial game theory and ideas from probability.

1. Introduction

Among the plethora of beautiful and intriguing examples to be found in Elwyn

Berlekamp, John Conway, and Richard Guy’s Winning Ways is the game of Fair

Shares and Varied Pairs ([1, Chapter 12]). The game is played with some

number of almonds, which are arranged into heaps. A move of the game consists of

either

• dividing any heap into two or more equal-sized heaps (hence “fair shares”); or

• uniting any two heaps of different sizes (hence “varied pairs”).

The only position from which no move is possible is the one where all the almonds

are completely separated into heaps of size 1. When that position is reached, the

player who has just moved is the winner.

Fair Shares and Varied Pairs is a loopy game: the directed graph of game

positions has cycles, so the game can return to a previously visited position. The

way in which the loopiness manifests itself depends on the number of almonds:
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• With 3 or fewer almonds, there are no cycles. The game is non-loopy.

• With 4 to 9 almonds, the graph has loops, but all positions are equivalent to

finite nim heaps. Hence in any position, either the first player has a winning

strategy, or the second player has a winning strategy; furthermore, the same

is true for the (disjunctive) sum of any two positions, or for the sum of a

position with a nim heap. Berlekamp, Conway and Guy call such behavior

latently loopy. “This kind of loopiness is really illusory; unless the winner

wants to take you on a trip, you won’t notice it.”

• With 10 almonds, still any position has either a forced win for the first player

or a forced win for the second player. However, now there exist some patently

loopy positions which are not equivalent to finite nim heaps. If one takes the

sum of two such positions, or the sum of such a position with a nim heap, one

can obtain a game where neither player has a winning strategy – the game is

drawn with best play.

• With 11 or more almonds, there exist blatantly loopy positions where the game

is drawn with best play.

In this article we explore similar themes, but we concentrate particularly on cases

where the possibility of draws comes not necessarily from cycles in the game-graph,

but instead from infinite paths. (Although the game-graph may be infinite, from

any given position there will be be only finitely many possible moves.)

We also focus on situations where the directed graph of the game is chosen at

random. The randomness is only in the choice of the graph – that is, of the “rules

of the game”. All the games themselves will be combinatorial games in the usual

sense, with full information and with no randomness.

Here is an example. We will consider a population where each individual repro-

duces with some given probability p ∈ (0, 1). If an individual reproduces, it has 4

children. We start with a single individual (the “root”). With probability 1 − p,
the root has no children, and with probability p, the root has 4 children, forming

generation 1. If the root does have children, then in turn each of those children

itself has no children with probability 1− p, and has 4 children with probability p.

The collection of those families forms generation 2, whose members again go on to

reproduce in the same way, and so on. All the decisions are made independently.

From the family tree of this process, we form a directed graph by taking the individ-

uals as vertices, and adding an arc from each vertex to each of its children. This is

an example of a Galton-Watson tree (or Bienaymé tree). In the game played on this

tree, from every position there are either 0 or 4 possible moves. Again we consider

normal play – if there are no moves possible from a position, the next player to

move loses.
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Note for example that the tree could be trivial: with probability 1− p it consists

of just a single vertex. Or it could be larger but finite (its size can be any integer

which is congruent to 1 mod 4), as shown in the example in Figure 1.1. But the

tree can also be infinite.

•

• • • •

• • • • • • • •

• • • • • • • •

Figure 1.1: An example of a finite directed graph that could arise from the Galton-
Watson tree model considered in the introduction with out-degrees 0 and 4.

The game played with such a tree as its game-graph displays very interesting

parallels with that of Fair Shares and Varied Pairs described above. The

behavior depends on the value of the parameter p. We will find that there are

thresholds a0 = 1/4, a1 ≈ 0.52198, a2 = 53/4/4 ≈ 0.83593 such that the following

hold.

• For p ≤ a0, the tree is finite with probability 1.

• For a0 < p ≤ a1, there is positive probability that the tree is infinite. However,

with probability 1, all its positions are equivalent to finite nim heaps, and so

in particular every position has a winning strategy for one or the other of the

players.

• For a1 < p ≤ a2, still with probability 1 every position has a winning strategy

for one player or the other. However, there is now positive probability that

the tree has positions which are not equivalent to finite nim heaps. The sum

of two such games, or the sum of such a game with a nim heap, may be drawn

with best play.

• For p > a2, with positive probability the tree has positions which are drawn

with best play.

1.1. Background and Outline of Results

The equivalence of any finite loop-free impartial game to a nim heap was shown

independently by Roland Sprague and by Patrick Grundy in the 1930s. Richard

Guy was a key figure in developing and broadening the scope of the Sprague-Grundy
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theory in the next couple of decades, notably for example in his 1956 paper with

Cedric Smith [7].

An extension of the Sprague-Grundy theory to finite games which may contain

cycles was first described by Smith [13] and was developed extensively in a series of

works by Aviezri Fraenkel and coauthors (for example [4, 2, 5]). As well as finite-

rank games that are equivalent to nim heaps, one now additionally has infinite-rank

games which are not equivalent to nim heaps. The “extended Sprague-Grundy

value” (or “loopy nim value”) of such a game is written in the form ∞(A), where

A ⊂ N is the set of nim values of the game’s finite-rank options. These infinite-rank

games may either be first-player wins (if 0 ∈ A) or draws (if 0 /∈ A). Again, we

have equivalence between two games if and only if they have the same (extended)

Sprague-Grundy value.

In [13] Smith already envisages extensions of the theory to infinite games, in-

volving ordinal-valued Sprague-Grundy functions. An extension of a different sort

to infinite graphs was done by Fraenkel and Rahat [3], who extend the finite non-

loopy Sprague-Grundy theory to infinite games which are locally path-bounded, in

the sense that for any vertex of the game-graph, the set of paths starting at that

vertex has finite maximum length.

In this paper we observe that the extended Sprague-Grundy values which classify

finite games are also enough to classify the class of locally finite games, in which

every position has finitely many options. As a result, any such locally finite (perhaps

cyclic) game is equivalent to a finite (perhaps cyclic) game.

We then focus in particular on applying the theory to games whose directed

graph is given by a Galton-Watson tree, of which the 0-or-4 tree described in the

previous section is an example. Galton-Watson trees provide an extremely natural

model of a random game-tree. They have a self-similarity which can be described as

follows: the root individual has a random number of children (distributed according

to the offspring distribution), and then conditional on that number of children, the

sub-trees of descendants of each of those children are independent and have the

same distribution as the original tree.

Games on Galton-Watson trees (including normal play, misère play, and other

variants) are studied by Alexander Holroyd and the current author in [9]. There,

a particular focus was on determining which offspring distributions give positive

probability of a draw, and on describing the type of phase transition that occurs

between the sets of distributions with and without draws. In this paper we con-

centrate on normal play; but, armed with the extended Sprague-Grundy theory, we

can investigate, for example, whether infinite-rank positions occur in games with-

out draws (the case analogous to Berlekamp, Conway and Guy’s “patently loopy”

behavior described above). This setting shows a very nice interplay between ideas

from combinatorial game theory and ideas from probability.

One tool on which we rely heavily is the study of the behavior of the game-graph
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when the set P of its second-player-winning positions is removed. This reduction

behaves especially nicely in the Galton-Watson setting. For example, if we take

a Galton-Watson tree for which draws have probability 0, condition the root to

be a first-player win, and remove the set P, then the remaining component con-

nected to the root is again a Galton-Watson tree, with a new offspring distribution.

Combining iterations of this procedure with recursions involving the probability

generating function of the offspring distribution yields a lot of information about

the infinite-rank positions that can occur in the tree.

We finish by presenting three particular examples of families of offspring distri-

bution: the Poisson case, the geometric case, and the 0-or-4 case described above.

In these examples alone we see a surprisingly wide variety of different types of

behavior.

We now briefly describe the organisation of the paper.

In Section 2 we describe the extended Sprague-Grundy theory for locally finite

games. Although the setting is new, the results can be written in a form which

is almost identical to that of the finite case. We proceed in a way that closely

parallels the presentation of Siegel from Section IV.4 of [12] (with some variations

of notation). The proofs given in [12] also carry over to the current setting essentially

unchanged, and for that reason we do not reproduce them here. A reader who is

not already familiar with the extended Sprague-Grundy theory for finite games may

like to start with that section of [12] before reading on further here.

In Section 3 we discuss the operation of removing P-positions from a locally finite

game, and examine its effect on the Sprague-Grundy values of the positions which

remain. For the particular case of trees, we give an interpretation involving mex

labellings (labellings of the vertices of the tree by natural numbers which obey mex

recursions at each vertex).

In Section 4, we introduce games on Galton-Watson trees, and develop the anal-

ysis via graph reductions and generating function recursions.

Finally, examples of particular offspring distributions are studied in Section 5.

2. Extended Sprague-Grundy Theory for Games with Infinite Paths

In this section we introduce basic notation and definitions, and then describe the

extended Sprague-Grundy theory for locally finite games. The results look identical

to those that have previously been written for the case of finite games. Proofs of

these results, written for the case of finite games but equally applicable here, can

be found in Section IV.4 of [12]. However, note that formally speaking, the content

of the results is different; this is not just because the scope of the statements is

broader, but also because the definition of equivalence is different (see the discussion

in Section 2.3).
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2.1. Directed Graphs and Games

We will represent impartial games by directed graphs. If V is a directed graph,

we call the vertices of V positions. If there is an arc from x to y in V , we write

y ∈ Γ(x) (or y ∈ ΓV (x) if we want to specify the graph V ) – here Γ(x) is the set

of options (i.e., out-neighbors) of x. We say that the graph V is locally finite if all

its vertices have finite out-degree; that is, Γ(x) is a finite set for each vertex x. We

may be deliberately loose in using the same symbol V to refer both to the graph

and to the set of vertices of the graph.

Informally, we consider two-player games with alternating turns; each turn con-

sists of moving from a position x to a position y, where y ∈ Γ(x). We consider

normal play: if we reach a terminal position, meaning a vertex with outdegree 0,

then the next player to move loses. Since the graphs we consider may have cycles or

infinite paths, it may be that play continues forever without either player winning.

Formally, a locally finite game is a pair G = (V, x) where V is a locally finite

directed graph (which is allowed to contain cycles) and x is a vertex of V . We will

often write just x instead of (V, x) when the graph V is understood. For example, for

the outcome function O, the Sprague-Grundy function G, and the rank function (all

defined below), we will often write O(x), G(x), and rank(x), rather than O((V, x)),

G((V, x)), and rank((V, x)). We use the fuller notation when we need to consider

more than one graph simultaneously (for example when considering disjunctive sums

of games, or when considering operations which reduce a graph by removing some

of its vertices).

Let V be a directed graph and o a vertex of V . If o has in-degree 0, and if for

every x ∈ V , there exists a unique directed walk from o to x, then we say that V

is a tree with root o. If x and y are vertices of a tree V with y ∈ ΓV (x), we may

say that y is a child of x in V . We write height(x) for the height of x, which is the

number of arcs in the path from o to x.

2.2. Outcome Classes

For a graph V , each position x ∈ V falls into one of three outcome classes.

• If the first player has a winning strategy from x, then we write x ∈ N , or

O(x) = N , and say that x is an N -position.

• If the second player has a winning strategy from x, then we write x ∈ P, or

O(x) = P, and say that x is an P-position.

• If neither player has a winning strategy from x, so that with optimal play the

game continues forever without reaching a terminal position, we write x ∈ D,

or O(x) = D, and say that x is an D-position.

Theorem 2.1. Let V be a locally finite graph, and x ∈ V .
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• x is a P-position if and only if every y ∈ Γ(x) is an N -position.

• x is an N -position if and only if some y ∈ Γ(x) is a P-position.

• x is a D-position if and only if no y ∈ Γ(x) is a P-position, but some y ∈ Γ(x)

is a D-position.

2.3. Disjunctive Sums and Equivalence Between Games

Let V and W be directed graphs. We define V ×W to be the directed graph whose

vertices are {(x, y), x ∈ V, y ∈W}, and which has an arc from (u, v) to (x, y) if and

only if either u = x and y ∈ ΓW (v), or x ∈ ΓV (u) and v = y. If V and W are both

locally finite, then so is V ×W .

If G = (V, x) and H = (W, y) are locally finite games, we define their (disjunctive)

sum G+H to be the locally finite game (V ×W, (x, y)).

We have the following interpretation. A position of V ×W is an ordered pair of

a position of V and a position of W . To make a move in the sum of games, from

position (x, y) of V ×W , one must either move from x to one of its options in V ,

or from y to one of its options in W (and not both). The position (x, y) is terminal

for V ×W if and only if x is terminal for V and y is terminal for W .

Now we define equivalence between two locally finite games G and H. The games

G and H are said to be equivalent, denoted by G = H, if O(G + X) = O(H + X)

for every locally finite game X.

Note here that we have defined equivalence within the class of locally finite games:

we required the equality to hold for every locally finite game X. The definition (and

the meaning of the results below) would be different if X ranged over a different set.

However, it will follow from the extended Sprague-Grundy theory below that this

equivalence extends both the equivalence within the class of finite loopfree graphs,

and that within the class of finite graphs. That is, two finite games are equivalent

within the class of finite games if and only if they are equivalent with the class of

locally finite games; also two finite loopfree games are equivalent within the class

of finite loopfree games if and only if they are equivalent within the class of finite

games.

2.4. The Rank Function and the Sprague-Grundy Function

Let V be a locally finite directed graph. We recursively define Gn(x) for x ∈ V and

n ≥ 0 as follows. First, let

G0(x) =

{
0, if x is terminal;

∞, otherwise.



INTEGERS: 21B (2021) 8

Then for n ≥ 1 and given x, write m = mex{Gn−1(y), y ∈ Γ(x)}, and let

Gn(x) =

m, if for each y ∈ Γ(x), either Gn−1(y) ≤ m, or there is z ∈
Γ(y) with Gn−1(z) = m;

∞, otherwise.

Proposition 2.2. Let x ∈ V . Then either:

• Gn(x) =∞ for all n; or

• there exist m and n0 such that

Gn(x) =

{
∞, if n < n0;

m, if n ≥ n0.

In the light of Proposition 2.2, we can now define the extended Sprague-Grundy

function G in the case of a locally finite graph V . Let x ∈ V . If the second case of

Proposition 2.2 holds, and Gn(x) = m for all sufficiently large n, then G(x) = m.

Otherwise, we write

Gn(x) =∞(A),

where A is the finite set defined by

A = {a ∈ N : G(y) = a for some y ∈ Γ(x)}.

We then define the rank of x, written rank(x), to be the least n such that Gn(x)

is finite, or ∞ if no such n exists. (Hence the finite-rank vertices are those x with

G(x) = m ∈ N, while the infinite-rank vertices are those x with G(x) = ∞(A) for

some A ⊂ N.)

Some examples of extended Sprague-Grundy values can be found in Figure 3.1.

Theorem 2.3.

(a) G(x) = 0 if and only if O(x) = P.

(b) If G(x) is a positive integer, then O(x) = N .

(c) If G(x) =∞(A) for a set A with 0 ∈ A, then O(x) = N .

(d) G(x) =∞(A) for some A with 0 /∈ A if and only if O(x) = D.

Theorem 2.3 tells us that the Sprague-Grundy value of a position determines its

outcome class. In fact, much more is true: the Sprague-Grundy values of two games

determines the Sprague-Grundy value, and hence the outcome class, of their sum.

The algebra of the Sprague-Grundy values is the same as in the case of finite loopy

graphs, and full details can be found at the end of Section IV.4 of [12]. Again the

proofs carry over unchanged to the locally finite setting. We note a few particular

consequences.
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Theorem 2.4. Let G and H be locally finite games.

(a) G + H has infinite rank if and only if at least one of G and H have infinite

rank.

(b) If both G and H have infinite rank than G(G+H) =∞(∅), and in particular

O(G+H) = D.

(c) If G(G) = m ∈ N, then G is equivalent to ∗m, a nim heap of size m.

(d) G and H are equivalent if and only if G(G) = G(H).

Corollary 2.5. Every locally finite game is equivalent to some finite game.

We finish the section by recording the following consequence of the construction

of the extended Sprague-Grundy function, in a form which will be useful for later

reference.

Proposition 2.6. Let V be a locally finite graph, and x ∈ V . Then the following

are equivalent:

(a) rank(x) ≤ n and G(x) = m;

(b) the following two properties hold:

(i) for each i with 0 ≤ i ≤ m−1, there exists yi ∈ Γ(x) such that rank(y) < n

and G(yi) = i;

(ii) for all y ∈ Γ(x), either rank(y) < n and G(y) < m, or there is z ∈ Γ(y)

with rank(z) < n and G(z) = m.

3. Reduced Graphs

Let k ≥ 0. We will say that a locally finite directed graph V is k-stable if whenever

x ∈ V has infinite rank – that is, whenever G((V, x)) = ∞(A) for some A, then

{0, 1, . . . , k} ⊆ A.

Note that by Theorem 2.3(d), being 0-stable is equivalent to being draw-free:

every position of V has a winning strategy either for the first player or for the

second player.

Let PV be the set of P-positions of the graph V , in other words those x ∈ V with

G((V, x)) = 0. Consider the graph R(V ) := V \ PV which results from removing

the P-positions from V (and retaining all arcs between remaining vertices). More

generally, for k ≥ 1 let Rk(V ) be the graph resulting from removing all vertices x

with G((V, x)) < k.

Theorem 3.1. Let V be a locally finite directed graph, and let x ∈ R(V ).
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(a) If x has finite rank in V , then also x has finite rank in R(V ); specifically,

G((R(V ), x)) = G((V, x))− 1.

(b) Suppose additionally that V is draw-free. If x has infinite rank in V , then also

x has infinite rank in R(V ); specifically, if G((V, x)) =∞(A) for some A (in

which case necessarily 0 ∈ A), then

G((R(V ), x)) =∞(A− 1),

where A− 1 denotes the set {a ≥ 0 : a+ 1 ∈ A}.

If V is not draw-free, then the conclusion of part (b) may fail; removing the P-

positions may convert infinite-rank vertices to finite-rank vertices (either P-positions

or finite-rank N -positions). See Figure 3.1 for an example.

a∞({1})

b∞({2}) c 2

d 1

e 0

a1

b∞({1}) c 1

d 0

Figure 3.1: The conclusion of Theorem 3.1(b) may fail when the graph is not draw-
free. Here, removing the unique P-position e from the graph on the left, to give the
graph on the right, converts the position a from infinite rank to finite rank. The
extended Sprague-Grundy values are shown by the nodes in red.

Corollary 3.2. Let k ≥ 1.

(a) Suppose that V,R(V ), . . . , R(k)(V ) are all draw-free. Then R(k+1)(V ) =

R(R(k)(V )).

(b) V is k-stable if and only if V,R(V ), . . . , R(k)(V ) are all draw-free.

Proof of Theorem 3.1. (a) For the first part, we use induction on the rank of x in

V . We claim that if x ∈ R(V ) has rank((V, x)) = n and G((V, x)) = m > 0, then

rank((R(V ), x) ≤ n and G((R(V ), x)) = m− 1.

Any x with rank 0 in V is in PV and hence is not a vertex of R(V ), so the claim

holds vacuously for x with rank((V, x)) = 0.

Now for n > 0, suppose the claim holds for all x with rank((V, x)) < n, and

consider x ∈ R(V ) with rank((V, x)) = n and G((V, x)) = m.

From Proposition 2.6 we have the following properties:
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(i) for each i = 0, . . . ,m− 1, there exists yi ∈ ΓV (x) such that rank((V, yi)) < n

and G((V, yi)) = i;

(ii) for all y ∈ ΓV (x), either rank((V, y)) < n and G((V, y)) < m, or there is

z ∈ ΓV (y) with rank((V, z)) < n and G((V, z)) = m.

Applying the induction hypothesis we get:

(i) for each i = 1, . . . ,m−1, there exists yi ∈ ΓR(V )(x) such that rank((R(V ), yi))

< n and G((R(V ), yi)) = i− 1;

(ii) for all y ∈ ΓR(V )(x), either rank(R(V ), y) < n and G((R(V ), y)) < m − 1, or

there is z ∈ ΓR(V )(y) with rank((R(V ), z)) < n and G((R(V ), z)) = m− 1.

Using Proposition 2.6 again we conclude that rank((R(V ), x)) ≤ n and G((R(V ), x))

= m− 1, completing the induction step.

(b) Now we suppose that in addition V is draw-free. We first want to show that

if x has finite rank in R(V ), then it also has finite rank in V . In this case we work

by induction on the rank of x in R(V ).

If x has rank 0 in R(V ), (i.e., if x is terminal in R(V )), then all options of x in

V are in PV (i.e., G((V, y)) = 0), which gives G((V, x)) = 1.

Now let n > 1. Assume that any vertex with rank less than n in R(V ) has finite

rank in V , and consider any vertex x with rank n in R(V ), say Gn((R(V ), x)) = m.

Then using Proposition 2.6 again,

(i) There are y0, y1, . . . , ym−1 ∈ ΓR(V )(x) such that for each i, rank((R(V ), yi)) <

n and G((R(V ), yi)) = i. Then by the induction hypothesis, rank((V, yi)) <

∞, and part (a) gives G((V, yi)) = i+ 1.

(ii) For all y ∈ ΓR(V )(x), either rank((R(V ), y)) < n and G((R(V ), y)) < m, or

there is z ∈ ΓR(V )(y) such that rank((R(V ), z)) < n and G((R(V ), z)) = m.

By the induction hypothesis and part (a) again, then either G(V, y) < m+ 1

or there is such a z with G(V, z) = m+ 1.

Now consider two possibilities. Either there is y ∈ ΓV (x) with G((V, y)) = 0. Then

for some large enough n′ we get Gn′((V, x)) = m+1, and indeed x has finite rank in

V . Alternatively, there is no such y. Then if x had infinite rank in V , we would have

G((V, x)) = ∞(A) for some A with 0 /∈ A. This would contradict the assumption

that V is draw-free. Hence again x must have finite rank in V , as required.

3.1. Mex Labellings, and Interpretation of k-stability in the Case of Trees

The material in this section is not used in the later analysis, but it aims to give

helpful intuition about the notion of k-stability in the case of trees, showing that it
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can be interpreted in terms of consistency of the set of vertices labelled 0, 1, . . . , k

across all labellings which locally respect the mex recursions.

Let V be a locally finite directed graph. We call a function f : V → N a mex

labelling of V if for all x ∈ V , f(x) = mex{f(y), y ∈ ΓV (x)}.
Of course, if V is finite and loop-free, then there is a unique mex labelling f of

V given by f(x) = G((V, x)) for x ∈ V .

Notice also that any locally finite tree has at least one mex labelling. To see this

we can consider the sequence of finite graphs (Vn, n ∈ N), where Vn is the induced

subgraph of V containing all vertices x such that height(x) ≤ n. Each such Vn is

finite and loop-free, and so has a mex labelling fn. In any mex labelling, the vertex

x has value no greater than the out-degree of x (which is finite by assumption).

Then a compactness/diagonalisation argument shows that there exists a labelling

f : V → N which, on any finite subset W ⊂ V , agrees with infinitely many of the fn.

In particular, for any vertex x, f agrees with one of the fn on {x} ∪ ΓV (x). Then

f obeys the mex recursion at every such vertex x, so f is indeed a mex labelling of

V .

Proposition 3.3. Let V be a locally finite tree, and k ∈ N.

(a) Suppose V is k-stable. Then the set {x ∈ V : f(x) = k} is the same for all

mex labellings f of V , and is equal to {x ∈ V : G((V, x)) = k}.

(b) Suppose V is not k-stable, but is (k−1)-stable. (Ignore the vacuous condition

of (k − 1)-stability for k = 0.) Let x ∈ V with G(x) =∞(A) for some A not

containing k. Then there are mex labellings f and f ′ of V with f(x) = k,

f ′(x) 6= k.

Note that the conclusion of part (b) can fail even for graphs which are acyclic in

the sense of having no directed cycles. See Figure 3.2 for an example. (The method

of proof below makes clear that the result does extend to bipartite graphs with no

directed cycles.)

Proof. We start by proving that if x ∈ V has finite rank with G(x) = m, then

f(x) = m for all mex labellings f of V . (This holds for any locally finite directed

graph V .)

We proceed by induction on rank(x). Let f be any mex labelling of V .

If rank(x) = 0, then x has no options. Then G(x) = 0, and so f(x) = mex(∅) = 0.

Now suppose rank(x) = n > 0 and G(x) = m, and that the statement holds for

all vertices of rank less than n.

From Proposition 2.6, for each i with 0 ≤ i ≤ m− 1, there exists yi ∈ Γ(x) with

G(yi) = i and rank(yi) < n. Hence f(yi) = i.

Also for every y ∈ Γ(x) with G(y) ≥ m, there is z ∈ Γ(y) with rank(z) < n and

G(z) = m. Then f(z) = m, and hence f(y) 6= m.
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. . . .

Figure 3.2: An example showing the conclusion of Proposition 3.3(b) can fail even
for “loop-free” graphs (i.e., graphs with no directed cycle). The directed graph with
vertex set {ai, i ∈ N} ∪ {bi, i ∈ N}, and arcs from ai to bi, from ai to ai+1, and
from bi to bi+1 for each i. There are two mex labellings, one shown in red above
the vertices and the other shown in blue below the vertices. Every position has
Sprague-Grundy value ∞(∅), and the graph is not 0-stable. However, the positions
bi have value 0 in both mex labellings, while the positions ai have non-zero values
in both mex labellings.

Thus x has options on which f takes value 0, 1, . . . ,m−1, but no option on which

f takes value m. This gives f(x) = m as required.

To complete the proof of part (a), suppose that V is k-stable, and let f be any

mex labelling of V . Then any vertex x with infinite rank has G(x) = ∞(A) for

some A with k ∈ A. Hence there exists y ∈ Γ(x) with G(y) = k, giving f(y) = k.

Then f(x) 6= k. So indeed, the set of vertices x with f(x) = k is exactly the set of

x with G(x) = k.

We turn to part (b), starting with the case k = 0. Suppose that V is a locally

finite tree which is not 0-stable. Let x be any vertex with G(x) = ∞(A) for some

A not containing 0 (that is, x ∈ D).

Take any n ≥ height(x). Since the game from position x is drawn, if we con-

sider the game on the truncated graph Vn described just before the statement of

the proposition, so that all vertices at height n become terminal, then position

x becomes a first-player win if n − height(x) is odd, and a second-player win if

n− height(x) is even.

Then we can apply again the compactness argument mentioned before the state-

ment of Proposition 3.3, separately for odd n and even n. This yields two mex

labellings f and f ′, one of which gives value 0 to x, and the other of which gives a

strictly positive value to x, as required. This completes the proof of part (b) in the

case k = 0.

Now we extend to k > 0. Suppose V is (k − 1)-stable but not k-stable. As in

Corollary 3.2, we can apply the reduction operator k − 1 times, removing all the

vertices y ∈ V with G((V, y)) < k, to arrive at the graph Rk(V ).

Any v ∈ Rk(V ) either has G((V, x)) = m for some finite m ≥ k, or G((V, x)) =

∞(A) for some A with {0, . . . , k − 1} ⊆ A. It is then easy to check that whenever
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f̂ : Rk(V ) 7→ N is a mex labelling of Rk(V ), we can obtain a mex labelling f : V 7→ N
of V by defining

f(x) =

{
G((V, x)), if G((V, x)) < k

f̂(x) + k, otherwise.
(3.1)

Let x ∈ V with G(V, x) = ∞(A) for some A containing 0, . . . , k − 1 but not k.

Then, by applying Theorem 3.1 k times, we have x ∈ Rk(V ) and G(Rk(V ), x)) =

∞(B) where B = A− k. In particular, 0 /∈ B (that is, the position x in Rk(V ) is a

draw). We wish to show that there are mex labellings f , f ′ of V such that f(x) = k

and f ′(x) 6= k. In light of (3.1), it is enough to show that there are mex labellings

f̂ , f̂ ′ of Rk(V ) such that f̂(x) = 0 and f̂ ′(x) > 0.

Since x is a draw in Rk(V ), we would like to use the same approach as in

the k = 0 case. The situation is more complicated since the graph Rk(V ) may

not be connected. However, the graph Rk(V ) is a union of finitely or countably

many disjoint trees. Any labelling which restricts to a mex labelling of each tree

component is a mex labelling of the whole graph. So it suffices to find mex labellings

of the tree component of Rk(V ) which contains x, one of which assigns value 0 to x

and another of which assigns strictly positive value to x. This indeed can be done

using the same compactness argument used in the k = 0 case.

This completes the proof of part (b).

4. Random Game-trees

4.1. Galton-Watson Trees

A Galton-Watson (or Bienaymé) branching process is constructed as follows. We

fix some offspring distribution which is a probability distribution p = (pk, k ∈ N)

on the non-negative integers. The process begins with a single individual, called the

root. The root individual has a random number of children, distributed according

to the offspring distribution, which form generation 1. Then each of the members

of generation 1 has a number of children according to the offspring distribution,

forming generation 2, and so on. All family sizes are independent. See for example

[6] for a basic introduction, and [11] for much more depth including a rigorous

construction.

We derive a directed graph from the process by regarding each individual as a

vertex, and putting an arc to each child from its parent. In this way each vertex

of the graph has in-degree 1, except for the root which has in-degree 0. We call

the resulting graph a Galton-Watson tree. This tree has a natural self-similarity

property: conditional on the number of the children of the root being k, the subtrees

rooted at those children are independent and each one has the distribution of the

original Galton-Watson tree.
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We assume always that p0 > 0, so that the tree can have terminal vertices.

A key role in what follows will be played by the probability generating function

of the offspring distribution, defined by

φ(s) =
∑
k≥0

pks
k.

The function φ is strictly increasing on the interval [0, 1], and maps [0, 1] bijectively

to the interval [p0, 1].

A fundamental result is a criterion for the tree to be infinite, in terms of the

mean µ =
∑

k≥0 kpk = φ′(1) of the offspring distribution p. Excluding the trivial

case p1 = 1 (where with probability 1 the tree consists of a single path) one has that

whenever µ ≤ 1, the tree is finite with probability 1, and whenever µ > 1, there is

positive probability for the tree to be infinite.

If d = sup{k : pk > 0} is finite, we say the offspring distribution has maximum

out-degree d. Otherwise we say that the offspring distribution has unbounded vertex

degrees.

4.2. Galton-Watson Games

We will consider Galton-Watson games i.e., games whose directed graph is a Galton-

Watson tree T .

We start with a very simple lemma which helps simplify the language.

Lemma 4.1. Consider a Galton-Watson tree T , with root o. Let C be any set of

possible Sprague-Grundy values. The following are equivalent:

(a) P(G((T, o)) ∈ C) > 0;

(b) P(G((T, u)) ∈ C for some u ∈ T ) > 0.

For example, the tree T is draw-free with probability 1 if and only if the prob-

ability that the root is drawn is 0. So we do not need to distinguish carefully

between saying that “the tree has draws with positive probability” and that “the

root is drawn with positive probability”. More generally, the tree T is k-stable with

probability 1 if and only if the probability that G(T, o) = ∞(A) for some A not

containing {0, 1, . . . , k} is 0.

Proof of Lemma 4.1. Trivially (a) implies (b). On the other hand, if (a) fails, so

that that P(G(T, o)) ∈ C = 0, then the self-similarity of the Galton-Watson tree, the

fact that the tree has at most countably many vertices, and the countable additivity

of probability measures, combine to give that P(G((T, u)) ∈ C for some u ∈ T ) = 0

also, so that (b) also fails.
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The question of when a Galton-Watson game has positive probability to be a

draw was considered in [9].

Let Pn be the set of vertices from which the second player has a winning strategy

that guarantees to win within 2n moves (n by each player), and let Pn be the

probability that o ∈ Pn. Note that o ∈ Pn if and only if for every child u of o, u

itself has a child in Pn−1. This leads to the following recursion for the probabilities

Pn in terms of the generating function.

Pn = 1− φ(1− φ(Pn−1)). (4.1)

Now let P be the probability that o ∈ P. We have P = limn→∞ Pn. Taking limits in

(4.1), and using the fact that the generating function φ is continuous and increasing

on [0, 1], we obtain part (a) of the following result. A similar approach involving the

probability of winning strategies for the first player gives part (b). For full details,

see [9].

Proposition 4.2 (Theorem 1 of [9]). Define a function h : [0, 1]→ [0, 1] by

h(s) = 1− φ
(
1− φ(s)

)
. (4.2)

(a) P := P((T, o) ∈ P) is the smallest fixed point of h in [0, 1].

(b) If N := P((T, o) ∈ N ), then 1−N is the largest fixed point of h in [0, 1].

Corollary 4.3. D := P((T, o) ∈ D) = 1 − N − P is positive if and only if the

function h defined by (4.2) has more than one fixed point in [0, 1].

Note that h defined in (4.2) is the second iteration of the function 1 − φ. The

function 1− φ is continuous and strictly decreasing, mapping [0, 1] to [1− p0, 0]. It

follows that 1− φ has precisely one fixed point in [0, 1], and that fixed point is also

a fixed point of h. So Corollary 4.3 tells us that the game has positive probability

of draws if and only if h has further fixed points which are not fixed points of 1−φ.

Two particular families of offspring distributions had been considered earlier.

The Binomial(2, p) case was studied by Holroyd in [8]. The case of the Poisson

offspring family is closely related to the analysis of the Karp-Sipser algorithm used

to find large matchings or independent sets of a graph, which was introduced by

Karp and Sipser in [10]; the link to games is not described explicitly in that paper,

but the choice of notation and terminology makes clear that the authors were aware

of it.

One particular focus of [9] was on the nature of the phase transitions between the

set of offspring distributions without draws, and the set of offspring distributions

with positive probability of draws. This transition can be either continuous or

discontinuous. Without going into precise details, we illustrate with a couple of

examples.
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Example 4.4 (Poisson distribution – continuous phase transition). The Poisson(λ)

offspring family was considered in Proposition 3.2 of [9]. The game has probability 0

of a draw if λ ≤ e, and positive probability of a draw if λ > e. The phase transition

is illustrated in Figure 4.1. For λ ≤ e, the function h has only one fixed point, while

for λ > e, h has three fixed points. The additional fixed points emerge continuously

from the original fixed point as λ goes above e. Note that the probability of a draw

at the critical point itself is 0; more strongly, we have the draw probability P(o ∈ D)

is a continuous function of λ.

Example 4.5 (A discontinuous phase transition). Consider a family of offspring

distributions with p0 = 1 − a, p2 = a/2, p10 = a/2, where a ∈ [0, 1]. This family

is used in the proof of Proposition 4(i) of [9]. Again there is some critical point

ac ≈ 0.979 such that there is positive probability of a draw for a > ac and not

for a < ac. However, unlike in the Poisson case above, at the critical point itself,

the function h already has three fixed points, and the probability P(o ∈ D) jumps

discontinuously from 0 for a < ac to approximately 0.61 at a = ac itself. The

difference in the nature of the emergence of the additional fixed points of h can be

seen by comparing Figure 4.1 and Figure 4.2.

4.3. Existence of Infinite Rank Vertices in Galton-Watson Games

Now we go beyond the question of whether draws have positive probability, to ask

more generally about the extended Sprague-Grundy values that occur in a Galton-

Watson game. A specific question will be whether, when draws are absent, there are

still some infinite rank positions. As suggested by Corollary 3.2, we can investigate

the k-stability of the tree T by looking at whether draws occur for the reduced

trees Rk(T ). The reduction operator behaves particularly nicely in the setting of a

Galton-Watson tree.

Theorem 4.6. Consider a Galton-Watson tree T whose offspring distribution

(pn, n ≥ 0) has probability generating function φ.

Suppose the tree is draw-free with probability 1. Let P be the probability that the

root o is a P-position.

Condition on the event O(o) = N , and consider the graph obtained by remov-

ing all the P-positions. Let T (1) denote the component connected to the root o in

this graph. Then T (1) is again a Galton-Watson tree rooted at o, whose offspring

distribution has probability generating function given by

φ(1)(s) =
1

1− P
[
φ
(
P + s(1− P )

)
− φ

(
s(1− P )

)]
. (4.3)

Proof. Since we assume that T has no draws, each vertex of T is either a P-position

or an N -position. The type of a vertex is determined by the subtree rooted at that
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Figure 4.1: An illustration of the phase transition from the non-draw to the draw
region, for Poisson(λ) offspring distributions (see Example 4.4). The two plots show
the function h(s) − s for s ∈ [0, 1], where h is defined by (4.2). The fixed points
of h are those s where h(s) − s crossing the horizontal axis. On the left, λ = 2.7,
just below the critical point λ = e; the function h has just one fixed point. On the
right, λ = 2.8, just above the critical point; now h has three fixed points.
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Figure 4.2: The phase transition for the family of offspring distributions given in
Example 4.5, with p0 = 1 − a, p2 = a/2, p10 = a/2. Again the function h(s) − s is
shown for s ∈ [0, 1]. On the left a = 0.977, and on the right a = 0.979 ≈ ac. Unlike
in Figure 4.1, at the critical point there are already multiple fixed points of h; at
ac, the draw probability jumps from 0 to a positive value around 0.681, which is
the distance between the minimum and maximum fixed points of h.
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vertex. Conditional on the number of children of the root, the subtrees rooted at

each child are independent and each have the same distribution as the original tree.

In particular, each child is independently a P-position with probability P , and an

N -position with probability 1− P .

This gives us a two-type Galton-Watson process. We have the familiar recursion

that a vertex is anN -position if and only if at least one of its children is a P-position.

We condition on the root being of type N , and retain only its N -type children,

and the N -type children of those children, and so on. This gives a one-type Galton-

Watson process, and its offspring distribution is the distribution of the number of

N -type children of the root in the original process, conditional on the root having

type N .

The probability that the root has k P-children and m N -children is

pm+k

(
m+ k
k

)
P k(1− P )m.

We can sum over k ≥ 1 to obtain the probability that the root is of type N and

has m N -children. Finally, we can condition on the event that the root has type N
(which has probability 1 − P ), to obtain that the conditional probability that the

root has m N -children given that it has type N is

p(1)m :=
1

1− P

∞∑
k=1

pm+k

(
m+ k
k

)
P k(1− P )m.

Finally we want to calculate the probability generating function φ(1)(s) :=∑
m≥0 s

mp
(1)
m of this distribution. This can easily be done using the binomial the-

orem to arrive at the form given in (4.3).

Combining Corollary 3.2 and Theorem 4.6 is the key to studying the infinite-rank

vertices of our Galton-Watson tree T ; see the strategy described at the beginning

of Section 5.

We finish this section with a result about the possible infinite Sprague-Grundy

values that can occur in a Galton-Watson game. Essentially, the value ∞(A) has

positive probability to appear for every finite A which is not ruled out either by k-

stability or by finite maximum vertex degree. Most notably, part (a)(i) says that for

a tree which has draws and for which the offspring distribution has infinite support,

all finite A have positive probability.

Proposition 4.7. Consider the game on a Galton-Watson tree.

(a) Suppose there is positive probability of a draw.

(i) If the vertex degrees are unbounded, then for any finite A ⊂ N, there is

positive probability that G(o) =∞(A).
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(ii) If the maximum out-degree is d, then there is positive probability that

G(o) =∞(A) if and only if A ⊂ {0, 1, . . . , d} with |A| ≤ d− 1.

(b) For k ≥ 1, suppose that the tree is (k − 1)-stable with probability 1, but has

positive probability not to be k-stable.

(i) If the vertex degrees are unbounded, then for any finite A ⊂ N which

contains {0, . . . , k − 1}, there is positive probability that G(o) =∞(A).

(ii) If the maximum out-degree is d, then there is positive probability that

G(o) = ∞(A) if and only if {0, 1, . . . , k − 1} ⊆ A ⊂ {0, 1, . . . , d} with

|A| ≤ d− 1.

Proof. First we note that all finite Sprague-Grundy values have positive probability,

up to the maximum out-degree d if there is one. This is easy by induction. We

know that value 0 is possible since any terminal position has value 0. If values

0, 1, . . . , k− 1 are possible, and it is possible for the root to have degree k or larger,

then there is positive probability that the set of values of the children of the root is

precisely {0, 1, . . . , k − 1}, giving value k to the root as required.

Now for part (a), since draws are possible, the value∞(B) has positive probability

for some B not containing 0. In that case, there is positive probability for all the

children of the root to have value ∞(B), and then the root has value ∞(∅).
So the value ∞(∅) has positive probability. Now if A is any finite set such that

the number of children of the root can be as large as |A|+ 1, then there is positive

probability that the set of values of the children of the root is precisely A∪{∞(∅)},
and in that case the value of the root is ∞(A) as required.

Finally, if |A| is greater than or equal to the maximum degree, then the value

∞(A) is impossible, since any vertex with such a value must have at least one child

with value m for each m ∈ A, and additionally at least one child with infinite rank.

We can derive the result for part (b) by applying part (a) to the Galton-Watson

tree T (k) obtained by conditioning the root to have Sprague-Grundy value not in

{0, 1, . . . , k − 1}, and removing all the vertices with values {0, 1, . . . , k − 1} from

the graph, as described above. Theorem 3.1 tells us that if the resulting tree has

positive probability to have a node with value ∞(A), then the original tree has

positive probability to have a node with value ∞(B) where B = {b ≥ k : b − k ∈
A} ∪ {0, 1, . . . , k − 1}, and the desired results follow.

Remark 4.8. Suppose we have a Galton-Watson tree T with positive probability

to be infinite, and a set C of Sprague-Grundy values with P(G(o) ∈ C) > 0. A

straightforward extension of Lemma 4.1 says that conditional on T being infinite,

with probability 1 there exists u ∈ T with G(u) ∈ C.
Combining with Proposition 4.7, we get the following appealing property. If T has

unbounded vertex degrees, and positive probability of draws, then conditional on
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T being infinite, with probability 1, vertices with every possible extended Sprague-

Grundy value are found in the tree.

5. Examples

First we lay out how to use the results of the previous sections to address the

question of which infinite-rank Sprague-Grundy values have positive probability for

a given Galton-Watson tree T .

Let φ be the probability generating function of the offspring distribution of T .

To examine whether T can have draws, we apply the criterion given Corollary 4.3:

T is draw-free with probability 1 if and only if the function h(s) = 1− φ(1− φ(s))

has a unique fixed point.

If so, we use the procedure in Theorem 4.6. We condition the root to be a N -

position, we remove all the P-positions, and we retain the connected component of

the root, to obtain a new Galton-Watson tree T (1) with an offspring distribution

whose probability generating function is φ(1). We then examine whether or not this

new generating function gives a draw-free tree.

If it does, we can repeat the procedure again, producing a new generating function

which we call φ(2), corresponding to removing the positions with Sprague-Grundy

values 0 and 1 from the original tree.

If we perform k reductions and still have a draw-free tree at every step, this tells

us that our original tree was k-stable with probability 1.

If the iteration of this procedure never produces a tree with positive probability

of a draw, then the original tree had probability 0 of having infinite-rank vertices.

(Note that for example if at any step we arrive at a tree which is sub-critical, i.e.,

whose offspring distribution has mean less than or equal to 1 and which therefore

has probability 1 to be of finite size, then we know that every further reduction

must give rise to a draw-free tree.)

We now apply this strategy to a few different examples of families of offspring

distributions. We see a surprising range of types of behavior.

Example 5.1 (Poisson case, continued). Galton-Watson trees with Poisson off-

spring distribution behave particularly nicely under the graph reduction operation.

This allows us to give a complete analysis of the Poisson case without any need for

calcuations or numerical approximation.

The tree has positive probability to be infinite precisely when λ > 1. We already

saw in Example 4.4 that there is positive probability of a draw precisely when λ > e.

Suppose we are in the λ ≤ e case without draws. So each node is a P-node (with

probability P ) or a N -node (with probability 1− P ).

By basic properties of the Poisson distribution, the number of P-children of

the root is Poisson(λP )-distributed, and the number of N -children of the root is
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Poisson(λ(1− P ))-distributed, and the two are independent.

If we condition the root to have at least one P-child, and then remove all its

P-children, then because of the independence of the number of P-children and

the number of N -children, we are simply left with a Poisson(λ(1 − P )) number of

children.

So we again have a Poisson Galton-Watson tree, but now with a new parameter

λ(1) < λ. Since λ(1) < e, the new tree is still draw-free with probability 1.

Hence, to adapt the terminology of the introduction, in the Poisson case we may

see a “blatantly infinite” game once λ > e, but for λ ≤ e we are at worst “latently

infinite”. There is no λ which gives “patently infinite” behavior whereby draws are

absent but infinite rank vertices have positive probability.

Example 5.2 (Degrees 0 and 4). We return to the example in the introduction,

where all outdegrees are 0 or 4. We have p4 = p and p0 = 1− p for some p ∈ (0, 1).

If p ≤ a0 := 1/4 then the mean offspring size is less than or equal to 1, and the

tree is finite with probability 1.

One can show algebraically that there is positive probability of a draw if and only

if p > a2 := 53/4 ≈ 0.83593. Namely one can obtain that the function h defined in

(4.2) has derivative less than 1 on [0, 1] for all p ≤ a2 (except for a single point in

the case p = a2), and so r has just one fixed point for such p. Meanwhile for p > a2
there is a fixed point s∗ of the function 1− φ for which h′(s∗) > 1, and this can be

used to show that r has at least two further fixed points. Corollary 4.3 then gives

the result.

Between a0 and a2 there exist no draws, but the tree is infinite with positive

probability, so we may ask whether there can exist positions with infinite rank.

Numerically, we observe a phase transition around the point a1 ≈ 0.52198. For

p ≤ a1, we know that the tree T has zero probability of a draw, and we observe

that the same is also true for the trees T (1) and T (2) (their maximum out-degrees

are 3 and 2 respectively, so their generating functions φ(1) and φ(2) are cubic and

quadratic respectively. The tree T (3) has vertices of out-degrees only 0 and 1, and

will also be finite with probability 1, so we do not need to examine T (k) for any

higher k.)

Hence for p ∈ (a0, a1], we have the “latently infinite” phase where all Sprague-

Grundy values are finite with probability 1.

However, for p ∈ (a1, a2] we observe that the function h(1)(s) := 1 − φ(1)(1 −
φ(1)(s)) has more than one fixed point. Consequently, there is positive probability

of a draw in the tree T (1). The tree T has positive probability not to be 1-stable,

and so to have positions of infinite rank.

The behavior of h, h(1) and h(2) around the phase transition point p = a1 is shown

in Figure 5.1. Although the precise nature and location of this phase transition is

only found numerically, it is not hard to show rigorously that for p just above a0,

the functions h(1) and h(2) have only one fixed point, while for p just below a2, the
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Figure 5.1: The case of the 0-or-4 distribution from Example 5.2, with p = 0.52198 ≈
a1. From left to right the three graphs show the functions h(s)− s, h(1)(s)− s, and
h(2)(s) − s. As p moves through the critical point a1, the function h(1) acquires
multiple fixed points. For p ≤ a1, the tree has only finite-rank vertices. For p > a1,
the tree no longer has probability 1 to be 1-stable, and for example the Sprague-
Grundy value ∞(0) has positive probability.

function h(1) has more than one fixed point, so that the family of distributions does

display all four of the “finite”, “latently infinite”, “patently infinite” and “blatantly

infinite” types of behavior.

Example 5.3 (Geometric case). We now consider the family of geometric offspring

distributions, with pk = qk(1− q) for k = 0, 1, 2, . . . , for some q ∈ (0, 1).

Rather surprisingly, there is no q for which draws have positive probability! See

for example Proposition 3(iii) of [9]. (This shows for example that the property of

having positive probability of draws is not monotone in the offspring distribution. If

we take any λ > e, then as discussed above, the Poisson(λ) distribution has positive

probability of draws, but for q sufficiently large, this distribution is stochastically

dominated by a Geometric(q) distribution, which does not have draws.)

However, other interesting phase transitions for the geometric family do occur.

Numerically, we observe that there are critical values q0 = 1/2, q1 ≈ 0.88578, q2 ≈
0.88956, q3 ≈ 0.923077 such that the following hold.

• For q ≤ 0.5, the tree is finite with probability 1.

• For q ∈ (0.5, q1], there are infinite paths with positive probability, but the tree

is 3-stable with probability 1. In fact for q sufficiently close to 0.5, the tree

T (1) is finite with probability 1, and so in fact the tree is k-stable for all k, i.e.,

all positions have finite rank (the latently infinite phase). It seems plausible

that in fact the latently infinite phase continues all the way to q1, but we do

not know how to demonstrate that.

• For q ∈ (q1, q2], with positive probability the tree is not 3-stable; however it

continues to be 2-stable.

• For q ∈ (q2, q3], with positive probability the tree is not 2-stable; however it

continues to be 1-stable.
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Figure 5.2: The geometric case of Example 5.3 with q = 0.91 ∈ [q2, q3). As in
Figure 5.1, we plot the functions h(s)−s, h(1)(s)−s, and h(2)(s)−s. The functions
h and h(1) have unique fixed points, but the function h(2) has multiple fixed points;
so the tree has probability 1 to be 1-stable, but has probability less than 1 of being
2-stable.

• For q ≥ q3, with positive probability the tree is not 1-stable (but as we know,

it continues to be 0-stable, in other words draw-free, for all q).

Except for the transition at q0, the precise nature and location of all the phase

transitions above are only found numerically. However, with a sufficiently precise

analysis one could rigorously establish in each case a smaller interval on which the

claimed behavior holds (for example we could find some sub-interval of the claimed

interval (q2, q3) on which to show that h(1) has only one fixed point while h(2) has

more than one fixed point).

In summary, the three families in Examples 5.1-5.3 show a wide variety of be-

haviors. In the Poisson case, one has existence of draws whenever one has existence

of positions with infinite rank. In the 0-or-4 case, there is additionally a phase wth

infinite rank vertices but no draws. In the geometric case, it is the phase with draws

which is missing; however, one sees additional phase transitions, losing 3-stability,

2-stability, and 1-stability step by step as the parameter increases.

We end with a question.

Question 5.4. Does there exist for every k ∈ N an offspring distribution for which

the Galton-Watson tree is k-stable with probability 1, but nonetheless infinite rank

positions exist with positive probability? Numerical explorations have so far only

produced examples up to k = 2 (for example, the Geometric(q) case with q ∈ (q1, q2]

described above).
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