
#A2 INTEGERS 21B (2021)

THE GAME OF BLOCKING PEBBLES

Kyle Burke
Dept. of Computer Science, Plymouth State University, New Hampshire

kyleburk@usc.edu

Matthew Ferland
Dept. of Computer Science, University of Southern California, California

mferland@usc.edu

Michael Fisher
Dept. of Mathematics, West Chester University, Pennsylvania

mfisher@wcupa.edu

Valentin Gledel
Dept. of Computer Science, University Grenoble Alpes, Grenoble, France

valentin.gledel@univ-grenoble-alpes.fr

Craig Tennenhouse
Dept. of Mathematical Sciences, University of New England, Maine

ctennenhouse@une.edu

Received: 1/25/21, Revised: 7/13/21, Accepted: 10/5/21, Published: 12/21/21

Abstract
Graph pebbling is a well-studied single-player game on graphs. We introduce the
game of blocking pebbles which adapts Graph Pebbling into a two-player strat-
egy game in order to examine it within the context of combinatorial game theory.
Positions with game values matching all integers, all nimbers, and many infinites-
imals and switches are found. This game joins the ranks of other combinatorial
games on graphs, games with discovered moves, and partisan games with impartial
movement options. The computational complexity of the general case is shown to
be PSPACE-hard.

1. Introduction

Graph pebbling is an area of current interest in graph theory. In an undirected
graph G, a root vertex r is designated. Heaps of pebbles are placed on the vertices
of G, with a legal move consisting of choosing a vertex v with at least two pebbles,



INTEGERS: 21B (2021) 2

removing two pebbles, and placing a single pebble on a neighbor of v. The goal is
to pebble, or place a pebble on, the vertex r. The pebbling number of G, denoted
π(G), is the fewest number of pebbles necessary so that any initial distribution of
π(G) pebbles among the vertices of G, and any vertex of G chosen as the root, has
a sequence of moves resulting in the root being pebbled.

Introduced by Chung in 1989 [5], a number of results on pebbling of different fam-
ilies of graphs have been found. Of note are pebbling numbers of paths, cycles [13],
and continuing work on a conjecture of Graham’s on the Cartesian products of
graphs [5]. Time complexity is also known, both for determination of π(G) and for
the minimum number of moves in a successful pebbling solution, for general graphs.
See [9] for a survey of results in graph pebbling.

The results and language here are in reference to combinatorial game theory
(CGT). The nim sum, also called the digital sum, of non-negative integers is the
result of their sum in binary without carry. This is denoted x1 ⊕ x2 if there are
only two numbers, and in the case of more we use the notation

∑
⊕xi. For more

notation and background on the computation of CGT game values, we refer the
reader to [1,3].

In Sect. 2 we introduce a two-player combinatorial ruleset based on graph peb-
bling, with subsequent sections addressing results on both impartial and partisan
positions. This game involves strategic play that results in blocking the moves of
one’s opponent. Amazons is another well-known game which also involves a no-
tion of blocking. However, in Amazons, the blocking is always permanent (burnt
square) or temporary (queen occupies square). Due to the standard pebbling toll
in Blocking Pebbles, each pebble only has mobility for a finite time.

There are several pebbling games which appear in the literature [10,11,14]. The
one which is most similar to the game introduced here was originated by Lagarias
and Saks in 1989 to solve a problem of Erdős. These games do not include the
non-toll moves across an edge in the “wrong direction." This type of move is unique
to Blocking Pebbles (as far as we are aware). There are also other pebbling
games older than the one introduced by Lagarias and Saks [10]. These games
bear no resemblance to Blocking Pebbles and are used to study graph algorithm
complexity.

2. Ruleset and Play

A game of blocking pebbles consists of a directed acyclic graph G and a 3-
tuple (b, r, g) at each vertex of G, representing the number of blue, red, and green
pebbles. Left may move blue and green pebbles, while Right may move red and
green. This follows one convention of BRG-hackenbush (see Fig. 1) wherein
players may remove an edge of their own color or the neutral color green. In



INTEGERS: 21B (2021) 3

Figure 1: A BRG-hackenbush position with blue, red, and green represented by
thin, thick black, and grey lines, respectively.

BRG-hackenbush all dyadic rationals and nimbers are achievable game values.
In addition, when allowing for infinite positions, all real numbers and ordinals are
achievable values, but switches are not. By contrast, in blocking pebbles players
may move any number of pebbles at a single vertex within certain constraints on
the graph and pebble distribution. In this way, blocking pebbles is similar to
graph nim [8] [4].

Ruleset 1. Given a tuple of the form (b, r, g) at each vertex of a directed acyclic
graph G, Left can make one of the following two moves from the vertex v.

1. Move a positive number of blue and/or green pebbles from v to an in-neighbor
of v

2. Remove two blue and/or green pebbles from v and place one on an out-
neighbor of v and discard the other

No blue pebbles can be moved to a vertex with a non-zero number of red pebbles.
Right has the obvious symmetric moves.

Play proceeds following the normal play convention, where the last player to
make a legal move wins.

Note that if Left removes one blue and one green pebble from v she may add
the green to v’s out-neighbor. However, it is always preferable to instead add the
blue as this results in a position with more blue pebbles and increases the number
of vertices blocked by Left.

As an example, consider the position in Figure 2. At the top is a position in
blocking pebbles. Note that Left cannot move any blue pebbles from vertex A



INTEGERS: 21B (2021) 4

(2,0,0)

(0,1,1) (0,0,0) (0,1,1)

(0,0,0)

(0,1,1) (1,0,0) (0,1,1)

(2,0,0)

(0,1,1) (0,0,1) (0,1,0)

A

B C D

Figure 2: A position in blocking pebbles and two of Left’s options

to B since B already contains a red pebble. However, Left can move a single blue
pebble from A to C at a cost of one blue pebble. She can also move the one green
pebble from D to C.

An interesting property of this ruleset is the existence of discovered moves, similar
to discovered attacks in chess. A player may be unable to move at one point in the
game, but after their opponent moves then the game is once again playable by the
first player. As an example consider a simple out-star with two red pebbles on the
source and a single blue pebble on a sink node. Left has no moves, but once Right
moves Left can move their pebble to the source. The presence of discovered moves
precludes this being a strong placement game. For more on these types of games,
see [7] and [12].

3. Blue-Red-Green Blocking Pebbles

In this section we will address some families of game values that are achievable in
blocking pebbles. We will only address finite graphs, hence we will not encounter
non-dyadic rationals. This is similar to BRG-hackenbush, described in Sect. 1.
Due to the complexity of analysis, we will also restrict our graphs to orientations
of stars, paths, and small graphs.

We begin with a simple result.

Theorem 3.1. For every k ∈ Z there is a position in blocking pebbles with
value k.



INTEGERS: 21B (2021) 5

Proof. Let G be a single arc directed from u to v. If k > 0 then place 2k blue
pebbles and a single red pebble on u, and no pebbles on v. Switch red and blue
pebbles if k < 0. This allows for k-many moves for Left by moving blue pebbles
from u to v, but the presence of a red pebble on u prevents moving any blue pebbles
in the reverse direction. Zero is trivially achieved by a graph with no pebbles, or
any number of other pebble distributions.

Regarding infinitesimals, ↓ is realized by an out-star with two leaves; that is, a
vertex u with out-neighbors v1, v2. Vertex v1 has a blue pebble, and v2 has one
red and one green pebble. Left can move the blue or green pebble to u, which is
simple to identify as ∗. Right, however, can move the green to the source vertex
u resulting in ∗, the red to u resulting in zero, or both red and green pebbles to u
which is also a zero position. The initial position is {∗|0, ∗} =↓.

Due to the blocking rule, blocking pebbles is relatively unique among partisan
combinatorial games. In BRG-hackenbush the presence of a move for one player
does not inhibit moves for the other. In clobber, another two-player partisan com-
binatorial game, (see [2]), the presence of a red piece actually encourages movement
for Left, and vice versa. This is a property common to all dicot games. However, in
blocking pebbles a single well-placed blue pebble, for example, can cut off many
of Right’s moves. The only other well-known ruleset with this property appears to
be Amazons, which does not allow for discovered moves. It is natural, then, that
many positions result in game values that are switches.

Parts (1) and (4) of the next result show that every integer switch is achievable
with a specified pebbling configuration on the out-star K1,2.

In the following lemma, we use the following notation for a bLue/Red pebbling
configuration of the out-star K1,2: [(a, b), [c, d], [e, f ]] is the configuration with a

blue pebbles and b red pebbles on the central vertex, c blue pebbles and d red
pebbles on one of the pendant vertices, and e blue pebbles and f red pebbles on
the other pendant vertex.

Lemma 3.2. The following results pertain to a given blocking pebbles configu-
ration on the out-star K1,2.

1. For c ≥ 1, the position [(a, b), [0, c], [0, 0]] has value −b b
2c if a = 1 and value

{ba
2 c − 1 | ba−b

2 c+ 1} if a ≥ 2,

2. for a, b, c, d ≥ 1, the position [(a, b), [c, 0], [0, d]] has value ba−b
2 c,

3. for a, b, c, d, e ≥ 1, the position [(a, b), [c, 0], [d, e]] has value ba−1
2 c,

4. for a, b, c, d ≥ 1, the position [(0, 0), [a, b], [c, d]] has value {a+ c− 1 | − (b+
d− 1)},

5. for a, b, c ≥ 1, the position [(0, 0), [a, b], [0, c]] has value {a−1 | −(3(b+c)−5)},



INTEGERS: 21B (2021) 6

6. for a, b ≥ 1, the position [(0, 0), [a, b], [0, 0]] has value {3a− 5 | − (3b− 5)},

7. for b ≥ 1, [(1, 0), [0, b], [0, 0]] and [(2, 0), [0, b], [0, 0]] are both zero positions.

Proof. For Case (1), the position [(1, 1), [c, 0], [0, 0]] is the zero position. It is also
readily checked that the position [(1, 2), [c, 0], [0, 0]] has value 0.

If b > 2, then Left has no move from [(1, b), [c, 0], [0, 0]]. From [(1, b), [c, 0], [0, 0]],
Right may move to the position [(1, b − 2), [c, 0], [0, 1]], which has value b−b+1

2 c =
−b b

2c+ 1 by induction. Hence, [(1, b), [c, 0], [0, 0]] has value −b b
2c as required.

If a ≥ 2, then Left’s best move from [(a, b), [c, 0], [0, 0]] is to [(a−2, b), [c, 0], [1, 0]]
which has value ba−2

2 c (Right has no move from this position and Left has ba−2
2 c

moves). Right’s only move is to [(a, b−2), [c, 0], [0, 1]] which has value ba−b+2
2 c, also

by induction. Hence, [(a, b), [c, 0], [0, 0]] has value {ba
2 c − 1|ba−b

2 c+ 1} when a ≥ 2.
For Case (2), it is clear that the position [(1, 1), [c, 0], [0, d]] is a zero position.

If a ≥ 2, then, from [(a, 1), [c, 0], [0, d]], Left has a move to [(a−2, 1), [c+ 1, 0], [0, d]]
and Right has no move. Thus, [(a, 1), [c, 0], [0, d]] has value ba−1

2 c, by induction.
A similar argument establishes the claim that [(1, b), [c, 0], [0, d]] has value b 1−b

2 c.
Now if a, b ≥ 2, then, from [(a, b), [c, 0], [0, d]], Left has the move to [(a−2, b), [c+

1, 0], [0, d]] and Right has the move to [(a, b− 2), [c, 0], [0, d+ 1]]. By induction, we
see that [(a, b), [c, 0], [0, d]] has value

{ba− 2− b
2 c | ba− b+ 2

2 c} = {ba− b2 c − 1 | ba− b2 c+ 1} = ba− b2 c.

For Case (3), note that if a = 1, then there are no moves for either player; the
formula given correctly yields the game value 0. If a = 2, then from the position
[(2, b), [c, 0], [d, e]] Left has the move to [(0, b), [c + 1, 0], [d, e]]. From here, Left has
no move and Right has e moves. Thus the position [(0, b), [c+ 1, 0], [d, e]] has value
−e. Hence, [(2, b), [c, 0], [d, e]] has value 0, as required.

If a > 2, then, from [(a, b), [c, 0], [d, e]], Left can move to [(a−2, b), [c+1, 0], [d, e]]
which has value ba−3

2 c = ba−1
2 c − 1, by induction. Right has no moves from

[(a, b), [c, 0], [d, e]]. Hence, [(a, b), [c, 0], [d, e]] has value

{ba− 1
2 c − 1 | } = ba− 1

2 c

as desired.
For Case (4), note that Left’s only move from [(0, 0), [a, b], [c, d]] is to [(1, 0), [a−

1, b], [c, d]]. This last position has value a + c − 1 by induction. Similarly, Right’s
only move from [(0, 0), [a, b], [c, d]] is to [(0, 1), [a, b − 1], [c, d]]. This position has
value −(b+ d− 1) by induction. It now follows that [(0, 0), [a, b], [c, d]] has value

{a+ c− 1 | − (b+ d− 1)}.

Cases (5) and (6) follow from the previous result and Case (7) is trivial.



INTEGERS: 21B (2021) 7

a

b

c

Figure 3: A transitive triple graph

[[0, 0], [0, 0], [1, 1]]

[[0, 0], [1, 0], [0, 1]]

[[1, 0], [0, 0], [0, 1]] [[0, 1], [0, 0], [1, 0]]

[[0, 0], [0, 1], [1, 0]]

[[1, 0], [0, 0], [0, 1]]

[[0, 1], [1, 0], [0, 0]]

[[1, 0], [0, 1], [0, 0]]

[[0, 1], [1, 0], [0, 0]]

[[1, 0], [0, 1], [0, 0]]

[[0, 1], [0, 0], [1, 0]]

[[1, 0], [0, 1], [0, 0]] [[0, 1], [1, 0], [0, 0]]

Figure 4: Game tree of the position [[0, 0], [0, 0], [1, 1]] on the transitive 3-cycle

We now consider a transitive 3-cycle graph (Figure 3) with vertices a, b, c and
arcs ab, ac, and bc. The pebbling configurations considered below are written so that
the first array entry corresponds to the source vertex, a, the second corresponds to
b, and the third to the sink vertex, c.

An interesting result concerning the transitive 3-cycle crops up from the some-
what unnatural starting position where 1 blue pebble and k red pebbles occupy the
same starting vertex. Specifically we prove that

Theorem 3.3. For k > 1 the pebbling configuration on the transitive 3-cycle given
by [[0, 0], [0, 0], [1, k]] has game value (3− 3k)+k−4.

We see the game tree of the base case in Figure 4.
In order to prove this result, we consider several positions which arise as sub-

positions of the above pebbling configuration.

Lemma 3.4. Consider the following pebbling configurations of the transitive 3-cycle
T . Then, the position



INTEGERS: 21B (2021) 8

1. [[1, 0], [0, j], [0, k]] has value −3k − 2j + 2 if at least one of j or k is ≥ 1;

2. [[0, j], [1, 0], [0, k]] has value −3k − 2j + 3 if j, k ≥ 1;

3. [[0, 0], [1, 0], [0, k]] has value −3k + 3 if k ≥ 2 and value − 1
2 if k = 1;

4. [[0, j], [1, 0], [0, 0]] has value −2j + 3 if j ≥ 2 and value 0 if j = 1;

5. [[0, j], [0, k], [1, 0]] has value −3k − 2j + 4 if j, k ≥ 1;

6. [[0, j], [0, 0], [1, 0]] has value −2j + 4 if j ≥ 2 and value 1 if j = 1;

7. [[0, 0], [0, k], [1, 0]] has value {−2k+2 |−3k+5} if k ≥ 2 and value 1
2 if k = 1;

8. [[0, 0], [0, j], [1, k]] has value {−3k− 2j + 2 | − 4k− 3j + 5} if j ≥ 2 and k ≥ 1
and value {−3k | − 4k + 3} if j = 1 and k ≥ 1;

9. [[0, j], [0, 0], [1, k]] has value {−3k − 2j + 3 | − 4k − 2j + 5} if j, k ≥ 1; and

10. [[0, `], [0, j], [1, k]] has value −4k − 3j − 2`+ 4 if j, k, ` ≥ 1.

Proof. All claims will be proven simultaneously using induction (on the height of
the game tree). Base cases are easily checked and left to the interested reader.

Case (1): From [[1, 0], [0, j], [0, k]] Left has no move; Right’s best move is to
[[1, 0], [0, j + 1], [0, k − 1]]. By induction, this position has value −3k − 2j + 3
by (1). Hence, [[1, 0], [0, j], [0, k]] has value

{ | − 3k − 2j + 3} = −3k − 2j + 2

as desired.

Case (2): Left again has no move from the starting position. Right’s best move
is to [[0, j + 1], [1, 0], [0, k − 1]]. If k = 1, this position has value −2j + 1 by (4); if
k ≥ 2, this position has value −3k− 2j+ 4 by (2). In either case, [[0, j], [1, 0], [0, k]]
has value −3k − 2j + 3.

Case (3): First suppose that k ≥ 2. Left can move to [[1, 0], [0, 0], [0, k]] from
[[0, 0], [1, 0], [0, k]]. From (1), this position has value −3k + 2. Right’s best move is
to [[0, 1], [1, 0], [0, k − 1]] with value −3k + 4. Hence, [[0, 0], [1, 0], [0, k]] has value

{−3k + 2| − 3k + 4} = −3k + 3.

If k = 1, then Left’s only move becomes [[1, 0], [0, 0], [0, 1]] which has value −1
by (1) and Right’s only move is to [[0, 1], [1, 0], [0, 0]] with value 0 by (4). Thus,
[[0, 0], [1, 0], [0, 1]] has value − 1

2 .



INTEGERS: 21B (2021) 9

Case (4): For j ≥ 3, Left has no move from [[0, j], [1, 0], [0, 0]] and Right can move
to [[0, j − 2], [1, 0], [0, 1]] with value −2j + 4, by (2), giving [[0, j], [1, 0], [0, 0]] the
game value of −2j + 3.

If j = 2, then Right’s move is to [[0, 0], [1, 0], [0, 1]] with value − 1
2 . Thus,

[[0, 2], [1, 0], [0, 0]] has a value of −1(= −2 · 2 + 3).
Finally, if j = 1, then neither Left nor Right has a move from [[0, 1], [1, 0], [0, 0]]

and so its value is 0.

Case (5): Let k ≥ 2. Left has no move and Right can move to [[0, j + 1], [0, k −
1], [1, 0]] (Right’s best move). By induction, this position has value −3k − 2j + 5
giving [[0, j], [0, k], [1, 0]] the value −3k − 2j + 4.

If k = 1, then, again, Left has no move. However, Right can move to [[0, j +
1], [0, 0], [1, 0]]. By (6), this position has value −2j+2, thus giving [[0, j], [0, 1], [1, 0]]
the value −2j + 1.

Case (6): First we consider the case j > 2. Left’s only move is to [[0, j], [1, 0], [0, 0]].
By (4) this position has value −2j+3. Right’s only move is to [[0, j−2], [0, 1], [1, 0]].
By (5) this position has value −2j + 5. Hence, if j > 2, then [[0, j], [0, 0], [1, 0]] has
value −2j + 4.

If j = 2, [[0, 2], [1, 0], [0, 0]] has value −1 by (4). Right’s move to [[0, 0], [0, 1], [1, 0]]
has value 1

2 by (7). Thus, [[0, 2], [0, 0], [1, 0]] has value 0.
Finally, if j = 1, then Left’s move, [[0, 1], [1, 0], [0, 0]], have value 0 and Right has

no moves. Thus, [[0, 1], [0, 0], [1, 0]] has value 1.

Case (7): If k ≥ 2, Left’s move to [[1, 0], [0, k], [0, 0]] has value −2k + 2 by (1). In
this case, Right’s move to [[0, 1], [0, k−1], [1, 0]] has value −3k+5 by (5). Therefore
[[0, 0], [0, k], [1, 0]] has value

{−2k + 2 | − 3k + 5}.

If k = 1, [[1, 0], [0, 1], [0, 0] has value 0 and [[0, 1], [0, 0], [1, 0]] has value 1. Hence
[[0, 0], [0, 1], [1, 0]] has value 1

2 .

Case (8): First suppose j ≥ 2 and k ≥ 2. Then, Left’s move to [[1, 0], [0, j], [0, k]]
has value−3k−2j+2 by (1). Right has two sensible moves: one to [[0, 1], [0, j], [1, k−
1]] and one to [[0, 1], [0, j−1], [1, k]]. The former has value −4k−3j+6 by (10) and
the latter has value −4k − 3j + 5, also by (10). Thus, [[0, 0], [0, j], [1, k]] has value

{−3k − 2j + 2 | − 4k − 3j + 5}.

Next we look at the case where j ≥ 2 and k = 1. Left’s move to [[1, 0], [0, j], [0, 1]]
has value −2j − 1 by (1). Right’s move to [[0, 1], [0, j], [1, 0]] has value −3j + 2 by
(5). Right’s move to [[0, 1], [0, j − 1], [1, 1]] has value −3j + 1 by (10). Hence,
[[0, 0], [0, j], [1, 1]] has value

{−2j − 1 | − 3j + 1}.



INTEGERS: 21B (2021) 10

We now consider the case j=1 and k≥2. Left’s only move is to [[1, 0], [0, 1], [0, k]].
This position has value −3k by (1). Right’s move to [[0, 1], [0, 0], [1, k]] has value
{−3k+ 1 |−4k+ 3} by (9) and his move to [[0, 1], [0, 1], [1, k−1]] has value −4k+ 3
by (10). Therefore, the position [[0, 0], [0, 1], [1, k]] has value

{−3k |{−3k + 1 | − 4k + 3},−4k + 3}.

It can be shown that the option {−3k + 1 | − 4k + 3} is reversible. Hence the
canonical form of the position [[0, 0], [0, 1], [1, k]] has value

{−3k | − 4k + 3}.

Finally, we consider the case j = 1 and k = 1. Left’s move from [[0, 0], [0, 1], [1, 1]]
to [[1, 0], [0, 1], [0, 1]] has value −3 by (2). Right’s move to [[0, 1], [0, 0], [1, 1]] has
value {−2 | − 1} = − 3

2 . The move to [[0, 1], [0, 1], [1, 0]] has value −1 by (5). Thus,
the position [[0, 0], [0, 1], [1, 1]] has value {−3 | − 3

2} = −2.

Case (9): First suppose that k ≥ 2. Then Left’s move from [[0, j], [0, 0], [1, k]] to
[[0, j], [1, 0], [0, k]] has value −3k−2j+3 by (2). Right’s best move is to [[0, j], [0, 1],
[1, k − 1]] with value −4k − 2j + 5, thus giving the position [[0, j], [0, 0], [1, k]] the
game value of

{−3k − 2j + 3 | − 4k − 2j + 5}.

If k = 1, Left’s only move has value −2j, again by (2). Right’s move to
[[0, j], [0, 1], [1, 0]] has value −2j + 1 by (5). Hence, [[0, j], [0, 0], [1, 1]] has value

{−2j | − 2j + 1} = (−4j + 1)/2.

Case (10): Let j = 1 and k ≥ 2. Left has no move from this starting position and
Right has three sensible moves. Right can move to [[0, `+ 1], [0, 0], [1, k]] with value
{−3k − 2` + 1 | − 4k − 2` + 3} by (9), or to [[0, ` + 1], [0, 1], [1, k − 1]] with value
−4k− 2`+ 3 by (10), or to [[0, `], [0, 2], [1, k]] with value −4k− 2`+ 2 by (10). The
last move is optimal for Right, hence the position [[0, `], [0, 1], [1, k]] has game value
−4k − 2`+ 1, as required.

If j = 1 and k = 1, then Left has no move from [[0, `], [0, 1], [1, 1]] and Right
has again three sensible moves. Right’s move to [[0, ` + 1], [0, 0], [1, 1]] has value
(−4` − 3)/2 by (9); Right’s move to [[0, `], [0, 2], [1, 0]] has value −2` − 2 by (5);
and Right’s move to [[0, `+ 1], [0, 1], [1, 0]] has value −2`− 1 by (5). Therefore, the
position [[0, `], [0, 1], [1, 1]] has value −2`− 3.

If j ≥ 2 and k = 1, then Left has no move from [[0, `], [0, j], [1, 1]] and Right
has three moves, each not costing a pebble to make: Right can move to [[0, ` +
1, [0, j], [1, 0]] with value −3j−2`+2 by (5); Right can move to [[0, `], [0, j+1], [1, 0]]
with value −3j − 2` + 1 by (5); and Right can move to [[0, ` + 1], [0, j − 1], [1, 0]]



INTEGERS: 21B (2021) 11

with value −3j − 2` + 1 by (10). Hence, the position [[0, `], [0, j], [1, 1]] has value
−3j − 2`.

Finally, if j ≥ 2 and k ≥ 2, then, as in every other sub-case, Left has no move.
Right has his usual three moves: Right can move to [[0, `+ 1], [0, j], [1, k − 1]] with
value −4k − 3j − 2`+ 6 by (10); Right can move to [[0, `], [0, j + 1], [1, k − 1]] with
value −4k−3j−2`+ 5; or Right could move to [[0, `+ 1], [0, j−1], [1, k]] with value
−4k − 3j − 2`+ 5. Thus, [[0, `], [0, j], [1, k]] has game value −4k − 3j − 2`+ 4.

With Lemma 3.4 in hand, we can now prove Theorem 3.3.

Proof. Left has two moves from the starting position [[0, 0], [0, 0], [1, k]]: Left can
move to [[1, 0], [0, 0], [0, k]] with value −3k + 2 by Lemma 3.4(1) or to [[0, 0], [1, 0],
[0, k]] with value −3k + 3 by 3.4(3). The latter move is clearly the optimal move
for her.

There are two types of moves that Right can make: Right can move to [[0, `], [0, 0],
[1, k − `]], where 1 ≤ ` ≤ k, or to [[0, 0], [0, j], [1, k − j]], where 1 ≤ j ≤ k.

First suppose that Right moves to [[0, `], [0, 0], [1, k − `]], where 1 ≤ ` < k. This
position has value

{−3k + `+ 3 | − 4k + 2`+ 5} = (−3k + `+ 3) + {0 | − k + `+ 2}

by Lemma 3.4(9).
Next, suppose that Right moves to [[0, k], [0, 0], [1, 0]]. This position has value

−2k + 4

by Lemma 3.4(6).
We now consider the other type of move for Right. Suppose that Right moves to

[[0, 0], [0, j], [1, k − j]], where 1 < j < k. This position has value

{−3k + j + 2 | − 4k + j + 5} = (−3k + j + 2) + {0 | − k + 3}

by Lemma 3.4(8).
Next, suppose that Right moves to [[0, 0], [0, 1], [1, k−1]]. This position has value

{−3k + 3 | − 4k + 7} = (−3k + 3) + {0 | − k + 4}

by Lemma 3.4(8).
Finally, suppose that Right moves to [[0, 0], [0, k], [1, 0]]. This position has value

{−2k + 2 | − 3k + 5} = (−2k + 2) + {0 | − k + 3}

by Lemma 3.4(7).



INTEGERS: 21B (2021) 12

We will now show that the move to [[0, 0], [0, 1], [1, k−1]] is Right’s optimal move.
First note that since {0 | − k + 4} ≤ 1, it follows that

(−3k + 3) + {0 | − k + 4} ≤ −3k + 4 < −2k + 4.

Next, observe that if k = 2, then

(−3 · 2 + 3) + {0 | − 2 + 4} = −2 < −3
2 = (−2 · 2 + 2) + {0 | − 2 + 3}.

If k ≥ 3, then −k + 2 < {0 | − k + 3} and so it follows that

−3k + 4 = (−2k + 2) + (−k + 2) < (−2k + 2) + {0 | − k + 3}.

Hence
(−3k + 3) + {0 | − k + 4} < (−2k + 2) + {0 | − k + 3}

for k ≥ 2.
To show that

(−3k + 3) + {0 | − k + 4} < (−3k + `+ 3) + {0 | − k + `+ 2}, ` ≥ 1,

it suffices to show that {` |−k+2`+2}+{k−4 | 0} > 0. To this end, note that Left’s
move to `+{k−4 | 0} is a winning first move. Right’s move to −k+2`+2+{k−4 | 0},
leads to (−k + 2` + 2) + (k − 4) = 2` − 2 ≥ 0, after Left’s response. Right’s move
to {` | − k + 2`+ 2}+ 0 is no better, leading to `+ 0 = ` ≥ 1.

Our last task is to show that

(−3k + 3) + {0 | − k + 4} < (−3k + j + 2) + {0 | − k + 3}, for j > 1.

This can be established by showing that {j − 1 | − k + j + 2} + {k − 4 | 0} > 0.
This prove of this fact is virtually identical to the proof of the similar statement in
the preceding paragraph and so it will be omitted.

It now follows that the value of the position [[0, 0], [0, 0], [1, k]] is

{−3k+3 |−3k+3+{0 |−k+4}} = (−3k+3)+{0 | {0 |−(k−4)}} = (−3k+3)+k−4 .

In the table below we present, without proof, other interesting game values
achievable as bLue/Red Blocking Pebbles positions.

Underlying Digraph Pebbling Configuration Game Value
Transitive 3-Cycle [[1,0],[2,4],[0,0]] 1/4
Transitive 3-Cycle [[3,1],[0,0],[0,1]] 1/2
Transitive 3-Cycle [[2,3],[0,0],[1,0]] 3/4
Transitive 3-Cycle [[4,4],[0,0],[0,0]] ±1/2
Transitive 3-Cycle [[3,5],[0,0],[1,0]] ↑ ∗
Transitive 3-Cycle [[3,5],[2,0],[0,0]] ↑[2] ∗

Directed P3 [[0,0],[2,2],[0,0]] ∗2



INTEGERS: 21B (2021) 13

We end this section with a short discussion of the differences between blocking
pebbles and BRG-hackenbush.

As noted above, the blocking mechanic of blocking pebbles results in a pre-
ponderance of switches, while BRG-hackenbush has no such positions. Also, while
we would be surprised to find a dyadic that is not the game value for some block-
ing pebbles position, we have found many dyadic rationals difficult to construct,
even with the use of computational methods. BRG-hackenbush positions, on the
other hand, are easily constructed that have rational non-integer game values.

3.1. Green-only Games

The game of Blocking Pebbles restricted to green pebbles is an impartial game,
with positions admitting only nimbers as game values. The interested reader will
seek out [1,3] for more on Sprague-Grundy Theory and nimbers. While there is
no use for players to employ a blocking strategy, the game remains mathematically
interesting for its connections to its roots in graph pebbling.

First we consider in-stars and out-stars, with green pebble distributions denoted
by > g0, g1, . . . , gn < and < g0, g1, . . . , gn > respectively. In each case gi ≥ 0 and
g0 is the number of pebbles on the center vertex.

Theorem 3.5. The value of an in-star with distribution > g0, g1, . . . , gn < is ∗g0.

Proof. We will demonstrate this using induction on g0. First note that if g0 = 0
then any move of a green pebble to the center from a leaf, resulting in the loss of a
pebble, can be countered by returning it to the same leaf. Next we note that any
move from > g0, g1, . . . , gn < results in a change to g0, and that there is a move
from this position that results in any number of pebbles on the center node strictly
less than g0. Hence the in-star is equivalent to a nim heap of size g0.

The nim dimension of a ruleset is the greatest integer k where a position in
the ruleset has value ∗2k−1 but no position has value ∗2k. A ruleset in which the
nim dimension is unbounded is said to have infinite nim dimension, as Santos and
Silva showed is true for konane in [6]. Thm. 3.5 implies that green blocking
pebbles also has infinite nim dimension, whereas the nim dimension of blue-red
blocking pebbles is still unknown.

The fact revealed in Thm. 3.5 that an in-star is equivalent to a single nim heap
can be generalized to multiple heaps with an out-star.

Theorem 3.6. The value of an out-star with distribution < g0, g1, . . . , gn > is
∗(

n∑
i=1
⊕gi). That is, the nim sum of all heaps.

Proof. We note that this game is analogous to nim, except instead of removing
pebbles from a heap they are moved to the center at no cost. The player with the



INTEGERS: 21B (2021) 14

advantage simply plays the winning Nim strategy. Any move of a pebble from the
center vertex to a leaf can immediately be reversed, at a net cost of one pebble from
the center. Thus the number of pebbles at the center do not contribute to the game
value, which equals the nim sum of the leaf heaps.

On a path we get a similar result.

Theorem 3.7. If (g1, . . . , gn) is a distribution of green pebbles along a path directed
left to right, then the game value is ∗(

∑
⊕g2k).

Proof. An empty path is trivial, so let us assume the claim is false and consider the
set C of all counter-examples with the fewest total number of pebbles. From C let
(g01 , g02 , . . . , g0n

) be the last when ordered lexicographically. Any move from this
position either decreases the total number of pebbles, or increases its lexicographic
position. Therefore all options of (g01 , g02 , . . . , g0n) are outside C and hence the
claim holds for them. Since each has a digital sum of even terms that differs from
(
∑
⊕
g2k), and all smaller sums are realized through nim moves on the even heaps,

we see that (g01 , g02 , . . . , g0n) also satisfies the claim. Therefore, C is empty and
the claim is true.

Note that in Theorems 3.5, 3.6, and 3.7, the strategy is equivalent to nim. In fact,
in these particular cases blocking pebbles is very similar to the game of poker
nim, wherein players make nim moves but retain any removed pebbles, and may
add them to a heap instead of removing. While poker nim is loopy and blocking
pebbles is not, both games played optimally have the same strategy and the same
reciprocal moves for non-nim moves.

We now introduce a reduction formula for all trees, which can be applied to the
three previous results.

Construction 3.8. Let T be any oriented tree with a given distribution of green
pebbles, let S be its set of source vertices, and let O be the set of vertices of T
reachable by an odd length directed path from some vertex in S. Additionally, for
a given subset W of verties, let p(W ) be the combined total number of pebbles on
W .

We construct the following digraph D(T ) from T as follows (see Figure 5):

1. V (D(T )) = {σ} ∪ O, where O has the same pebbling distribution as it does
in T and σ is an vertex with no pebbles.

2. E(D(T )) = E(O) ∪ {σ → θ|θ ∈ O}

Proposition 3.9. The game value of blocking pebbles on T is equal to the game
value on D(T ).



INTEGERS: 21B (2021) 15

Figure 5: An oriented tree T and the resulting graph D(T ) from Const. 3.8

Proof. The key observation is that the pebbling games on T and D(T ) are both
equivalent to poker nim on the set O. Since the two games have the same set of
nim moves, their game values are equivalent.

Applying Const. 3.8 to an in-star results in a single arc, and when T is a directed
path as in Thm. 3.7, D(T ) is simply an out-star. Thus, many tree positions can be
reduced to positions on fewer vertices.

It is worth noting, however, that many trees will not reduce to simple positions.
In particular the transitive triple graph, a K3 oriented without a cycle (Figure 3),

has proven very difficult to analyze. However, we present here the set of P-positions.

Theorem 3.10. A position in blocking pebbles on a transitive triple with g1
green pebbles on the source vertex, g3 on the sink, and g2 on the remaining vertex,
is a P-position if and only if g2 = g3.

Proof. Note that, as in all other green-only positions, pebbles on the source vertex
are superfluous. Since any move that increases the total g2 + g3 can be undone, we
can consider these heaps as nim heaps and play accordingly.

We close this section with a very simple result, but one that may prove useful in
future investigations into the game.



INTEGERS: 21B (2021) 16

Theorem 3.11. A single green pebble on the sink node of a transitive tournament
on n vertices is equivalent to a nim heap of size n.

Proof. We simply consider all options of this position. Since the pebble can only
move back, and can move to any previous node, this is equivalent to removing any
number of stones from a nim heap.

4. Blue-Red-Green Blocking Pebbles is PSPACE-hard

We next show that it is computationally intractable to determine the outcome class
of a general Blue-Red-Green Blocking Pebbles position. More specifically,
via a reduction from Positive CNF, we show that Blue-Red-Green Blocking
Pebbles is PSPACE-hard.

PSPACE is a class of computational problems that can be solved by a Turing
Machine with a polynomial amount of writing space. Problems that are PSPACE-
hard are those where the worst-case instances are at least as difficult to compute
as the hardest things in PSPACE, modulo a polynomial amount. This hardness
can be proven by finding a reduction from an already-known-to-be PSPACE-hard
problem to the game in question.

PSPACE-hard problems are widely considered to be intractable because no known
algorithm exists to solve them in polynomial-time, despite this being a significant
open problem for over 40 years. (Indeed, the Millenium Problem P vs NP is more
heavily studied and NP is a subset of PSPACE.) By proving that a ruleset is
PSPACE-hard, we are showing that it is not trivial to calculate winning strategies.
This means that actual competition is interesting; humans stand a chance against
computer players, as no efficient perfect player exists unless P = PSPACE.

We reduce from Positive CNF to show hardness. Positive CNF is a game
played with two players, True and False, with alternating turns, on a list of boolean
variables and a CNF (Conjunctive Normal Form) formula using those variables and
with no negated literals. In the starting positions, all variables begin unassigned.
The True player, on their turn, sets one unassigned variable to true. On the False
player’s turn, they set one unassigned variable to false. After all variables are set,
the True player wins if the CNF evaluates to true, otherwise False wins. Positive
CNF is PSPACE-hard1 [16].

To reduce from Positive CNF to Blocking Pebbles, we need both to have
a way for the players to alternate setting variables, and a way for the evaluation of
the CNF to determine the winner of the game. We achieve this using 3 different
gadgets. We have a gadget for the players to set the variables (the Variable Gadget,

1At the original time of submission, Positive CNF was known to be hard for 11-CNF formulas
[16]. Since then, an impressive improvement was discovered, showing that it is hard even on 6-CNF
formulas [15].



INTEGERS: 21B (2021) 17

1 xi 1

1

...

Ca

...

Cb

...

Cc

...

Cd

...

Ce

dl
og

2(
m

ax
i{
L

i}
)e

Figure 6: Example of a variable gadget for variable xi. Here, xi is included in
clauses Ca, Cb, Cc, Cd, and Ce, a subset of all the clauses. Li is the number of
unique literals in clause Ci, so dlog2(maxi{Li})e is enough that even if a clause gets
all of the blue pebbles from the variables, it will not be enough to go back deep into
the variable gadget.

Fig. 6), a gadget for the False Player to select a clause they believe they have
falsified (the Clause Gadget, Fig. 7), and a gadget that allows the True player to
win if no clause is falsified, but allows False to win if they do falsify a clause (the
Goal Gadget, Fig. 8).

We consider the following properties of the formula in the Positive CNF posi-
tion:

• The formula uses n variables and has m clauses.

• The i-th clause contains Li unique literals.

The first gadget to describe is the variable gadget. See Fig. 6 for an example. The
first pebble moved onto the vertex labelled xi corresponds to that player choosing



INTEGERS: 21B (2021) 18

f(Lj) · · ·

Cj g

Lj

dlog2(Lj)e − 1

Figure 7: Clause Gadget for a single clause Cj with Lj unique literals. f(Lj) is the
number needed to push Lj to the next power of two, so f(Lj) = 2dlog2(Lj)e − Lj .

the variable xi in Positive CNF. If Red (True) moves there, then all pebbles in the
gadget are unable to move for the remainder of the game. However, if Blue (False)
moves there, then they can later move the pebble down with the other pebble, then
down one of the paths to a single clause vertex (this will also give 2 moves for Red).

These clause paths are long to prevent players from traversing back "upwards"
later with a cache of tokens on the clauses.

Each clause gadget (see Fig. 7) includes a vertex Ci, which is connected to the Li

unique literals in that CNF clause via these paths as shown in our variable gadget.
g is part of the goal gadget (Fig. 8). We want to ensure that if and only if Blue
moves in each of the variables in Lj , then they can get exactly one pebble to g.

We enforce this by requiring Blue to accumulate exactly a power of two (2k)
pebbles on the clause vertex Cj so they can push those pebbles down a path of
length k to reach g. If there are Lj literals in clause j, then the path needs to
require dlog2(Lj)e moves to reach g, meaning there needs to be dlog2(Lj)e − 1
vertices on the path between Cj and g. In the many cases where Lj is not a power
of 2, we have to start with extra blue pebbles on the clause vertex to "round it up";
this is just f(Lj), where f(n) = 2dlog2(n)e − n.

We will give Red (True) a single red pebble on our goal gadget that can traverse
a path of length n · (5 + dlog2(maxi{Li})e) + 2

∑
i

f(Li)− n. If Blue can not reach

g, then (as we will prove later) Red will win with this path. If Blue can reach g,
however, then they can follow Red down that long path.

If Blue can reach g from one of the clause vertices, they can use the goal gadget
to follow Red’s single pebble down the path. Red will be forced to traverse down
this path before Blue arrives, since Red’s only other pebbles are in the variable
gadget, where they can move in once or twice, depending on if Blue activates the
variable or not. It will take Blue at least two moves for each variable they activate
to reach the goal node, so Red’s pebble on the goal gadget will never get in the way
of Blue’s, so long as Blue activates at least as many variables as Red.



INTEGERS: 21B (2021) 19

g

1 • • •

n · (5 + dlog2(maxi{Li})e) + 2
∑

i

f(Li)− n

Figure 8: Goal Gadget. This gives Red more moves than Blue if Blue cannot reach
vertex g. If Blue is able to reach g, then they can follow Red down the path and
win.

Lemma 4.1. When Blue makes a move on k variables gadgets, then no matter
which player wins the game, the number of moves Red can make is at least n ·
(5 + dlog2(maxi{Li})e)+2

∑
i

f(Li)−n and no more than n·(5 + dlog2(maxi{Li})e)+

2
∑

i

f(Li) + k

Proof. For the first part, clearly Red can always make n · (5 + dlog2(maxi{Li})e) +
2
∑

i

f(Li) − n moves by playing on the goal gadget, no matter what else may be

happening in the game.
For the upper bound, Red can only move once on variable gadgets they assigned,

and twice on variable gadgets that Blue assigned. This will give them up to 2k +
n− k = n+ k moves total from variable gadgets.

In total, Red has:

Red moves = n+ k Variable gadgets

+ n ·
(

5 +
⌈
log2(max

i
{Li})

⌉)
+ 2

∑
i

f(Li)− n Goal gadget.

= n ·
(

5 +
⌈
log2(max

i
{Li})

⌉)
+ 2

∑
i

f(Li) + k

Theorem 4.2 (Hardness of Blocking Pebbles). Blocking Pebbles is
PSPACE-hard.

Proof. We complete the proof by showing that the transformation described results
in a proper reduction. In other words, that Red/True wins going first in the Posi-
tive CNF instance if and only if Red/True wins going first in the resulting Block-
ing Pebbles position. For notational simplicity, we will let X = dlog2(maxi{Li})e.



INTEGERS: 21B (2021) 20

We will refer to variable assignment in our reduction: this corresponds to a player
moving a pebble of their color onto the corresponding xi.

[⇒]: Assume that Red/True wins moving first in the Positive CNF game.
Then Red has a strategy to prevent Blue from falsifying all variables in any one
clause. Red may follow the strategy of the corresponding game of Positive CNF.
Whenever Blue does not make a variable assignment when there are still unassigned
variable gadgets remaining, Red may assign a variable arbitrarily. Similarly, when
Red’s response in the Positive CNF game has already been made, then they
may also play arbitrarily. Thus, once all variables are assigned, for every true
assignment in the corresponding Positive CNF, there is a red pebble moved on
the corresponding variable gadget (and perhaps on other variable gadgets as well).
Then, by construction, Blue cannot accumulate enough Blue pebbles on any Ci

vertex of a clause gadget to reach the goal gadget.
On the clause gadgets, without moving any pebble to the goal gadget, Blue may

make several moves from a pile of pebbles by repeatedly dropping one pebble to
move another pebble down an arc, then moving that pebble back to the pile. This
strategy produces 2(n− 1) moves from a pile of n ≥ 1 pebbles. Note that we can’t
get any more moves than this from a clause pile since we are unable to move a
pebble to any sufficiently larger sequence of in-neighbor moves. So we obtain an
upper bound on the number of moves for Blue on the clause gadgets by assuming
all of their blue pebbles are on a single clause vertex:

2
(
n+

∑
i

f(Li)− 1
)

In total:

Blue moves ≤ n claiming variables
+ n · (X + 2) moving claimed variables to clauses

+ 2
(
n+

m∑
i=1

f(Li)− 1
)

back-and-forth moves in clauses

= n · (X + 5) + 2
m∑

i=1
f(Li)− 2

< n · (X + 5) + 2
m∑

i=1
f(Li)

≤ Red moves by Lemma 4.1

Thus, Red will win.
[⇐]: We will prove this by contrapositive. Assume that Red/True does not win

in the Positive CNF position. Red may make moves corresponding to assigning



INTEGERS: 21B (2021) 21

variables in the Positive CNF to be True or they may deviate from that. If Red
makes a move corresponding to a True assignment, then Blue will respond with the
appropriate winning False assignment. If Red makes a move that does not corre-
spond to a True assignment, then Blue can arbitrarily pick a remaining variable,
pretend that Red assigned that to True, and respond with the appropriate winning
False assignment. If Red ever makes True one of the variables Blue has already pre-
tended they claimed, then Blue will choose yet another remaining variable, pretend
Red makes that True, and again choose the appropriate winning response.

Since Blue has a winning strategy in the Positive CNF position, this will result
in all the variable gadgets for at least one clause being claimed by Blue pebbles.

Thus, in the Blocking Pebbles board resulting from our transformation, Blue
has a strategy to get enough Blue pebbles onto at least one Ci vertex to have a
pebble reach the goal vertex.

Now let us count the number of moves they will have.

Blue moves ≥ bn/2c (claiming variables)
+ bn/2c · (X + 2) (moving claimed variables to clauses)

+
⌈
log2(min

i
{Li})

⌉
(move from claimed Ci to g)

+ n ·
(

5 +
⌈
log2(max

i
{Li})

⌉)
+ 2

∑
i

f(Li)− n

(moves on the goal gadget)

≥ n ·
(

6 +
⌈
log2(max

i
{Li})

⌉)
+ 2

∑
i

f(Li)

+ bn/2c+ bn/2c ·X − n

> n ·
(

6 +
⌈
log2(max

i
{Li})

⌉)
+ 2

∑
i

f(Li) + n/2− n

= n ·
(

5 +
⌈
log2(max

i
{Li})

⌉)
+ 2

∑
i

f(Li) + n/2

≥ Red moves (by Lemma 4.1)

Thus, Blue will have more moves than Red and will win in the Blocking Peb-
bles position.

Theorem 4.2 gives us the hardness for the general game on graphs, but, as with
many results like this, it is likely not the final word on the matter, for two reasons.
First, it is not clear at this point what graph structure(s) for actual play are. So,
the range of this reduction may not line up with real-world competition.

Second, it is simultaneously possible that the game cannot be solved in polynomial-
space and may be hard for a more difficult complexity class (a superset of PSPACE,



INTEGERS: 21B (2021) 22

e.g. EXPTIME). One reason for this is that the sizes of the pebble-piles could be ex-
ponential in the size of the position description. Additionally, since the graph could
contain cycles, the game is loopy, which can often lead to EXPTIME-hardness.
Improvements to this result could include:

• Algorithms showing that a player can avoid our constructions from given
starting positions (while maintaining the winnability for a player),

• Reductions to more structured graphs than in the range of our reduction, or

• Reductions from supersets of PSPACE.

5. Further Directions

There remain many open questions and avenues for further study of blocking
pebbles. In particular, we would like to resolve the question of game values for
all-green games. As we have mentioned, it has proven difficult to determine these
values when the underlying graph contains cycles.

Through the use of computational software, in particular CGSuite [17], we have
been able to find positions with many dyadic game values. It remains an open
question whether or not there is a dyadic rational a

2b that is not the value of any
position in blocking pebbles.

With regards to computational complexity, in addition to the potential improve-
ments listed in that section, the computational hardness of Green Blocking
Pebbles remains an open problem.

References

[1] M. Albert, R. Nowakowski, and D. Wolfe, Lessons in Play: An Introduction to Combinatorial
Game Theory, CRC Press, 2007.

[2] M. Albert, J. Grossman, R. Nowakowski, and D. Wolfe, An introduction to clobber, Integers
5(2), (2005).

[3] E. Berlekamp, J. Conway, and R. Guy, Winning Ways for Your Mathematical Plays, volume
1-4, AK Peters Natick, 2003.

[4] N. Calkin, K. James, J. Janoski, S. Leggett, B. Richards, N. Sitaraman, and S. Thomas,
Computing strategies for graphical nim, Congr. Numer. 202 (2010), 171-185.

[5] F. Chung, Pebbling in hypercubes, SIAM J. Discrete Math. 2(4) (1989), 467-472.

[6] C. dos Santos and J. Silva, Konane has infinite nim-dimension, Integers 8(1), #G2, 6pp.

[7] S. Faridi, S. Huntemann, and R. Nowakowski, Games and complexes i: Transformation via
ideals, in Games of No Chance 5 70:285 (2019).



INTEGERS: 21B (2021) 23

[8] M. Fukuyama, A nim game played on graphs, Theoret. Comput. Sci. 1-3(304) (2003), 387-
399.

[9] G. Hurlbert, A survey of graph pebbling, Congr. Numer. 139 (1999), 41-64.

[10] L. Kirousis and C. Papadimitriou, Searching and pebbling, Theoret. Comput. Sci. 47 (1986),
205-218.

[11] Q. Liu, Red-Blue and Standard Pebble Games: Complexity and Applications in the Sequential
and Parallel Models, Master’s thesis, MIT, Cambridge, MA, 2017.

[12] R. Milley and G. Renault, Dead ends in misère play: the misère monoid of canonical numbers,
Discrete Math. 313(20) (2013), 2223-2231.

[13] L. Pachter, H. Snevily, and B. Voxman, On pebbling graphs, Congr. Numer. 107 (1995),
65-80.

[14] M. Prudente, Two-Player Graph Pebbling, PhD thesis, Lehigh University, Bethlehem, PA,
2015.

[15] M. Rahman and T. Watson, 6-uniform maker-breaker game is pspace-complete, in 38th
International Symposium on Theoretical Aspects of Computer Science (STACS 2021), Schloss
Dagstuhl-Leibniz-Zentrum für Informatik (2021).

[16] T. Schaefer, On the complexity of some two-person perfect-information games, J. Comput.
System Sci. 16(2) (1978), 185-225.

[17] A. Siegel, Combinatorial Game Suite: An open-source program to aid research in combina-
torial game theory, http://cgsuite.sourceforge.net (2004).

http://cgsuite.sourceforge.net

	Introduction
	Ruleset and Play
	Blue-Red-Green Blocking Pebbles
	Green-only Games

	Blue-Red-Green Blocking Pebbles is PSPACE-hard
	Further Directions

