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Abstract

The Sprague-Grundy theory for finite games without cycles was extended to general
finite games by Cedric Smith and by Aviezri Fraenkel and coauthors. We observe
that the same framework used to classify finite games also covers the case of locally
finite games (that is, games where any position has only finitely many options). In
particular, any locally finite game is equivalent to some finite game. We then study
cases where the directed graph of a game is chosen randomly, and is given by the tree
of a Galton-Watson branching process. Natural families of offspring distributions
display a surprisingly wide range of behavior. The setting shows a nice interplay
between ideas from combinatorial game theory and ideas from probability.

1. Introduction

Among the plethora of beautiful and intriguing examples to be found in Elwyn
Berlekamp, John Conway, and Richard Guy’s Winning Ways is the game of FAIR
SHARES AND VARIED PAIRs ([1, Chapter 12]). The game is played with some
number of almonds, which are arranged into heaps. A move of the game consists of
either

e dividing any heap into two or more equal-sized heaps (hence “fair shares”); or
e uniting any two heaps of different sizes (hence “varied pairs”).

The only position from which no move is possible is the one where all the almonds
are completely separated into heaps of size 1. When that position is reached, the
player who has just moved is the winner.

FAIR SHARES AND VARIED PAIRS is a loopy game: the directed graph of game
positions has cycles, so the game can return to a previously visited position. The
way in which the loopiness manifests itself depends on the number of almonds:
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e With 3 or fewer almonds, there are no cycles. The game is non-loopy.

e With 4 to 9 almonds, the graph has loops, but all positions are equivalent to
finite nim heaps. Hence in any position, either the first player has a winning
strategy, or the second player has a winning strategy; furthermore, the same
is true for the (disjunctive) sum of any two positions, or for the sum of a
position with a nim heap. Berlekamp, Conway and Guy call such behavior
latently loopy. “This kind of loopiness is really illusory; unless the winner
wants to take you on a trip, you won’t notice it.”

e With 10 almonds, still any position has either a forced win for the first player
or a forced win for the second player. However, now there exist some patently
loopy positions which are not equivalent to finite nim heaps. If one takes the
sum of two such positions, or the sum of such a position with a nim heap, one
can obtain a game where neither player has a winning strategy — the game is
drawn with best play.

e With 11 or more almonds, there exist blatantly loopy positions where the game
is drawn with best play.

In this article we explore similar themes, but we concentrate particularly on cases
where the possibility of draws comes not necessarily from cycles in the game-graph,
but instead from infinite paths. (Although the game-graph may be infinite, from
any given position there will be be only finitely many possible moves.)

We also focus on situations where the directed graph of the game is chosen at
random. The randomness is only in the choice of the graph — that is, of the “rules
of the game”. All the games themselves will be combinatorial games in the usual
sense, with full information and with no randomness.

Here is an example. We will consider a population where each individual repro-
duces with some given probability p € (0,1). If an individual reproduces, it has 4
children. We start with a single individual (the “root”). With probability 1 — p,
the root has no children, and with probability p, the root has 4 children, forming
generation 1. If the root does have children, then in turn each of those children
itself has no children with probability 1 — p, and has 4 children with probability p.
The collection of those families forms generation 2, whose members again go on to
reproduce in the same way, and so on. All the decisions are made independently.
From the family tree of this process, we form a directed graph by taking the individ-
uals as vertices, and adding an arc from each vertex to each of its children. This is
an example of a Galton- Watson tree (or Bienaymé tree). In the game played on this
tree, from every position there are either 0 or 4 possible moves. Again we consider
normal play — if there are no moves possible from a position, the next player to
move loses.
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Note for example that the tree could be trivial: with probability 1 — p it consists
of just a single vertex. Or it could be larger but finite (its size can be any integer
which is congruent to 1 mod 4), as shown in the example in Figure 1.1. But the
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Figure 1.1: An example of a finite directed graph that could arise from the Galton-
Watson tree model considered in the introduction with out-degrees 0 and 4.

tree can also be infinite.

The game played with such a tree as its game-graph displays very interesting
parallels with that of FAIR SHARES AND VARIED PAIRS described above. The
behavior depends on the value of the parameter p. We will find that there are
thresholds ag = 1/4, a; ~ 0.52198, ap = 5%/*/4 ~ 0.83593 such that the following
hold.

e For p < ag, the tree is finite with probability 1.

e For ag < p < a1, there is positive probability that the tree is infinite. However,
with probability 1, all its positions are equivalent to finite nim heaps, and so
in particular every position has a winning strategy for one or the other of the
players.

e For a; < p < ag, still with probability 1 every position has a winning strategy
for one player or the other. However, there is now positive probability that
the tree has positions which are not equivalent to finite nim heaps. The sum
of two such games, or the sum of such a game with a nim heap, may be drawn
with best play.

e For p > ay, with positive probability the tree has positions which are drawn
with best play.
1.1. Background and Outline of Results

The equivalence of any finite loop-free impartial game to a nim heap was shown
independently by Roland Sprague and by Patrick Grundy in the 1930s. Richard
Guy was a key figure in developing and broadening the scope of the Sprague-Grundy
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theory in the next couple of decades, notably for example in his 1956 paper with
Cedric Smith [7].

An extension of the Sprague-Grundy theory to finite games which may contain
cycles was first described by Smith [13] and was developed extensively in a series of
works by Aviezri Fraenkel and coauthors (for example [4, 2, 5]). As well as finite-
rank games that are equivalent to nim heaps, one now additionally has infinite-rank
games which are not equivalent to nim heaps. The “extended Sprague-Grundy
value” (or “loopy nim value”) of such a game is written in the form oo(.A), where
A C N is the set of nim values of the game’s finite-rank options. These infinite-rank
games may either be first-player wins (if 0 € A) or draws (if 0 ¢ A). Again, we
have equivalence between two games if and only if they have the same (extended)
Sprague-Grundy value.

In [13] Smith already envisages extensions of the theory to infinite games, in-
volving ordinal-valued Sprague-Grundy functions. An extension of a different sort
to infinite graphs was done by Fraenkel and Rahat [3], who extend the finite non-
loopy Sprague-Grundy theory to infinite games which are locally path-bounded, in
the sense that for any vertex of the game-graph, the set of paths starting at that
vertex has finite maximum length.

In this paper we observe that the extended Sprague-Grundy values which classify
finite games are also enough to classify the class of locally finite games, in which
every position has finitely many options. As a result, any such locally finite (perhaps
cyclic) game is equivalent to a finite (perhaps cyclic) game.

We then focus in particular on applying the theory to games whose directed
graph is given by a Galton-Watson tree, of which the 0-or-4 tree described in the
previous section is an example. Galton-Watson trees provide an extremely natural
model of a random game-tree. They have a self-similarity which can be described as
follows: the root individual has a random number of children (distributed according
to the offspring distribution), and then conditional on that number of children, the
sub-trees of descendants of each of those children are independent and have the
same distribution as the original tree.

Games on Galton-Watson trees (including normal play, misere play, and other
variants) are studied by Alexander Holroyd and the current author in [9]. There,
a particular focus was on determining which offspring distributions give positive
probability of a draw, and on describing the type of phase transition that occurs
between the sets of distributions with and without draws. In this paper we con-
centrate on normal play; but, armed with the extended Sprague-Grundy theory, we
can investigate, for example, whether infinite-rank positions occur in games with-
out draws (the case analogous to Berlekamp, Conway and Guy’s “patently loopy”
behavior described above). This setting shows a very nice interplay between ideas
from combinatorial game theory and ideas from probability.

One tool on which we rely heavily is the study of the behavior of the game-graph
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when the set P of its second-player-winning positions is removed. This reduction
behaves especially nicely in the Galton-Watson setting. For example, if we take
a Galton-Watson tree for which draws have probability 0, condition the root to
be a first-player win, and remove the set P, then the remaining component con-
nected to the root is again a Galton-Watson tree, with a new offspring distribution.
Combining iterations of this procedure with recursions involving the probability
generating function of the offspring distribution yields a lot of information about
the infinite-rank positions that can occur in the tree.

We finish by presenting three particular examples of families of offspring distri-
bution: the Poisson case, the geometric case, and the 0-or-4 case described above.
In these examples alone we see a surprisingly wide variety of different types of
behavior.

We now briefly describe the organisation of the paper.

In Section 2 we describe the extended Sprague-Grundy theory for locally finite
games. Although the setting is new, the results can be written in a form which
is almost identical to that of the finite case. We proceed in a way that closely
parallels the presentation of Siegel from Section IV.4 of [12] (with some variations
of notation). The proofs given in [12] also carry over to the current setting essentially
unchanged, and for that reason we do not reproduce them here. A reader who is
not already familiar with the extended Sprague-Grundy theory for finite games may
like to start with that section of [12] before reading on further here.

In Section 3 we discuss the operation of removing P-positions from a locally finite
game, and examine its effect on the Sprague-Grundy values of the positions which
remain. For the particular case of trees, we give an interpretation involving mex
labellings (labellings of the vertices of the tree by natural numbers which obey mex
recursions at each vertex).

In Section 4, we introduce games on Galton-Watson trees, and develop the anal-
ysis via graph reductions and generating function recursions.

Finally, examples of particular offspring distributions are studied in Section 5.

2. Extended Sprague-Grundy Theory for Games with Infinite Paths

In this section we introduce basic notation and definitions, and then describe the
extended Sprague-Grundy theory for locally finite games. The results look identical
to those that have previously been written for the case of finite games. Proofs of
these results, written for the case of finite games but equally applicable here, can
be found in Section IV .4 of [12]. However, note that formally speaking, the content
of the results is different; this is not just because the scope of the statements is
broader, but also because the definition of equivalence is different (see the discussion
in Section 2.3).
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2.1. Directed Graphs and Games

We will represent impartial games by directed graphs. If V is a directed graph,
we call the vertices of V' positions. If there is an arc from x to y in V, we write
y € I'(z) (or y € T'y(z) if we want to specify the graph V) — here I'(z) is the set
of options (i.e., out-neighbors) of x. We say that the graph V is locally finite if all
its vertices have finite out-degree; that is, I'(z) is a finite set for each vertex z. We
may be deliberately loose in using the same symbol V' to refer both to the graph
and to the set of vertices of the graph.

Informally, we consider two-player games with alternating turns; each turn con-
sists of moving from a position x to a position y, where y € I'(x). We consider
normal play: if we reach a terminal position, meaning a vertex with outdegree 0,
then the next player to move loses. Since the graphs we consider may have cycles or
infinite paths, it may be that play continues forever without either player winning.

Formally, a locally finite game is a pair G = (V,z) where V is a locally finite
directed graph (which is allowed to contain cycles) and z is a vertex of V. We will
often write just x instead of (V, x) when the graph V is understood. For example, for
the outcome function O, the Sprague-Grundy function G, and the rank function (all
defined below), we will often write O(z), G(x), and rank(z), rather than O((V, x)),
G((V,x)), and rank((V,z)). We use the fuller notation when we need to consider
more than one graph simultaneously (for example when considering disjunctive sums
of games, or when considering operations which reduce a graph by removing some
of its vertices).

Let V be a directed graph and o a vertex of V. If o has in-degree 0, and if for
every € V, there exists a unique directed walk from o to =, then we say that V'
is a tree with root o. If x and y are vertices of a tree V' with y € T'v(z), we may
say that y is a child of x in V. We write height(x) for the height of x, which is the
number of arcs in the path from o to x.

2.2. Outcome Classes

For a graph V', each position x € V falls into one of three outcome classes.

e If the first player has a winning strategy from z, then we write z € N, or
O(z) = N, and say that = is an N-position.

e If the second player has a winning strategy from x, then we write z € P, or
O(xz) = P, and say that x is an P-position.

e If neither player has a winning strategy from z, so that with optimal play the
game continues forever without reaching a terminal position, we write z € D,
or O(z) = D, and say that z is an D-position.

Theorem 2.1. Let V' be a locally finite graph, and x € V.



INTEGERS: 21B (2021) 7

e 1 is a P-position if and only if every y € T'(z) is an N -position.
e 1 is an N -position if and only if some y € T'(x) is a P-position.

e x is a D-position if and only if no y € I'(x) is a P-position, but some y € I'(x)
18 a D-position.

2.3. Disjunctive Sums and Equivalence Between Games

Let V and W be directed graphs. We define V' x W to be the directed graph whose
vertices are {(z,y),z € V,y € W}, and which has an arc from (u,v) to (z,y) if and
only if either u = z and y € Ty (v), or z € T'y(u) and v = y. If V and W are both
locally finite, then so is V' x W.

If G = (V,z) and H = (W, y) are locally finite games, we define their (disjunctive)
sum G + H to be the locally finite game (V x W, (z,y)).

We have the following interpretation. A position of V' x W is an ordered pair of
a position of V' and a position of W. To make a move in the sum of games, from
position (z,y) of V' x W, one must either move from x to one of its options in V|
or from y to one of its options in W (and not both). The position (z,y) is terminal
for V. x W if and only if x is terminal for V' and y is terminal for W.

Now we define equivalence between two locally finite games G and H. The games
G and H are said to be equivalent, denoted by G = H, if O(G + X) = O(H + X)
for every locally finite game X.

Note here that we have defined equivalence within the class of locally finite games:
we required the equality to hold for every locally finite game X . The definition (and
the meaning of the results below) would be different if X ranged over a different set.
However, it will follow from the extended Sprague-Grundy theory below that this
equivalence extends both the equivalence within the class of finite loopfree graphs,
and that within the class of finite graphs. That is, two finite games are equivalent
within the class of finite games if and only if they are equivalent with the class of
locally finite games; also two finite loopfree games are equivalent within the class
of finite loopfree games if and only if they are equivalent within the class of finite
games.

2.4. The Rank Function and the Sprague-Grundy Function

Let V be a locally finite directed graph. We recursively define G,,(x) for x € V and
n > 0 as follows. First, let

0, if z is terminal;
go(l‘) = .
o0, otherwise.
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Then for n > 1 and given x, write m = mex{G,_1(y),y € I'(z)}, and let

m, if for each y € I'(x), either G, _1(y) < m, or there is z €
Gn(x) = I'(y) with G,_1(2) =m;
00, otherwise.

Proposition 2.2. Let x € V. Then either:
e G,(x) =00 for all n; or

e there exist m and ng such that

Go(2) = {oo, if n < no;

m, if n > ng.

In the light of Proposition 2.2, we can now define the extended Sprague-Grundy
function G in the case of a locally finite graph V. Let x € V. If the second case of
Proposition 2.2 holds, and G, (x) = m for all sufficiently large n, then G(z) = m.
Otherwise, we write

Gn () = 0o(A),
where A is the finite set defined by

A={aeN:G(y) =a for some y € I'(z)}.

We then define the rank of x, written rank(z), to be the least n such that G, ()
is finite, or oo if no such n exists. (Hence the finite-rank vertices are those = with
G(x) = m € N, while the infinite-rank vertices are those  with G(z) = oo(A) for
some A C N.)

Some examples of extended Sprague-Grundy values can be found in Figure 3.1.

Theorem 2.3.
(a) G(z) =0 if and only if O(z) = P.
(b) If G(z) is a positive integer, then O(z) = N.
(c) If G(x)
)

= 00(A) for a set A with 0 € A, then O(x) = N.
(d) G(x) = oo(A) for some A with 0 ¢ A if and only if O(z) = D.

Theorem 2.3 tells us that the Sprague-Grundy value of a position determines its
outcome class. In fact, much more is true: the Sprague-Grundy values of two games
determines the Sprague-Grundy value, and hence the outcome class, of their sum.
The algebra of the Sprague-Grundy values is the same as in the case of finite loopy
graphs, and full details can be found at the end of Section IV.4 of [12]. Again the
proofs carry over unchanged to the locally finite setting. We note a few particular
consequences.
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Theorem 2.4. Let G and H be locally finite games.

(a) G+ H has infinite rank if and only if at least one of G and H have infinite
rank.

(b) If both G and H have infinite rank than G(G + H) = oo(0), and in particular
O(G+H)="0D.

(c) If G(G) = m €N, then G is equivalent to xm, a nim heap of size m.
(d) G and H are equivalent if and only if G(G) = G(H).
Corollary 2.5. Every locally finite game is equivalent to some finite game.

We finish the section by recording the following consequence of the construction
of the extended Sprague-Grundy function, in a form which will be useful for later
reference.

Proposition 2.6. Let V be a locally finite graph, and x € V. Then the following
are equivalent:

(a) rank(z) < n and G(x) = m;
(b) the following two properties hold:

(i) for eachi with0 < i < m—1, there exists y; € I'(x) such that rank(y) < n
and G(y;) = i;

(11) for ally € I'(x), either rank(y) < n and G(y) < m, or there is z € I'(y)
with rank(z) < n and G(z) = m.

3. Reduced Graphs

Let k£ > 0. We will say that a locally finite directed graph V is k-stable if whenever
x € V has infinite rank — that is, whenever G((V,z)) = oo(A) for some A, then
{0,1,...,k} C A

Note that by Theorem 2.3(d), being 0-stable is equivalent to being draw-free:
every position of V' has a winning strategy either for the first player or for the
second player.

Let Py be the set of P-positions of the graph V', in other words those z € V' with
G((V,x)) = 0. Consider the graph R(V) := V \ Py which results from removing
the P-positions from V' (and retaining all arcs between remaining vertices). More
generally, for k > 1 let R¥(V) be the graph resulting from removing all vertices x
with G((V,x)) < k.

Theorem 3.1. Let V' be a locally finite directed graph, and let x € R(V).
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(a) If © has finite rank in V, then also x has finite rank in R(V'); specifically,
G((R(V),z)) =G((V,2)) — 1.

(b) Suppose additionally that V is draw-free. If x has infinite rank in V', then also
x has infinite rank in R(V'); specifically, if G(V,z)) = co(A) for some A (in
which case necessarily 0 € A), then

G((R(V),x)) = 0o(A = 1),
where A — 1 denotes the set {a > 0:a+ 1€ A}.

If V is not draw-free, then the conclusion of part (b) may fail; removing the P-
positions may convert infinite-rank vertices to finite-rank vertices (either P-positions
or finite-rank N -positions). See Figure 3.1 for an example.

oo({2}) 2 oo({1}) 1
(e)0
so({1}) (a) (an 1 0
Figure 3.1: The conclusion of Theorem 3.1(b) may fail when the graph is not draw-
free. Here, removing the unique P-position e from the graph on the left, to give the

graph on the right, converts the position a from infinite rank to finite rank. The
extended Sprague-Grundy values are shown by the nodes in red.

Corollary 3.2. Let k> 1.

(a) Suppose that V,R(V),...,R® (V) are all draw-free. Then R*TD(V) =
R(R®(V)).

(b) V is k-stable if and only if V,R(V),..., R® (V) are all draw-free.

Proof of Theorem 3.1. (a) For the first part, we use induction on the rank of z in
V. We claim that if x € R(V) has rank((V,z)) = n and G((V,2)) = m > 0, then
rank((R(V),z) < n and G((R(V),z)) =m — 1.

Any z with rank 0 in V' is in Py and hence is not a vertex of R(V'), so the claim
holds vacuously for x with rank((V, z)) = 0.

Now for n > 0, suppose the claim holds for all z with rank((V,z)) < n, and
consider z € R(V) with rank((V,z)) =n and G((V,z)) = m.

From Proposition 2.6 we have the following properties:
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(i) for each i =0,...,m — 1, there exists y; € I'v(x) such that rank((V,y;)) < n
and G((V,y:)) = i;

(ii) for all y € T'y(x), either rank((V,y)) < n and G((V,y)) < m, or there is
z € Ty (y) with rank((V, 2z)) < n and G((V, z)) = m.

Applying the induction hypothesis we get:

(i) foreachi=1,...,m—1, there exists y; € I'g(v)(x) such that rank((R(V),y;))
<nand G((R(V),y:)) =i —1;

(ii) for all y € T'gevy(x), either rank(R(V),y) < n and G((R(V),y)) <m — 1, or
there is 2z € 'y (y) with rank((R(V),2)) <n and G((R(V),2)) =m — 1.

Using Proposition 2.6 again we conclude that rank((R(V),z)) < nand G((R(V), z))
= m — 1, completing the induction step.

(b) Now we suppose that in addition V' is draw-free. We first want to show that
if  has finite rank in R(V'), then it also has finite rank in V. In this case we work
by induction on the rank of z in R(V).

If « has rank 0 in R(V), (i.e., if « is terminal in R(V')), then all options of = in
V are in Py (i.e., G((V,y)) = 0), which gives G((V,x)) =

Now let n > 1. Assume that any vertex with rank less than n in R(V') has finite
rank in V, and consider any vertex = with rank n in R(V), say G, ((R(V),z)) =

Then using Proposition 2.6 again,

(i) There are yo,y1,...,Ym—1 € I'gev)(z) such that for each 7, rank((R(V),y;)) <
n and G((R(V),y;)) = i. Then by the induction hypothesis, rank((V,y;)) <
00, and part (a) gives G((V,y;)) =i+ 1.

(ii) For all y € I'r(y)(x), either rank((R(V),y)) < n and G((R(V),y)) < m, or
there is z € I'g(vy(y) such that rank((R(V),2)) < n and G((R(V),2)) =
By the induction hypothesis and part (a) again, then either G(V,y) < m + 1

or there is such a z with G(V, z) = m + 1.

Now consider two possibilities. Either there is y € I'y (z) with G((V,y)) = 0. Then
for some large enough n’ we get G,»((V,2)) = m+1, and indeed z has finite rank in
V. Alternatively, there is no such y. Then if  had infinite rank in V', we would have
G((V,z)) = oo(A) for some A with 0 ¢ A. This would contradict the assumption
that V is draw-free. Hence again x must have finite rank in V', as required. O

3.1. Mex Labellings, and Interpretation of k-stability in the Case of Trees

The material in this section is not used in the later analysis, but it aims to give
helpful intuition about the notion of k-stability in the case of trees, showing that it
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can be interpreted in terms of consistency of the set of vertices labelled 0,1,... &
across all labellings which locally respect the mex recursions.

Let V be a locally finite directed graph. We call a function f : V — N a mex
labelling of V if for all z € V, f(z) = mex{f(y),y € Tv(x)}.

Of course, if V is finite and loop-free, then there is a unique mex labelling f of
V given by f(x) =G((V,z)) for z € V.

Notice also that any locally finite tree has at least one mex labelling. To see this
we can consider the sequence of finite graphs (V,,,n € N), where V, is the induced
subgraph of V' containing all vertices = such that height(z) < n. Each such V,, is
finite and loop-free, and so has a mex labelling f,,. In any mex labelling, the vertex
x has value no greater than the out-degree of x (which is finite by assumption).
Then a compactness/diagonalisation argument shows that there exists a labelling
f 'V — N which, on any finite subset W C V, agrees with infinitely many of the f,.
In particular, for any vertex z, f agrees with one of the f, on {x} UTy (x). Then

f obeys the mex recursion at every such vertex z, so f is indeed a mex labelling of
V.

Proposition 3.3. Let V' be a locally finite tree, and k € N.

(a) Suppose V is k-stable. Then the set {x € V : f(x) = k} is the same for all
mex labellings f of V', and is equal to {x € V : G((V,x)) = k}.

(b) Suppose V is not k-stable, but is (k — 1)-stable. (Ignore the vacuous condition
of (k — 1)-stability for k =0.) Let x € V with G(x) = co(A) for some A not
containing k. Then there are mex labellings f and f' of V with f(x) = k,
f(x) # k.

Note that the conclusion of part (b) can fail even for graphs which are acyclic in
the sense of having no directed cycles. See Figure 3.2 for an example. (The method
of proof below makes clear that the result does extend to bipartite graphs with no
directed cycles.)

Proof. We start by proving that if x € V has finite rank with G(z) = m, then
f(z) = m for all mex labellings f of V. (This holds for any locally finite directed
graph V.)

We proceed by induction on rank(z). Let f be any mex labelling of V.

If rank(z) = 0, then z has no options. Then G(z) = 0, and so f(x) = mex(f)) = 0.

Now suppose rank(z) = n > 0 and G(x) = m, and that the statement holds for
all vertices of rank less than n.

From Proposition 2.6, for each ¢ with 0 < ¢ < m — 1, there exists y; € I'(z) with
G(y;) =i and rank(y;) < n. Hence f(y;) = 1.

Also for every y € T'(z) with G(y) > m, there is z € T'(y) with rank(z) < n and
G(z) = m. Then f(z) =m, and hence f(y) # m.
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0 0 0

Figure 3.2: An example showing the conclusion of Proposition 3.3(b) can fail even
for “loop-free” graphs (i.e., graphs with no directed cycle). The directed graph with
vertex set {a;,i € N} U {b;,i € N}, and arcs from a; to b;, from a; to a;y1, and
from b; to b;41 for each i. There are two mex labellings, one shown in red above
the vertices and the other shown in blue below the vertices. Every position has
Sprague-Grundy value co((}), and the graph is not 0-stable. However, the positions
b; have value 0 in both mex labellings, while the positions a; have non-zero values
in both mex labellings.

Thus = has options on which f takes value 0, 1,...,m—1, but no option on which
f takes value m. This gives f(z) = m as required.

To complete the proof of part (a), suppose that V is k-stable, and let f be any
mex labelling of V. Then any vertex x with infinite rank has G(z) = oo(A) for
some A with k € A. Hence there exists y € I'(z) with G(y) = k, giving f(y) = k.
Then f(x) # k. So indeed, the set of vertices z with f(z) = k is exactly the set of
x with G(z) = k.

We turn to part (b), starting with the case kK = 0. Suppose that V is a locally
finite tree which is not 0-stable. Let = be any vertex with G(z) = oo(A) for some
A not containing 0 (that is, x € D).

Take any n > height(z). Since the game from position z is drawn, if we con-
sider the game on the truncated graph V,, described just before the statement of
the proposition, so that all vertices at height n become terminal, then position
x becomes a first-player win if n — height(x) is odd, and a second-player win if
n — height(z) is even.

Then we can apply again the compactness argument mentioned before the state-
ment of Proposition 3.3, separately for odd n and even n. This yields two mex
labellings f and f’, one of which gives value 0 to x, and the other of which gives a
strictly positive value to z, as required. This completes the proof of part (b) in the
case k = 0.

Now we extend to k& > 0. Suppose V is (k — 1)-stable but not k-stable. As in
Corollary 3.2, we can apply the reduction operator k£ — 1 times, removing all the
vertices y € V with G((V,y)) < k, to arrive at the graph R¥(V).

Any v € R¥(V) either has G((V,)) = m for some finite m > k, or G((V,z)) =
oo(A) for some A with {0,...,k—1} C A. It is then easy to check that whenever



INTEGERS: 21B (2021) 14

f: R*(V) — Nis a mex labelling of R¥(V'), we can obtain a mex labelling f : V — N
of V' by defining

/ (3.1)

fz) = {g((V,x)), if G(V,2)) < k
f(z) +k, otherwise.

Let z € V with G(V,z) = 0o(A) for some A containing 0, ...,k — 1 but not k.
Then, by applying Theorem 3.1 k times, we have z € R*(V) and G(R¥(V),z)) =
oo(B) where B = A — k. In particular, 0 ¢ B (that is, the position z in R*(V) is a
draw). We wish to show that there are mex labellings f, f’ of V such that f(z) =k
and f'(x) # k. In light of (3.1), it is enough to show that there are mex labellings
£, f" of R¥(V) such that f(z) =0 and f'(z) > 0.

Since = is a draw in RF(V), we would like to use the same approach as in
the k = 0 case. The situation is more complicated since the graph R¥(V) may
not be connected. However, the graph R*(V) is a union of finitely or countably
many disjoint trees. Any labelling which restricts to a mex labelling of each tree
component is a mex labelling of the whole graph. So it suffices to find mex labellings
of the tree component of R¥(V) which contains z, one of which assigns value 0 to
and another of which assigns strictly positive value to . This indeed can be done
using the same compactness argument used in the £ = 0 case.

This completes the proof of part (b). O

4. Random Game-trees

4.1. Galton-Watson Trees

A Galton-Watson (or Bienaymé) branching process is constructed as follows. We
fix some offspring distribution which is a probability distribution p = (pg, k € N)
on the non-negative integers. The process begins with a single individual, called the
root. The root individual has a random number of children, distributed according
to the offspring distribution, which form generation 1. Then each of the members
of generation 1 has a number of children according to the offspring distribution,
forming generation 2, and so on. All family sizes are independent. See for example
[6] for a basic introduction, and [11] for much more depth including a rigorous
construction.

We derive a directed graph from the process by regarding each individual as a
vertex, and putting an arc to each child from its parent. In this way each vertex
of the graph has in-degree 1, except for the root which has in-degree 0. We call
the resulting graph a Galton-Watson tree. This tree has a natural self-similarity
property: conditional on the number of the children of the root being k, the subtrees
rooted at those children are independent and each one has the distribution of the
original Galton-Watson tree.
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We assume always that pg > 0, so that the tree can have terminal vertices.
A key role in what follows will be played by the probability generating function
of the offspring distribution, defined by

o(s) = Zpksk.

k>0

The function ¢ is strictly increasing on the interval [0, 1], and maps [0, 1] bijectively
to the interval [po, 1].

A fundamental result is a criterion for the tree to be infinite, in terms of the
mean g =y ,,kpr = ¢'(1) of the offspring distribution p. Excluding the trivial
case p; =1 (W}_lere with probability 1 the tree consists of a single path) one has that
whenever 1 < 1, the tree is finite with probability 1, and whenever p > 1, there is
positive probability for the tree to be infinite.

If d = sup{k : pr > 0} is finite, we say the offspring distribution has mazimum
out-degree d. Otherwise we say that the offspring distribution has unbounded vertex
degrees.

4.2. Galton-Watson Games

We will consider Galton- Watson games i.e., games whose directed graph is a Galton-
Watson tree T
We start with a very simple lemma which helps simplify the language.

Lemma 4.1. Consider a Galton-Watson tree T, with root o. Let C be any set of
possible Sprague-Grundy values. The following are equivalent:

(a) P(G((T’0)) € C) > 0;
(b) P(G((T,u)) € C for someu € T) > 0.

For example, the tree T is draw-free with probability 1 if and only if the prob-
ability that the root is drawn is 0. So we do not need to distinguish carefully
between saying that “the tree has draws with positive probability” and that “the
root is drawn with positive probability”. More generally, the tree T is k-stable with
probability 1 if and only if the probability that G(T,0) = oo(A) for some A not
containing {0,1,...,k} is 0.

Proof of Lemma 4.1. Trivially (a) implies (b). On the other hand, if (a) fails, so
that that P(G(T,0)) € C = 0, then the self-similarity of the Galton-Watson tree, the
fact that the tree has at most countably many vertices, and the countable additivity
of probability measures, combine to give that P(G((T,u)) € C for some u € T) =0
also, so that (b) also fails. O
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The question of when a Galton-Watson game has positive probability to be a
draw was considered in [9].

Let P,, be the set of vertices from which the second player has a winning strategy
that guarantees to win within 2n moves (n by each player), and let P, be the
probability that o € P,. Note that o € P,, if and only if for every child u of o, u
itself has a child in P, _;. This leads to the following recursion for the probabilities
P, in terms of the generating function.

P, = 1_¢(1_¢(Pn—1))' (41)

Now let P be the probability that o € P. We have P = lim,,_, o, P,. Taking limits in
(4.1), and using the fact that the generating function ¢ is continuous and increasing
on [0, 1], we obtain part (a) of the following result. A similar approach involving the
probability of winning strategies for the first player gives part (b). For full details,
see [9].

Proposition 4.2 (Theorem 1 of [9]). Define a function h: [0,1] — [0,1] by

h(s) =11 = ¢(s)). (4.2)
(a) P:=P((T,0) € P) is the smallest fized point of h in [0,1].
(b) If N :=P((T,0) € N), then 1 — N is the largest fized point of h in [0,1].

Corollary 4.3. D := P((T,0) € D) = 1 — N — P is positive if and only if the
function h defined by (4.2) has more than one fized point in [0, 1].

Note that h defined in (4.2) is the second iteration of the function 1 — ¢. The
function 1 — ¢ is continuous and strictly decreasing, mapping [0, 1] to [1 — po, 0]. It
follows that 1 — ¢ has precisely one fixed point in [0, 1], and that fixed point is also
a fixed point of h. So Corollary 4.3 tells us that the game has positive probability
of draws if and only if h has further fixed points which are not fixed points of 1 — ¢.

Two particular families of offspring distributions had been considered earlier.
The Binomial(2,p) case was studied by Holroyd in [8]. The case of the Poisson
offspring family is closely related to the analysis of the Karp-Sipser algorithm used
to find large matchings or independent sets of a graph, which was introduced by
Karp and Sipser in [10]; the link to games is not described explicitly in that paper,
but the choice of notation and terminology makes clear that the authors were aware
of it.

One particular focus of [9] was on the nature of the phase transitions between the
set of offspring distributions without draws, and the set of offspring distributions
with positive probability of draws. This transition can be either continuous or
discontinuous. Without going into precise details, we illustrate with a couple of
examples.
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Example 4.4 (Poisson distribution — continuous phase transition). The Poisson(\)
offspring family was considered in Proposition 3.2 of [9]. The game has probability 0
of a draw if A < e, and positive probability of a draw if A > e. The phase transition
is illustrated in Figure 4.1. For A < e, the function A has only one fixed point, while
for A > e, h has three fixed points. The additional fixed points emerge continuously
from the original fixed point as A goes above e. Note that the probability of a draw
at the critical point itself is 0; more strongly, we have the draw probability P(o € D)
is a continuous function of A.

Example 4.5 (A discontinuous phase transition). Consider a family of offspring
distributions with pg = 1 — a, p2 = a/2, p1p = a/2, where a € [0,1]. This family
is used in the proof of Proposition 4(i) of [9]. Again there is some critical point
a. =~ 0.979 such that there is positive probability of a draw for a > a. and not
for a < a.. However, unlike in the Poisson case above, at the critical point itself,
the function h already has three fixed points, and the probability P(o € D) jumps
discontinuously from 0 for a < a. to approximately 0.61 at a = a. itself. The
difference in the nature of the emergence of the additional fixed points of h can be
seen by comparing Figure 4.1 and Figure 4.2.

4.3. Existence of Infinite Rank Vertices in Galton-Watson Games

Now we go beyond the question of whether draws have positive probability, to ask
more generally about the extended Sprague-Grundy values that occur in a Galton-
Watson game. A specific question will be whether, when draws are absent, there are
still some infinite rank positions. As suggested by Corollary 3.2, we can investigate
the k-stability of the tree T by looking at whether draws occur for the reduced
trees R¥(T). The reduction operator behaves particularly nicely in the setting of a
Galton-Watson tree.

Theorem 4.6. Consider a Galton-Watson tree T whose offspring distribution
(pn,n > 0) has probability generating function ¢.

Suppose the tree is draw-free with probability 1. Let P be the probability that the
root o is a P-position.

Condition on the event O(o) = N, and consider the graph obtained by remov-
ing all the P-positions. Let T(") denote the component connected to the root o in
this graph. Then T is again a Galton-Watson tree rooted at o, whose offspring
distribution has probability generating function given by

1

0 (s) = =5 [6(P+5(1 = P)) — 6(s(1 = P))]. (4.3)

Proof. Since we assume that T has no draws, each vertex of T' is either a P-position
or an NV-position. The type of a vertex is determined by the subtree rooted at that
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Figure 4.1: An illustration of the phase transition from the non-draw to the draw
region, for Poisson(\) offspring distributions (see Example 4.4). The two plots show
the function h(s) — s for s € [0,1], where h is defined by (4.2). The fixed points
of h are those s where h(s) — s crossing the horizontal axis. On the left, A = 2.7,
just below the critical point A = e; the function h has just one fixed point. On the
right, A = 2.8, just above the critical point; now h has three fixed points.

0.10 -

0.05

Figure 4.2: The phase transition for the family of offspring distributions given in
Example 4.5, with pg = 1 — a,p2 = a/2,p10 = a/2. Again the function h(s) — s is
shown for s € [0,1]. On the left a = 0.977, and on the right a = 0.979 =~ a.. Unlike
in Figure 4.1, at the critical point there are already multiple fixed points of h; at
ac, the draw probability jumps from 0 to a positive value around 0.681, which is
the distance between the minimum and maximum fixed points of h.
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vertex. Conditional on the number of children of the root, the subtrees rooted at
each child are independent and each have the same distribution as the original tree.
In particular, each child is independently a P-position with probability P, and an
N-position with probability 1 — P.

This gives us a two-type Galton-Watson process. We have the familiar recursion
that a vertex is an N -position if and only if at least one of its children is a P-position.

We condition on the root being of type N, and retain only its N -type children,
and the N -type children of those children, and so on. This gives a one-type Galton-
Watson process, and its offspring distribution is the distribution of the number of
N-type children of the root in the original process, conditional on the root having
type N.

The probability that the root has k P-children and m A -children is

+k m
pm-Hc(mk )Pk(l_P) :

We can sum over k > 1 to obtain the probability that the root is of type N and
has m N -children. Finally, we can condition on the event that the root has type N’
(which has probability 1 — P), to obtain that the conditional probability that the
root has m N-children given that it has type A is

o

1 m+k
1) .— k _ m

=1

Finally we want to calculate the probability generating function ¢(1)(s) =
Zmzo smp%) of this distribution. This can easily be done using the binomial the-
orem to arrive at the form given in (4.3). O

Combining Corollary 3.2 and Theorem 4.6 is the key to studying the infinite-rank
vertices of our Galton-Watson tree T'; see the strategy described at the beginning
of Section 5.

We finish this section with a result about the possible infinite Sprague-Grundy
values that can occur in a Galton-Watson game. Essentially, the value oco(.A) has
positive probability to appear for every finite .4 which is not ruled out either by k-
stability or by finite maximum vertex degree. Most notably, part (a)(i) says that for
a tree which has draws and for which the offspring distribution has infinite support,
all finite A have positive probability.

Proposition 4.7. Consider the game on a Galton-Watson tree.
(a) Suppose there is positive probability of a draw.

(i) If the vertex degrees are unbounded, then for any finite A C N, there is
positive probability that G(o) = oco(A).
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(i) If the mazimum out-degree is d, then there is positive probability that
G(0) = 0o(A) if and only if A C {0,1,...,d} with |A| <d—1.

(b) For k > 1, suppose that the tree is (k — 1)-stable with probability 1, but has
positive probability not to be k-stable.

(i) If the vertex degrees are unbounded, then for any finite A C N which
contains {0,...,k — 1}, there is positive probability that G(0) = co(A).

(i1) If the mazimum out-degree is d, then there is positive probability that
G(o) = oo(A) if and only if {0,1,...,k —1} C A C {0,1,...,d} with
Al <d-1.

Proof. First we note that all finite Sprague-Grundy values have positive probability,
up to the maximum out-degree d if there is one. This is easy by induction. We
know that value 0 is possible since any terminal position has value 0. If values
0,1,...,k—1 are possible, and it is possible for the root to have degree k or larger,
then there is positive probability that the set of values of the children of the root is
precisely {0,1,...,k — 1}, giving value k to the root as required.

Now for part (a), since draws are possible, the value co(53) has positive probability
for some B not containing 0. In that case, there is positive probability for all the
children of the root to have value oo(B), and then the root has value oo(f)).

So the value co((}) has positive probability. Now if A is any finite set such that
the number of children of the root can be as large as |A| + 1, then there is positive
probability that the set of values of the children of the root is precisely AU {oo(®)},
and in that case the value of the root is 0o(.A) as required.

Finally, if | A] is greater than or equal to the maximum degree, then the value
00(A) is impossible, since any vertex with such a value must have at least one child
with value m for each m € A, and additionally at least one child with infinite rank.

We can derive the result for part (b) by applying part (a) to the Galton-Watson
tree T™) obtained by conditioning the root to have Sprague-Grundy value not in
{0,1,...,k — 1}, and removing all the vertices with values {0,1,...,k — 1} from
the graph, as described above. Theorem 3.1 tells us that if the resulting tree has
positive probability to have a node with value co(A), then the original tree has
positive probability to have a node with value co(B) where B={b>k:b—k €
A} U{0,1,...,k — 1}, and the desired results follow. O

Remark 4.8. Suppose we have a Galton-Watson tree T with positive probability
to be infinite, and a set C of Sprague-Grundy values with P(G(o) € C) > 0. A
straightforward extension of Lemma 4.1 says that conditional on T being infinite,
with probability 1 there exists u € T with G(u) € C.

Combining with Proposition 4.7, we get the following appealing property. If T has
unbounded vertex degrees, and positive probability of draws, then conditional on
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T being infinite, with probability 1, vertices with every possible extended Sprague-
Grundy value are found in the tree.

5. Examples

First we lay out how to use the results of the previous sections to address the
question of which infinite-rank Sprague-Grundy values have positive probability for
a given Galton-Watson tree T

Let ¢ be the probability generating function of the offspring distribution of T.
To examine whether T can have draws, we apply the criterion given Corollary 4.3:
T is draw-free with probability 1 if and only if the function h(s) =1 — ¢(1 — ¢(s))
has a unique fixed point.

If so, we use the procedure in Theorem 4.6. We condition the root to be a N-
position, we remove all the P-positions, and we retain the connected component of
the root, to obtain a new Galton-Watson tree T") with an offspring distribution
whose probability generating function is ¢(!). We then examine whether or not this
new generating function gives a draw-free tree.

If it does, we can repeat the procedure again, producing a new generating function
which we call $(?), corresponding to removing the positions with Sprague-Grundy
values 0 and 1 from the original tree.

If we perform k reductions and still have a draw-free tree at every step, this tells
us that our original tree was k-stable with probability 1.

If the iteration of this procedure never produces a tree with positive probability
of a draw, then the original tree had probability 0 of having infinite-rank vertices.
(Note that for example if at any step we arrive at a tree which is sub-critical, i.e.,
whose offspring distribution has mean less than or equal to 1 and which therefore
has probability 1 to be of finite size, then we know that every further reduction
must give rise to a draw-free tree.)

We now apply this strategy to a few different examples of families of offspring
distributions. We see a surprising range of types of behavior.

Example 5.1 (Poisson case, continued). Galton-Watson trees with Poisson off-
spring distribution behave particularly nicely under the graph reduction operation.
This allows us to give a complete analysis of the Poisson case without any need for
calcuations or numerical approximation.

The tree has positive probability to be infinite precisely when A > 1. We already
saw in Example 4.4 that there is positive probability of a draw precisely when A > e.

Suppose we are in the A < e case without draws. So each node is a P-node (with
probability P) or a N-node (with probability 1 — P).

By basic properties of the Poisson distribution, the number of P-children of
the root is Poisson(\P)-distributed, and the number of N-children of the root is
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Poisson(A(1 — P))-distributed, and the two are independent.

If we condition the root to have at least one P-child, and then remove all its
P-children, then because of the independence of the number of P-children and
the number of A-children, we are simply left with a Poisson(A(1 — P)) number of
children.

So we again have a Poisson Galton-Watson tree, but now with a new parameter
A < X Since AV < e, the new tree is still draw-free with probability 1.

Hence, to adapt the terminology of the introduction, in the Poisson case we may
see a “blatantly infinite” game once A > e, but for A < e we are at worst “latently
infinite”. There is no A which gives “patently infinite” behavior whereby draws are
absent but infinite rank vertices have positive probability.

Example 5.2 (Degrees 0 and 4). We return to the example in the introduction,
where all outdegrees are 0 or 4. We have p, = p and py = 1 — p for some p € (0, 1).

If p < ap := 1/4 then the mean offspring size is less than or equal to 1, and the
tree is finite with probability 1.

One can show algebraically that there is positive probability of a draw if and only
if p > ag := 5%/* ~ 0.83593. Namely one can obtain that the function h defined in
(4.2) has derivative less than 1 on [0, 1] for all p < ag (except for a single point in
the case p = az), and so r has just one fixed point for such p. Meanwhile for p > as
there is a fixed point s* of the function 1 — ¢ for which A’'(s*) > 1, and this can be
used to show that r has at least two further fixed points. Corollary 4.3 then gives
the result.

Between ag and as there exist no draws, but the tree is infinite with positive
probability, so we may ask whether there can exist positions with infinite rank.

Numerically, we observe a phase transition around the point a; ~ 0.52198. For
p < a1, we know that the tree T" has zero probability of a draw, and we observe
that the same is also true for the trees 7" and T®) (their maximum out-degrees
are 3 and 2 respectively, so their generating functions ¢ and ¢ are cubic and
quadratic respectively. The tree T(®) has vertices of out-degrees only 0 and 1, and
will also be finite with probability 1, so we do not need to examine T*) for any
higher k.)

Hence for p € (ap,a1], we have the “latently infinite” phase where all Sprague-
Grundy values are finite with probability 1.

However, for p € (a1, az] we observe that the function h(V)(s) := 1 — ¢ (1 —
#™M(s)) has more than one fixed point. Consequently, there is positive probability
of a draw in the tree 7. The tree T has positive probability not to be 1-stable,
and so to have positions of infinite rank.

The behavior of h, h") and h(?) around the phase transition point p = a; is shown
in Figure 5.1. Although the precise nature and location of this phase transition is
only found numerically, it is not hard to show rigorously that for p just above ay,
the functions A1) and h? have only one fixed point, while for p just below as, the
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Figure 5.1: The case of the 0-or-4 distribution from Example 5.2, with p = 0.52198 ~
a1. From left to right the three graphs show the functions h(s) — s, h(!)(s) — s, and
h(z)(s) —s. As p moves through the critical point a, the function A(!) acquires
multiple fixed points. For p < ay, the tree has only finite-rank vertices. For p > aq,
the tree no longer has probability 1 to be 1-stable, and for example the Sprague-
Grundy value co(0) has positive probability.

function A(!) has more than one fixed point, so that the family of distributions does
display all four of the “finite”, “latently infinite”, “patently infinite” and “blatantly
infinite” types of behavior.

Example 5.3 (Geometric case). We now consider the family of geometric offspring
distributions, with py = ¢*(1 — ¢) for k =0,1,2,..., for some ¢ € (0, 1).

Rather surprisingly, there is no g for which draws have positive probability! See
for example Proposition 3(iii) of [9]. (This shows for example that the property of
having positive probability of draws is not monotone in the offspring distribution. If
we take any A > e, then as discussed above, the Poisson(\) distribution has positive
probability of draws, but for ¢ sufficiently large, this distribution is stochastically
dominated by a Geometric(q) distribution, which does not have draws.)

However, other interesting phase transitions for the geometric family do occur.
Numerically, we observe that there are critical values gy = 1/2,¢q; ~ 0.88578,¢2 =~
0.88956, ¢3 ~ 0.923077 such that the following hold.

e For ¢ < 0.5, the tree is finite with probability 1.

e For g € (0.5, q1], there are infinite paths with positive probability, but the tree
is 3-stable with probability 1. In fact for g sufficiently close to 0.5, the tree
TM is finite with probability 1, and so in fact the tree is k-stable for all k, i.e.,
all positions have finite rank (the latently infinite phase). It seems plausible
that in fact the latently infinite phase continues all the way to ¢;, but we do
not know how to demonstrate that.

e For ¢ € (q1, ¢2], with positive probability the tree is not 3-stable; however it
continues to be 2-stable.

e For g € (g2, qs3], with positive probability the tree is not 2-stable; however it
continues to be 1-stable.
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Figure 5.2: The geometric case of Example 5.3 with ¢ = 0.91 € [g2,¢3). As in
Figure 5.1, we plot the functions h(s) —s, h(!) (s) — s, and h(?) (s) — 5. The functions
h and ) have unique fixed points, but the function A(? has multiple fixed points;
so the tree has probability 1 to be 1-stable, but has probability less than 1 of being
2-stable.

e For ¢ > ¢3, with positive probability the tree is not 1-stable (but as we know,
it continues to be O-stable, in other words draw-free, for all g).

Except for the transition at qg, the precise nature and location of all the phase
transitions above are only found numerically. However, with a sufficiently precise
analysis one could rigorously establish in each case a smaller interval on which the
claimed behavior holds (for example we could find some sub-interval of the claimed
interval (g2, q3) on which to show that h(") has only one fixed point while 2(?) has
more than one fixed point).

In summary, the three families in Examples 5.1-5.3 show a wide variety of be-
haviors. In the Poisson case, one has existence of draws whenever one has existence
of positions with infinite rank. In the 0-or-4 case, there is additionally a phase wth
infinite rank vertices but no draws. In the geometric case, it is the phase with draws
which is missing; however, one sees additional phase transitions, losing 3-stability,
2-stability, and 1-stability step by step as the parameter increases.

We end with a question.

Question 5.4. Does there exist for every k € N an offspring distribution for which
the Galton-Watson tree is k-stable with probability 1, but nonetheless infinite rank
positions exist with positive probability? Numerical explorations have so far only
produced examples up to k = 2 (for example, the Geometric(q) case with ¢ € (q1, ¢2]
described above).
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