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Abstract

Chocolate-bar games are variants of the Chomp game. Let Z≥0 be a set of nonneg-
ative numbers and x, y, z ∈ Z≥0. A three-dimensional chocolate bar is comprised of
a set of 1× 1× 1 cubes, with a “bitter” or “poison” cube at the bottom of the col-
umn at position (0, 0). For u,w ∈ Z≥0 such that u ≤ x and w ≤ z, and the height
of the column at position (u,w) is min(F (u,w), y) + 1, where F is a monotoni-
cally increasing function. We denote such a chocolate bar as CB(F, x, y, z). Two
players take turns to cut the bar along a plane horizontally or vertically along the
grooves, and eat the broken pieces. The player who manages to leave the opponent
with a single bitter cube is the winner. In a prior work, we characterized function
f for a two-dimensional chocolate-bar game such that the Sprague–Grundy value
of CB(f, y, z) is y ⊕ z. In this study, we characterize function F such that the
Sprague–Grundy value of CB(F, x, y, z) is x⊕ y ⊕ z.

1. Introduction

Chocolate-bar games are variants of the Chomp game. A two-dimensional chocolate

bar is a rectangular array of squares in which some squares are removed throughout

the course of the game. A “poisoned” or “bitter” square, typically printed in black,

is included in some part of the bar. Figure 1 shows an example of a two-dimensional

chocolate bar. Each player takes turns breaking the bar in a straight line along the

grooves, and then “eats” a broken piece. The player who manages to leave the

opponent with a single bitter block (the black block) wins the game.

A three-dimensional chocolate bar is a three-dimensional array of cubes in which

a poisoned cube printed in black is included in some part of the bar. Figure 2 shows

an example of a three-dimensional chocolate bar.
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Each player takes turns dividing the bar along a plane that is horizontal or

vertical along the grooves, and then eats a broken piece. The player who manages

to leave the opponent with a single bitter cube wins the game. Examples of cut

chocolate bars are shown in Figures 3, 4, and 5.

Example 1.1. Here, we provide examples of chocolate bars.

(i) Example of a two-dimensional chocolate bar.

Figure 1.

(ii) Example of a three-dimensional chocolate bar.

Figure 2.

Example 1.2. There are three ways to cut a three-dimensional chocolate bar.

(i) Vertical cut.

Figure 3.

(ii) Vertical cut.
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Figure 4.

(iii) Horizontal cut.

Figure 5.

The original two-dimensional rectangular chocolate bar introduced by Robin [1]

is comprised of a “bitter” or “poison” corner, as shown in Figure 6. Because the

horizontal and vertical grooves are independent, an m×n rectangular chocolate bar

game is structured in a manner similar to that of the game Nim, which includes

heaps of m − 1 and n − 1 stones. Therefore, the chocolate-bar game (Figure 6) is

mathematically equivalent to Nim, which includes heaps of 5 and 3 stones (Figure

7). The Grundy number of the Nim game with heaps of m− 1 and n− 1 stones is

(m − 1) ⊕ (n − 1); therefore, the Grundy number of this m × n rectangular bar is

(m− 1)⊕ (n− 1).

Extending the game to three dimensions, Robin [1] also presented a cubic choco-

late bar. For example, see Figure 2. It can be easily determined that the three-

dimensional chocolate bar in Figure 2 is mathematically equivalent to Nim with

heaps of 5, 3, and 5 stones. Hence, the Grundy number of this 6× 4× 6 cuboid bar

is 5⊕ 3⊕ 5.

Example 1.3. Here, we provide an example of the traditional Nim game and two

examples of chocolate bars.
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Figure 6.

Figure 7.

Figure 8.

In this context, it is natural to search for a necessary and sufficient condition

wherein a chocolate bar may have a Grundy number calculated using the Nim-sum

as the length, height, and width of the bar.

We have previously presented the necessary and sufficient condition for a two-

dimensional chocolate bar in [2].

This article aims to answer the following question.

Question. What is the necessary and sufficient condition under which a three-

dimensional chocolate bar may have a Grundy number (x− 1)⊕ (y − 1)⊕ (z − 1),

where x, y, and z are the length, height, and width of the bar, respectively?

The remainder of this article is organized as follows. In Section 2, we briefly

review some necessary concepts of combinatorial game theory.

In Section 3, we present a summary of the research results on the two-dimensional

chocolate-bar game provided in [2] and utilize this result in Section 4.

In Section 4, we study a three-dimensional chocolate bar such as that shown

in Figure 2 and answer the abovementioned research question. The proof of the
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sufficient condition for a three-dimensional chocolate bar is straightforward from

the result of the two-dimensional chocolate bar presented in [2]; however, the proof

of the necessary condition for a three-dimensional chocolate bar is more difficult to

obtain.

2. Combinatorial Game Theory Definitions and Theorem

Let Z≥0 be a set of nonnegative integers.

For completeness, we briefly review some necessary concepts from combinatorial

game theory; further details may be found in [5] or [6].

Definition 2.1. Let x and y be nonnegative integers. Expressing both in base 2,

x =
∑n

i=0 xi2
i and y =

∑n
i=0 yi2

i with xi, yi ∈ {0, 1}. We define the nim-sum,

x⊕ y, as

x⊕ y =

n∑
i=0

wi2
i, (1)

where wi = xi + yi (mod 2).

Lemma 1. Let x, y, z ∈ Z≥0. If y 6= z, then x⊕ y 6= x⊕ z.

Proof. If x⊕ y = x⊕ z, then y = x⊕ x⊕ y = x⊕ x⊕ z = z.

As chocolate-bar games are impartial and without draws, only two outcome

classes are possible.

Definition 2.2. (a) A position is referred to as a P-position if it is a winning

position for the previous player (the player who just moved), as long as the player

plays correctly at every stage.

(b) A position is referred to as an N -position if it is a winning position for the next

player, as long as the player plays correctly at every stage.

Definition 2.3. The disjunctive sum of the two games, denoted by G + H, is a

super-game in which a player may move either in G or H, but not in both.

Definition 2.4. For any position p of game G, there exists a set of positions that

can be reached in precisely one move in G, which we denote as move(p).

Remark 2.1. Note that 3.1 and 3.2 are examples of a move.

Definition 2.5. (i) The minimum excluded value (mex) of a set S of nonnegative

integers is the least nonnegative integer that is not in S.

(ii) Let p be a position in an impartial game. The associated Grundy number is

denoted as G(p) and is recursively defined as G(p) = mex{G(h) : h ∈ move(p)}.
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Lemma 2. Let S be a set of nonnegative integers and mex(S) = m for some

m ∈ Z≥0. Then, {k : k < m and k ∈ Z≥0} ⊂ S.

Proof. This also follows directly from Definition 2.5.

Lemma 3. If G(p) > x for some x ∈ Z≥0, then h ∈ move(p) exists such that

G(h) = x.

Proof. This follows directly from Lemma 2 and Definition 2.5.

The next result demonstrates the usefulness of the Sprague–Grundy theory in

impartial games.

Theorem 1. Let G and H be impartial rulesets, and GG and GH respectively be

the Grundy numbers of game g played under the rules of G and game h played

under the rules of H. Then, the following conditions hold.

(i) For any position g of G, GG(g) = 0 if and only if g is a P-position.

(ii) The Grundy number of position {g,h} in game G + H is GG(g)⊕GH(h).

For the proof of this theorem, see [5].

With Theorem 1, we can find a P-position by calculating the Grundy numbers

and a P-position of the sum of two games by calculating the Grundy numbers

of two games. Therefore, Grundy numbers are an important research topic in

combinatorial game theory.

3. Two-Dimensional Chocolate Bar

Here, we define two-dimensional chocolate bars and present some related results.

Because the operations of cutting and defining Grundy numbers are difficult to

understand in the case of three-dimensional bars, we present examples 3.1 and 3.2

of two-dimensional chocolate bars. We present the previously reported Theorem 2

and a new lemma with a proof as Lemma 4. We use Theorem 2 to prove Lemma

4 and Theorem 4 in Section 4. Further, we use Lemma 4 to prove Theorem 3 in

Section 4. The employed method involves cutting three-dimensional chocolate bars

into sections and then applying Theorem 2 and Lemma 4 to these sections. Note

that a section of a three-dimensional chocolate bar is a two-dimensional chocolate

bar.

We have previously determined that the necessary and sufficient condition for

the Grundy number is (m − 1) ⊕ (n − 1) when the width of the chocolate bar

monotonically increases with respect to the distance from the bitter square, where

m is the maximum width of the chocolate bar, and n is the maximum horizontal
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distance from the bitter part. This result was previously published in [2] and is

presented in Theorem 2 in this section.

Definition 3.1. A function f of Z≥0 into itself is said to be monotonically increas-

ing if f(u) ≤ f(v) for u, v ∈ Z≥0 with u ≤ v.

Definition 3.2. Let f be a monotonically increasing function defined by Definition

3.1. For y, z ∈ Z≥0, the chocolate bar has z + 1 columns, where the 0-th column is

the bitter square, and the height of the i-th column is t(i) = min(f(i), y) + 1 for i

= 0,1,...,z, which is denoted as CB(f, y, z).

Thus, the height of the i-th column is determined by the value of min(f(i), y)+1,

which is determined by f , i, and y.

Definition 3.3. Each player takes turns breaking the bar in a straight line along

the grooves into two pieces, and eats the piece without the bitter part. The player

who breaks the chocolate bar and eats it, leaving the opponent with a single bitter

block (black block), is the winner.

We define a function f for a chocolate bar CB(f, y, z), and denote y, z as the

coordinates of CB(f, y, z).

Example 3.1. Let f(t) = b t2c, where = b c is the floor function. Here, we present

examples of CB(f, y, z)-type chocolate bars. Note that the function f defines the

shape of the bar, and the two coordinates y and z represent the number of grooves

above and to the right of the bitter square, respectively.

Figure 9: {2, 5}

Figure 10: {1, 5}
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Figure 11: {1, 3}

Figure 12: {0.5}

For a fixed function f , we define movef for each position {y, z} of the chocolate

bar CB(f, y, z). The set movef ({y, z}) is comprised of the positions of the chocolate

bar obtained by cutting the chocolate bar CB(f, y, z) once, and movef represents

a special case of move defined by Definition 2.4.

Definition 3.4. For y, z ∈ Z≥0, we define

movef ({y, z}) = {{v, z} : v < y} ∪ {{min(y, f(w)), w} : w < z}, where v, w ∈ Z≥0.

Remark 3.1. For a fixed function f , we use move({y, z}) instead of movef ({y, z})
for convenience.

Example 3.2. Here, we elucidate movef for f(t) = b t2c. If we begin with position

{y, z} = {2, 5} in Figure 9 and reduce z = 5 to z = 3, the y-coordinate (first

coordinate) becomes min(2, b3/2c) = min(2, 1) = 1.

Therefore, we have {1, 3} ∈ movef ({2, 5}); i.e., we obtain {1, 3} in Figure 11

by cutting {2, 5}. It can be easily determined that {1, 5}, {0, 5} ∈ movef ({2, 5}),
{1, 3} ∈ movef ({1, 5}), and {0, 5} /∈ movef ({1, 3}). See Figures 9, 10, 11, and 12.

According to Definitions 2.5 and 3.4, we define the Grundy number of a two-

dimensional chocolate bar.

Definition 3.5. For y, z ∈ Z≥0, we define

G({y, z}) = mex({G({v, z}) : v < y, v ∈ Z≥0} ∪ {G({min(y, f(w)), w}) : w < z,w ∈
Z≥0}).

Definition 3.6. Let h be a monotonically increasing function defined by Definition

3.1. Function h is said to have the NS property, if h satisfies condition (a).
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(a) Suppose that

b z
2i
c = b z

′

2i
c

for some z, z′ ∈ Z≥0, and some natural number i. Then,

bh(z)

2i−1
c = bh(z′)

2i−1
c.

Theorem 2. Let h be a monotonically increasing function defined by Definition

3.6. Let Gh be the Grundy number of CB(h, y, z). Then, Gh({y, z}) = y ⊕ z if and

only if h has the NS property as per Definition 3.6.

Proof of this theorem is provided in Theorems 4 and 5 in [2].

A new lemma for two-dimensional chocolate bars is given below and is used for

three-dimensional chocolate bars in Section 4.

Lemma 4. Suppose that h has the NS property as per Definition 3.6, and y ≤ h(z)

for y, z ∈ Z≥0. Let

A = {y ⊕ (z − k) : k = 1, 2, · · · , z}

and

B = {min(y, h(z − k))⊕ (z − k) : k = 1, 2, · · · , z}.

Then, A = B.

Proof. For any u, v ∈ Z≥0 with u ≤ h(v), let Gh({u, v}) be the Grundy number of

CB(h, u, v). Then, by the NS property of function h and Theorem 2,

Gh({u, v}) = u⊕ v. (2)

Let y, z ∈ Z≥0 such that

y ≤ h(z). (3)

Let n be a natural number such that

2n > z, y. (4)

An arbitrary element of A can be represented as

y ⊕ i ∈ A (5)

for some i such that 0 ≤ i < z. According to the inequality in (4),

Gh({y, z + 2n}) = y ⊕ (z + 2n) > y ⊕ i.
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Hence, according to Lemma 3 and Equation (2),

{u, v} ∈ move((y, z + 2n)) (6)

such that

Gh({u, v}) = u⊕ v = y ⊕ i. (7)

Because h(z) is monotonically increasing, according to the inequality in (3), for

w = 0, 1, 2, ..., 2n − 1,

y ≤ h(z + w). (8)

According to Definition 3.4,

move({y, z + 2n}) ={{y − k, z + 2n} : k = 1, 2, · · · , y}
∪{{min(y, h(z + 2n − k)), z + 2n − k} : k = 1, 2, · · · , z + 2n}.

Therefore, move({y, z + 2n}) is the union of the sets given below as (9), (10), and

(11).

{{y − j, z + 2n} : j = 1, 2, · · · , y}. (9)

{{min(y, h(z + 2n − k)), z + 2n − k} : k = 1, 2, · · · , 2n}
={{y, z + 2n − k} : k = 1, 2, · · · , 2n}, (10)

which follows from inequality (8).

{{min(y, h(z − k)), z − k} : k = 1, 2, · · · , z}. (11)

From (4), (y− j)⊕ (z + 2n) ≥ 2n > y⊕ i for j = 1, 2, ...y. Hence, by (7), (u, v) does

not belong to the set in (9).

Because 0 ≤ i < z, according to Lemma 1, y ⊕ i 6= y ⊕ (z + j) for j =

0, 1, 2, ..., 2n+1−1; hence, (u, v) does not belong to the set expressed by (10). There-

fore, according to (6), {u, v} belongs to the set given as (11); hence,

u⊕ v = min(y, h(z − t))⊕ (z − t) (12)

for some t ∈ Z≥0 such that 1 ≤ t ≤ z.

Therefore, according to (7) and (12)

y ⊕ i = u⊕ v ∈ B. (13)

As expressed by relation (5), y ⊕ i is an arbitrary element of A; hence, according

to (13), A ⊂ B. According to Lemma 1, the number of elements in A is z, and the

number of elements in B is less than or equal to z. Therefore, as A ⊂ B, A = B.



INTEGERS: 21B (2021) 11

Thus far, we have considered only two-dimensional chocolate bars for monoton-

ically increasing functions. However, we can similarly consider a three-dimensional

chocolate bar CB(f, y, z) for a function f , which does not monotonically increase, by

forming a monotonically increasing function f ′ such that chocolate bars CB(f, y, z)

and CB(f ′, y, z) have the same mathematical structure in the context of the game.

For example, the chocolate bar in Figure 13 is constructed by a function that

does not monotonically increase, whereas the chocolate bar in Figure 14 is formed

by a monotonically increasing function; however, these two chocolate bars have the

same mathematical structure in terms of the game.

Figure 13.

Figure 14.

Therefore, it is sufficient to study the case of a monotonically increasing function

for two-dimensional chocolate bars.

4. Three-Dimensional Chocolate Bar

In this section, we answer the research question that was presented in Section 1 .

Theorems 3 and 4 offer proofs of the sufficient and necessary conditions, respectively.

Definition 4.1. Suppose that F (u, v) ∈ Z≥0 for u, v ∈ Z≥0. F is said to be

monotonically increasing if F (u, v) ≤ F (x, z) for x, z, u, v ∈ Z≥0 for u ≤ x and

v ≤ z.

By generalizing Definition 3.2, we define a three-dimensional chocolate bar below.

Definition 4.2. Let F be the monotonically increasing function in Definition 4.1.

Let x, y, z ∈ Z≥0. The three-dimensional chocolate bar is comprised of a set of
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1× 1× 1 sized boxes. For u,w ∈ Z≥0 such that u ≤ x and w ≤ z, the height of the

column of position (u,w) is min(F (u,w), y)+1, where F is a monotonically increas-

ing function. A bitter box is located in position (0, 0). We denote this chocolate

bar as CB(F, x, y, z).

Definition 4.3. We define a three-dimensional chocolate-bar game. Each player

takes turns cutting the bar along a plane oriented horizontally or vertically along

the grooves, and eats the broken piece. The player who successfully leaves the

opponent with a single bitter cube wins the game.

Example 4.1. Here, we provide an example of a three-dimensional coordinate sys-

tem and two examples of three-dimensional chocolate bars.

0

2

4

2

4

2

4

1

3

5

1

3

5

1

3

5

00

z

y
x

Figure 15.

Figure 16: CB(F, 7, 3, 7)
F (x, z) = max(bx2 c, b

z
2c).
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Figure 17: CB(F, 5, 3, 7)
F (x, z) = max(bx2 c, b

z
2c).

Next, we define moveF ({x, y, z}) in Definition 4.4 as a set containing all the

positions that can be directly reached from position {x, y, z} in one step.

Definition 4.4. For x, y, z ∈ Z≥0, we define

moveF ({x, y, z}) ={{u,min(F (u, z), y), z} : u < x} ∪ {{x, v, z} : v < y}
∪{{x,min(y, F (x,w)), w} : w < z},where u, v, w ∈ Z≥0.

For example, when F (x, z) = max(bx2 c, b
z
2c), then {5, 3, 7} ∈ moveF ({7, 3, 7})

because we obtain the chocolate bar shown in Figure 17 by reducing the third

coordinate of the chocolate bar in Figure 16 from 7 to 5.

Remark 4.1. For a fixed function f , we use move({x, y, z}) instead of moveF ({x, y, z})
for convenience.

Lemma 5. For any k, h, i ∈ Z≥0, we have

k ⊕ h⊕ i =mex({(k − t)⊕ h⊕ i : t = 1, 2, ..., k}, (14)

∪{k ⊕ (h− t)⊕ i : t = 1, 2, ..., h} ∪ {k ⊕ h⊕ (i− t) : t = 1, 2, ..., i}).

Proof. The proof is omitted because this is a well-known fact regarding Nim-sum

⊕. See proposition 1.4. (p.181) in [6].

Theorem 3. Let F (x, z) be a monotonically increasing function. Let gn(z) =

F (n, z) and hm(x) = F (x,m) for n,m ∈ Z≥0. If gn and hm satisfy the NS property

in Definition 3.6 for any fixed n,m ∈ Z≥0, then the Grundy number of chocolate

bar CB(F, x, y, z) is

G({x, y, z}) = x⊕ y ⊕ z. (15)

Proof. Let x, y, z ∈ Z≥0 such that y ≤ F (x, z). We prove (15) by mathematical

induction and suppose that G({u, v, w}) = u ⊕ v ⊕ w for u, v, w ∈ Z≥0, u ≤ x, v ≤
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y,w ≤ z, v ≤ f(u,w), with u + v + w < x + y + z.

Let

A = {x⊕ y ⊕ (z − k) : k = 1, 2, · · · , z} (16)

and

A′ = {x⊕min(y, F (x, z − k))⊕ (z − k) : k = 1, 2, · · · , z}. (17)

As gx(z) = F (x, z) satisfies the NS property, according to Lemma 4,

A = A′. (18)

Let

B = {(x− k)⊕ y ⊕ z : k = 1, 2, · · · , x} (19)

and

B′ = {(x− k)⊕min(y, F (x− k, z))⊕ z : k = 1, 2, · · · , x}. (20)

Because hz(x) = F (x, z) satisfies the NS property, according to Lemma 4

B = B′. (21)

Let

C = {x⊕ (y − k)⊕ z : k = 1, 2, · · · , y}. (22)

By the mathematical induction hypothesis, the definition of moveF in Definition

4.4 along with Equations (17), (20), and (22),

G({x, y, z}) =mex({G({x,min(y, F (x, z − k)), z − k}) : k = 1, 2, · · · , z})
∪{G({x− k,min(y, F (x− k, z)), z}) : k = 1, 2, · · · , x}
∪{G({x, y − k, z}) : k = 1, 2, · · · , y})
=mex(A′ ∪B′ ∪ C). (23)

According to Equations (21) and(18),

mex(A′ ∪B′ ∪ C) = mex(A ∪B ∪ C). (24)

From Equations (16), (19), and (22) and Lemma 5,

mex(A ∪B ∪ C) = x⊕ y ⊕ z. (25)

From Equations (23), (24), and (25), we have Equation (15).
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Lemma 6. Let i ∈ Z≥0 and z < z′. Then, (a) and (b) hold.

(a)

b z
2i
c = b z

′

2i
c,

if and only if d ∈ Z≥0 exists such that

d× 2i ≤ z < z′ < (d + 1)× 2i.

(b) Let

b z
2i
c < b z

′

2i
c. (26)

Then, there exist c, s, t ∈ Z≥0 such that s ≥ i, 0 ≤ t < 2s, and

z = c× 2s+1 + t < c× 2s+1 + 2s ≤ z′. (27)

Proof. Let z =
∑n

i=0 zi2
i and z′ =

∑n
i=0 z

′
i2

i. (a) follows directly from the definition

of the floor function; (b) falls into two cases according to the inequality in (26).

Case (i) Suppose that z < 2n ≤ z′. Let c = 0 and t = z. Then, we have the

inequality in (27).

Case (ii) Suppose s ∈ Z≥0 exists such that s ≥ i and zk = z′k for k = n, n −
1, ..., s + 1 and zs = 0 < 1 = z′s. Then, there exist c, t ∈ Z≥0 satisfying the

inequality in (27).

Theorem 4. Let F (x, z) be a monotonically increasing function, and let gn(z) =

F (n, z) and hm(x) = F (x,m) for n,m ∈ Z≥0. Suppose that the Grundy number of

chocolate bar CB(F, x, y, z) is

G({x, y, z}) = x⊕ y ⊕ z. (28)

Then, gn and hm satisfy the NS property in Definition 3.6 for any fixed n,m ∈ Z≥0.

Proof. Let n ∈ Z≥0; to prove that gn has the NS property, it suffices to show that

bgn(a)

2j−1
c = bgn(a + 1)

2j−1
c

for a ∈ Z≥0 such that

b a
2j
c = ba + 1

2j
c. (29)

To prove this by contradiction, we assume

bgn(a)

2j−1
c < bgn(a + 1)

2j−1
c (30)

for a ∈ Z≥0 satisfying Equation (29). Here, we assume that a ∈ Z≥0 is the smallest

integer that satisfies Equation (29) and the inequality in (30). According to the
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inequality in (30) and (2) of Lemma 6, there exist i, c ∈ Z≥0 and t ∈ R such that

i ≥ j − 1, 0 ≤ t < 2i, and

gn(a) = c× 2i+1 + t < c× 2i+1 + 2i ≤ gn(a + 1). (31)

As i + 1 ≥ j, according to Equation (29),

b a

2i+1
c = ba + 1

2i+1
c.

Hence, according to (1) of Lemma 6, for d ∈ Z≥0,

d× 2i+1 ≤ a < a + 1 < (d + 1)2i+1.

Therefore, we have the following inequalities, given as (32) and (33).

d× 2i+1 ≤ a < a + 1 = d× 2i+1 + 2i + e < (d + 1)2i+1 (32)

for d, e ∈ Z≥0 such that 0 ≤ e < 2i.

d× 2i+1 ≤ a < a + 1 = d× 2i+1 + e < (d + 1)2i+1 (33)

for d, e ∈ Z≥0 such that 0 < e < 2i.

Case (i) If we have the inequality in (32), then

(c× 2i+1 + 2i)⊕ (a + 1) =(c× 2i+1 + 2i)⊕ (d× 2i+1 + 2i + e)

=(c⊕ d)2i+1 + e

<(c⊕ d)2i+1 + 2i + (t⊕ e)

=(c× 2i+1 + t)⊕ (d× 2i+1 + 2i + e)

=(c× 2i+1 + t)⊕ (a + 1). (34)

Let g′(z) = min(gn(z), c × 2i+1 + t); we consider the two-dimensional chocolate

bar CB(g′, y, z) for z ≤ a + 1 as defined in Section 3. Let Gg′({y, z}) be the

Grundy number of this chocolate bar CB(g′, y, z). Because gn(z) is monotonically

increasing, according to (31) for z ≤ a,

gn(z) ≤ gn(a) = c× 2i+1 + t.

Therefore,

g′(z) = min(gn(z), c× 2i+1 + t) = gn(z). (35)

Because a ∈ Z≥0 is the smallest integer that satisfies Equation (29) and the inequal-

ity in (30), g′(z) satisfies the NS-property for z ≤ a. According to the inequality

in (31) and the definition of g′,

g′(a + 1) = min(gn(a + 1), c× 2i+1 + t) = c× 2i+1 + t = g′(a).
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Therefore, g′(z) satisfies the NS-property for z ≤ a+1. Then, according to Theorem

2,

Gg′({y, z}) = y ⊕ z (36)

for y, z ∈ Z≥0 such that z ≤ a + 1 and y ≤ g′(z). By the inequality in (34) and

Equations (35) and (36),

(c× 2i+1 + 2i)⊕ (a + 1) <(c× 2i+1 + t)⊕ (a + 1)

=Gg′({c× 2i+1 + t, a + 1}). (37)

According to the inequality in (37) and Lemma 3,

(c× 2i+1 + 2i)⊕ (a + 1)

∈{Gg′({p, q}) : {p, q} ∈ moveg′({c× 2i+1 + t, a + 1})}. (38)

Based on Definition 3.4, moveg′({c × 2i+1 + t, a + 1}) is a union of two sets. The

first set is created by reducing the first coordinate of point {c× 2i+1 + t, a+ 1} and

the second is created by reducing the second coordinate of point {c×2i+1+t, a+1}.
Therefore, based on g′(w) ≤ c× 2i+1 + t, we obtain

{Gg′({p, q}) : {p, q} ∈ moveg′({c× 2i+1 + t, a + 1})}
={Gg′({v, a + 1}) : 0 ≤ v ≤ c× 2i+1 + t− 1},
∪{Gg′({min(c× 2i+1 + t, g′(w)), w}) : 0 ≤ w ≤ a}.
={Gg′({v, a + 1}) : 0 ≤ v ≤ c× 2i+1 + t− 1},
∪{Gg′({g′(w), w}) : 0 ≤ w ≤ a}.

Therefore, according to (36) and (38), we have

(c× 2i+1 + 2i)⊕ (a + 1)

∈{Gg′({v, a + 1}) = v ⊕ (a + 1) : 0 ≤ v ≤ c× 2i+1 + t− 1}, (39)

∪{Gg′({g′(w), w}) = g′(w)⊕ w : 0 ≤ w ≤ a}. (40)

As t < 2i, according to Lemma 1,

(c× 2i+1 + 2i)⊕ (a+ 1) /∈ {Gg′({v, a+ 1}) = v⊕ (a+ 1) : 0 ≤ v ≤ c× 2i+1 + t− 1}.

Therefore, by (39) and (40),

(c× 2i+1 + 2i)⊕ (a + 1) ∈ {g′(w)⊕ w : 0 ≤ w ≤ a}. (41)

According to the inequality in (31),

c× 2i+1 + 2i ≤ gn(a + 1) = F (n, a + 1);
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hence, {n, c× 2i+1 + 2i, a + 1} is the position of chocolate bar CB(F, x, y, z).

Therefore, based on Equation (28),

G({n, c× 2i+1 + 2i, a + 1}) = n⊕ (c× 2i+1 + 2i)⊕ (a + 1). (42)

Then, by Relation (41),

n⊕ (c× 2i+1 + 2i)⊕ (a + 1) ∈ {n⊕ g′(w)⊕ w : 0 ≤ w ≤ a}. (43)

Then, according to Equations (28) and (35) and the definition of gn,

{n⊕ g′(w)⊕ w : 0 ≤ w ≤ a}
={n⊕ gn(w)⊕ w : 0 ≤ w ≤ a}
={n⊕ F (n,w)⊕ w : 0 ≤ w ≤ a}
={G({n, F (n,w), w}) : 0 ≤ w ≤ a}. (44)

Therefore, based on Equations (42) and (44) and Relation (43), w′ exists, such that

0 ≤ w′ ≤ a and

G({n, c× 2i+1 + 2i, a + 1}) = G({n, F (n,w′), w′}). (45)

According to the inequality in (31),

F (n,w′) ≤ F (n, a) = gn(a) = c× 2i+1 + t < c× 2i+1 + 2i;

hence,

{n, F (n,w′), w′}
={n,min(c× 2i+1 + 2i, F (n,w′)), w′}
∈move({n, c× 2i+1 + 2i, a + 1}). (46)

Equation (45) and Relation (46) contradict the definition of the Grundy number.

Case (ii) If we have the inequality in (33), then, as 0 < e < 2i and 0 ≤ t < 2i,

(c× 2i+1 + t)⊕ a =(c× 2i+1 + t)⊕ (d× 2i+1 + e− 1)

=(c× 2i+1 + 2i)⊕ (d× 2i+1 + 2i + t⊕ (e− 1)].

Therefore, by Equation (28),

G({n, c× 2i+1 + t, a}) = G({n, c× 2i+1 + 2i, d× 2i+1 + 2i + t⊕ (e− 1)}). (47)

According to inequalities (31) and (33),

c× 2i+1 + 2i ≤gn(a + 1)

=F (n, a + 1)

≤F (n, a + 1 + t⊕ (e− 1))

≤F (n, d× 2i+1 + 2i + t⊕ (e− 1));
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hence, {n, c× 2i+1 + 2i, d× 2i+1 + 2i + t⊕ (e− 1)} is the position of chocolate bar

CB(F, x, y, z). According to (31),

c× 2i+1 + t = gn(a) = F (n, a). (48)

According to (33),

a < d× 2i+1 + 2i + t⊕ (e− 1). (49)

According to (48) and (49),

{n, c× 2i+1 + t, a} ∈ move({n, c× 2i+1 + 2i, d× 2i+1 + 2i + t⊕ (e− 1)});

this relation and Equation (47) lead to a contradiction.

Thus far, we have only considered three-dimensional chocolate bars for mono-

tonically increasing functions. However, we can similarly consider a chocolate bar

CB(F, x, y, z) for a function F that is not monotonically increasing by constructing

a monotonically increasing function F ′, such that position {x, y, z} of chocolate bar

CB(F, x, y, z) and position {x, y, z} of CB(F ′, x, y, z) have the same bar length,

height, and width, and have the same mathematical structure as a game.

For example, the chocolate bar in Figure 18 is constructed by a function that

does not monotonically increase, whereas the chocolate bar in Figure 19 is formed

by a monotonically increasing function; however, these two chocolate bars have the

same mathematical structure as a game.

Figure 18.

Figure 19.
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Therefore, it suffices to study the case of a monotonically increasing function for

three-dimensional chocolate bars.

5. Unsolved Problems

Certain chocolate bars remain that have not been considered.

Here, we present a chocolate bar with two steps; see Figure 20. This chocolate

bar is represented by three coordinates x, y, z; the reduction of z may simultaneously

affect the first and second coordinates x and y. The relationships between these

three coordinates are expressed by the following two inequalities:

x ≤bz + 3

2
c

and

y ≤bz + 3

2
c.

Figure 20.

The result in [2] can be applied to this type of chocolate bar; however, this proof

may be complicated compared to the proof in [2].

As another type of chocolate bar, we consider a three-dimensional bar with an

upper and lower structure. An example of this type of chocolate bar is shown in

Figure 21.
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Figure 21.

The results of the present work can be used to study this type of chocolate bar.

Moreover, research on the previously mentioned chocolate bar with two steps should

be conducted in the future.

The chocolate bars shown in Figures 20 and 21 appear to be simple generaliza-

tions of the chocolate bars studied here and in [2]; however, they are technically

complex, and their investigation may prove challenging.
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