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Abstract

We present two rulesets, domino shave and clockwise hackenbush. The first is
somehow natural and has, as special cases, stirling shave and Hetyei’s Bernoulli
game. Clockwise hackenbush seems artificial yet it is equivalent to domino
shave. From the pictorial form of the game, and a knowledge of hackenbush, the
decomposition into ordinal sums is immediate. The values of clockwise blue-red
hackenbush are numbers and we provide an explicit formula for the ordinal sum
of numbers where the literal form of the base is {x | } or { |x}, and x is a number.
That formula generalizes van Roode’s signed binary number method for blue-red
hackenbush.

– Dedicated to Elwyn R. Berlekamp, John H. Conway and Richard K. Guy;

they taught us so much.

1. Introduction

Hackenbush is a central game in Winning Ways [4]. It has many interesting

properties. One that will be central to this paper is the relationship between the

ordinal sum decomposition and the valuation scheme for paths and trees. The
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literature also includes variants with new intriguing properties in new contexts.

For example, yellow-brown hackenbush [3] and all-small games; hackenbush

sprigs [12] and misère games; and toppling dominoes [7] and hot games.

In this paper, we introduce two rulesets, clockwise hackenbush and domino

shave. The first is a new variant of hackenbush trees and the second is the

partizan version of stirling shave.

We first provide a complete solution for clockwise blue-red hackenbush.

As in blue-red hackenbush trees, the best moves are the ones highest up the

tree, see Lemma 2.3. We then give a method for calculating the value of a position.

This is accomplished by giving a decomposition theorem in terms of ordinal sums

(Theorem 2.2). In Theorem 1.3 explicit formulas are given for the ordinal sum of

numbers when the base is a blue-red hackenbush string or when the base is in

canonical form [14]. In contrast, the evaluation of a tree in blue-red hackenbush

involves iterating ordinal sums via signed binary numbers and disjunctive sums.

One of the main contributions of this paper is Theorem 2.16, which gives the

formula for the ordinal sum of numbers where the literal form of the base is {x | }
or { |x}, and x is a number.

Whereas clockwise hackenbush may seem a little artificial, domino shave

seems natural. It is a partizan version of stirling shave [8] which, in turn, was

suggested by Hetyei’s Bernoulli game [9, 10]. The main result in Section 3 is that

clockwise hackenbush and domino shave are equivalent games. Moreover,

a position in one can be easily transformed to a position in the other. As an

interesting sidelight, we also show that Hetyei’s Bernoulli game is an instance of

stirling shave thereby giving the first complete analysis of the game.

1.1. The Rules of the Games

A clockwise hackenbush position is a tree with blue, red, and green edges, which

are connected to the ground. The rightmost edges form the trunk, and the players

can only remove edges from the trunk. There are two players, Left and Right.

On Left’s turn, she may remove a blue or green edge from the trunk. On Right’s

turn, he may remove a red or green edge from the trunk. Afterward, any edge not

connected to the ground is also removed. In the figures, blue edges are denoted by

solid lines and red edges by dashed lines.

We draw the trunk vertically. Figure 1 and Figure 2 show two clockwise

blue-red hackenbush positions and their options. Note that as play progresses,

a branch that was not on the trunk can become part of the trunk (the trunk shifts

clockwise). See the first Left option in Figure 1 and Figure 2. Different drawings

of the same hackenbush tree could result in different trunks and are therefore

different clockwise hackenbush positions.

Domino shave, not surprisingly, involves dominoes. For us, a domino is an
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vertical
branch

Figure 1: A clockwise blue-red hackenbush position.

Figure 2: A second clockwise blue-red hackenbush position.

ordered pair of non-negative integers, written d = (l, r). We will distinguish the

numbers: l is the left spot and r is the right spot. A line of k dominoes will be

described as d1, d2, . . . , dk or as (l1, r1), (l2, r2), . . . , (lk, rk), 0 6 li, ri. A domino is

blue if li < ri, it is red if li > ri, and green if li = ri.

A domino shave position is a line of dominoes. The two players take turns

making moves. On Left’s move, she may remove a green or blue domino di and all

the others with greater index leaving d1, d2, . . . , di−1, provided that, for all j > i,

li 6 lj and li 6 rj . On Right’s move, he may remove a green or red domino di
leaving d1, d2, . . . , di−1, provided that, for all j > i, both lj > ri and rj > ri hold.

In words, Left has a legal move at (li, ri) if li is smaller or equal to ri and in

comparing li to all the dominoes to its right, li is less than or equal to every lj and

rj , for every j ≥ i. If this condition is not satisfied for every domino of index j,

then the move from (li, ri) is not legal for Left. Similarly for Right. See Figure 3

for an example of a domino shave position and its options, the latter are

indicated in the figure.

Figure 3: Example of a domino shave position.
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For this paper, normal play is the winning convention. Readers can consult any

edition of Winning Ways [4], specifically the sections on hackenbush, to gain

further insight. We assume general knowledge about normal play but, in order to

keep the material self-contained, we clarify some ideas about the concepts of

ordinal sum and, also, the particular case of ordinal sums of

blue-red hackenbush strings.

1.2. Ordinal Sum

In a blue-red hackenbush string, if a player moves on the bottom, then the

top disappears; if a player moves on the top, then nothing happens to the bottom.

This idea motivates the concept of the ordinal sum. In the ordinal sum of two

games G : H, a player may move in either G (base) or H (subordinate), with the

additional constraint that any move on G completely annihilates the component H.

The recursive definition is

G : H =
{
GL, G : HL |GR, G : HR

}
.

The Colon principle states that the form of the base matters, but not the form of

the subordinate. Formally,

Colon Principle [4]: If H > H ′, then G : H > G : H ′.

Note that, while it is true that H = H ′ implies G : H = G : H ′, it is not true

that G = G′ implies G : H = G′ : H. For example, G = {0 | 2} and G′ = {0 | } are

different forms with game value 1, and we have G : 1 = 1 1
2 and G′ : 1 = 2.

In fact, we can be more precise about the role of the base of an ordinal sum.

The following theorem shows that the problem only happens if the literal form of

the base has reversible options. If it has no reversible options, we can replace the

literal form of the base by its canonical form without changing the game value.

Theorem 1.1 (McKay’s Theorem). If G has no reversible options and K is the

canonical form of G, then G : H = K : H.

Proof. See [11], page 42.

Here, we will prove some results about ordinal sums with the form {G | } : H. In

those ordinal sums, G is not the base; the base is {G | }. Also, as stated in Theorem

1.2, the game value of {G | } : H does not depend on the game form of G.

Theorem 1.2. Let G, G′ and H be game forms. If G = G′, then

{G | } : H = {G′ | } : H.

Proof. Suppose that, in the game {G | } : H + { | − G′} : (−H), Right moves to

{G | } : HR+{ | −G′} : (−H) or to {G | } : H+{ | −G′} : (−HL). Then, Left answers
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{G | } : HR + { | − G′} : (−HR) or {G | } : HL + { | − G′} : (−HL) respectively,

and, by induction, she wins. On the other hand, if Right moves to {G | } : H −G′,
Left replies G − G′ and wins, since G = G′. Analogously, if Left plays first in

{G | } : H + { | −G′} : (−H), then she loses. Hence, {G | } : H + { | −G′} : (−H)

is a P-position and {G | } : H = {G′ | } : H.

1.3. Ordinal Sums of blue-red hackenbush Strings

It is known that the game values of blue-red hackenbush strings are numbers and

that there is a correspondence between the game values of blue-red hackenbush

strings and signed binary representations [14].

The part of a blue-red hackenbush string after the first color change is

represented by the digits after the binary point, whose value is a sum of powers of

2. So, when we write n.1 11 . . . (the overlines indicate negative powers of 2), the

represented value is n− 1
2 − 1

4 + 1
8 + . . . The signed binary notation is particularly

appropriate for simultaneously describing the game value of the blue-red

hackenbush string and its sequence of blue and red edges. In the following

example, 2.1 11 stands for two blue edges, one red edge, one red edge, and one

blue edge; see Figure 4.

= 2.1 11 = 2− 1
2 − 1

4 + 1
8 = 2− 5

8 = 1 3
8

Figure 4: Example of signed binary notation for a blue-red hackenbush string.

Also, if G and H are two blue-red hackenbush strings, it is possible to have

a closed formula to evaluate the game value of G : H, knowing the game values of

G and H. That is van Roode’s method [14].

Theorem 1.3 (van Roode’s method). Let G be a positive blue-red hackenbush

string whose game value is n + d, with −1 < d = − k
2j 6 0. Then, we have the

following.

1. If G is an integer and H is a positive blue-red hackenbush string then

G : H = G + H.
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2. If G is not an integer and H is a positive blue-red hackenbush string

whose game value is m + d′, where m is a positive integer and −1 < d′ 6 0,

then G : H = n + d + 1
2j+m (2m − 1 + d′).

3. If H is a negative blue-red hackenbush string whose game value is

m + d′, where m is a negative integer and 0 6 d′ < 1 then

G : H = n + d + 1
2j+|m|

(
1− 2|m| + d′

)
.

Proof. This result is well known and follows from either Berlekamp’s or van Roode’s

rule for a blue-red hackenbush string [14] and [2].

Example 1.4. Consider the games G and H, as follows:

G = = 3
8 = 1− 5

8

n = 1, d = − 5

23
, j = 3

H = = 3 1
2 = 4− 1

2

m = 4, d′ = −1

2

We want to evaluate G : H,

G : H = .

We have, by Case 2 of Theorem 1.3,

G : H = n + d +
1

2j+m
(2m − 1 + d′) = 1− 5

8
+

1

27

(
24 − 1− 1

2

)
=

125

256
.



INTEGERS: 21B (2021) 7

Example 1.5. Consider the games G and H, as follows:

G = = 2 5
8 = 3− 3

8

n = 3, d = − 3

23
, j = 3

H = = −1 3
4 = −2 + 1

4

m = −2, d′ =
1

4

We want to evaluate G : H,

G : H = .

We have, by Case 3 of Theorem 1.3,

G : H = n + d +
1

2j+|m|

(
1− 2|m| + d′

)
= 3− 3

8
+

1

25

(
1− 22 +

1

4

)
= 2

69

128
.

Van Roode’s method was conceived to evaluate ordinal sums of blue-red

hackenbush strings. However, since blue-red hackenbush strings have no

reversible options1, by Theorem 1.1, this method can be used to evaluate an

ordinal sum of numbers where the base is in canonical form.

1In fact, given a blue-red hackenbush string G and a Left option GL = {. . . |GLR, . . .}, we
cannot have G > GLR since, in the game G − GLR, Right wins by moving to GLR − GLR. A
similar argument holds for the lack of reversible Right options.
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2. The Analysis of clockwise hackenbush

In order to analyze clockwise hackenbush positions and facilitate the proofs, it

is important to have notation for the important elements.

Definition 2.1. Let G be a clockwise blue-red hackenbush position. Let TG

be the trunk of G with V (TG) = {s0, s1, . . . , sn} and E(TG) = {t1, t2, . . . , tn}, all

labelled from bottom to top. Let Gi be the position resulting from the deletion of

ti and let B1 = G1 and for i > 1, Bi = Gi \ (Gi−1 ∪ {ti−1}). Finally, for i > 1, let

Mi = Bi ∪ {ti}.

The subtree B1 is the part of the tree remaining after deleting t1 and, for i > 1,

not counting with ti, Bi is the part of the tree that is eliminated by deleting ti−1
but not by deleting ti. In other words, the subtree above ti−1 that does not include

ti. The idea is represented in Figure 5.

t1

ti−1

ti

B1

Bi−1

Bi

Bi+1

Gi−1

Gi

Figure 5: Notation for the elements of a clockwise hackenbush position.

Theorem 2.2. Let G be a clockwise blue-red hackenbush position. Then

G = M1 : (M2 : (. . . : (Mn−1 : Mn) . . .)).

Proof. The proof follows by induction on the size of G. If E(TG) = {t1} then

G = M1.

We may now suppose that E(TG) = {t1, t2, . . . , tn} and n > 1. Let H be the

position formed by G \M1, that is, the tree above but not including t1, and the

vertex s1 is the ground. The trunk of H is {t2, t3, . . . , tn}.
In G, there are two types of moves. Either, in M1, delete t1 leaving B1; or

delete ti, i > 1 which is a move in H. By induction, the move in H is to M1 : HL
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(M1 : HR) for some Left (Right) option of H. Also by induction, H = M2 : (. . . :

(Mn−1 : Mn) . . .). It follows then that

G = {ML
1 ,M1 : HL |MR

1 ,M1 : HR}
= M1 : (M2 : (. . . : (Mn−1 : Mn) . . .)),

and the result is proved.

Theorem 2.2 shows that we will have to evaluate ordinal sums. If the values

were arbitrary then no formula could be given. However, clockwise blue-red

hackenbush positions have similar strategic features to blue-red hackenbush

strings. Specifically, for either player, the unique best move is their highest and

the value is a number. This we prove next. Each Mi has only one option, that of

deleting the trunk edge. The ordinal sums, therefore, will be of the form {x | } : y or

{ | x } : y for numbers x and y. A closed formula for this type of ordinal sum is one

of the main contributions of this paper (Subsection 2.2). Before that, we prove that

clockwise blue-red hackenbush positions only have numbers as game values,

and that the best options for the players are the topmost allowed moves.

Lemma 2.3. Let G be a clockwise blue-red hackenbush position. If ti and

tj are blue edges and j > i, then Gj > Gi. If ti and tj are red edges and i < j, then

Gj < Gi.

Proof. We first assume that ti and tj are both blue edges and we show Gj−Gi > 0.

The proof follows by induction on the number of edges in G. If G consists of

exactly two blue edges, then G = 2. If Left deletes the higher edge this leaves a

tree with exactly one blue edge which has value 1. If she deletes the lower edge this

leaves a tree with zero edges and it has value 0. Thus the lemma holds for the base

case. We now suppose G has more than two edges.

Left, going first, can win by deleting ti in Gj since this results in Gi −Gi = 0.

Now consider Right moving first. If Right plays an edge of Gj but does not eliminate

the edge ti then Left responds in Gj by deleting ti. Again, this results in Gi−Gi = 0.

If Right plays in Gj and does eliminate ti then he has deleted an edge on the trunk,

i.e., some t`, ` < i. This leaves G` −Gi. Left responds in −Gi by deleting t`, that,

by symmetry, is a blue edge. This gives G` −G` = 0.

The last remaining case is that Right deletes an edge on the new trunk in −Gi.

Let the trunk of Gi be T1 = {t′1, t′2, . . . , t′m} where t′a = ta for 1 6 a 6 i− 1. Right

deletes t′` for i 6 ` 6 m. We claim that deleting ti, in Gj , is a winning move. To

see this, let H be identical to Gi but with an extra blue edge t′m+1 at the top of

T1. After Right has deleted t′` in −Gi and Left ti in Gj , the situation is identical

to playing in Hm+1 −H`. Now both ti and tj are not in H thus H has at least one

fewer edge than G. It follows by induction that Hm+1 −H` > 0.
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The proof for when ti and tj are both red edges follows from considering negatives.

The proof is similar to the above arguments.

Corollary 2.4. Let G be a clockwise blue-red hackenbush position.

1. Left’s (Right’s) move of deleting the topmost blue (red) edge on the trunk

dominates all other options.

2. The value of G is a number.

Proof. Part 1 follows immediately from Lemma 2.3. Part 1 gives that G has only

one Left and one Right un-dominated option, i.e., G = {GL | GR}. By induction

on the options, both options GL and GR are numbers. Let H be G with an extra

blue edge on the top of the trunk. Both G and GL are Left options of H and, by

Lemma 2.3, GL < G. Similarly, by adding a red edge, we have G < GR. Since

GL < GR, G is a number.

2.1. Simplicity Rule and Binary Notation

Iterated ordinal sums occur naturally in clockwise hackenbush and the goal of

this section is to find a procedure that evaluates them. In what follows, recall that

the form of the base is important. For example, let n be a number and consider the

ordinal sum {n | } : 2. The good moves are the topmost, thus

{n | } : 2 = {{n | } : 1 | } = {{{n | } | } | }.

Similarly,

{n | } : −2 = {n | {n | } : −1} = {n | {n | {n | }}}.
In either case, the Simplicity Rule must be applied three times in a row and one of

the options remains the same. This motivates the following definition.

If a and b are numbers and a < b then the value of {a | b} is the dyadic rational

p/2q with a < p/2q < b and q is minimal. In other words, and a fact that we will

use often:

{a | b} is the number c, a < c < b, that has the fewest number of digits

in its binary expansion.

The next result makes explicit the simplicity rule for evaluating {a | b} for

numbers 0 6 a < 1 and a < b. We will then generalize the rule for iterated ordinal

sums in Section 2.2. The procedure will use the binary expansions of numbers.

Each dyadic only has a finite number of non-zero bits in its binary expansion,

however, the procedure sometimes uses 0-bits past the last 1-bit. Therefore, while

we denote the binary expansion of d by d =2 0.d1d2 . . . dn but when we refer to the

‘first index’ or ‘first occurrence’ we may be considering the infinite binary
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expansion. We abuse the ‘=2’ notation to mean that the important terms

following the equal sign will be in binary. If this is followed by another ‘=’ sign

then we have reverted to base 10.

Theorem 2.5. Let d be a dyadic rational such that 0 < d < 1, and

d =2 0.d1d2 . . . dn. Let d < d′ 6 +∞, and, if d′ < 1, then let d′ =2 0.d′1d
′
2 . . . d

′
m.

1. If d′ > 1, then {d | d′} = 1.

2. If d′ = 1 and i be the index of the first 0-bit of the binary expansion of d, then

{d | 1} = 1− 1
2i .

3. If d′ < 1, then let i be the first index such that di = 0 and d′i = 1. Also, let j

be the least index, j > i and dj = 0.

If d′ 6=2 0.d1d2d3 . . . di−11, then {d | d′} =2 0.d1d2d3 . . . di−11.

If d′ =2 0.d1d2d3 . . . di−11, then {d | d′} =2 0.d1d2d3 . . . dj−11.

Example 2.6. Demonstrating how to apply Theorem 2.5.
{

21

32

∣∣∣ 45

64

}
=2 {0.10101 | 0.101101} =2 0.1011 =

11

16
;

{
75

128

∣∣∣ 19

32

}
=2 {0.1001011 | 0.10011} =2 0.10010111 =

151

256
.

Proof of Theorem 2.5. The first case is trivial.

In the second case, by definition {d | 1} > d, then each of the first i− 1 digits of

the binary expansion of {d | 1} must be ones. Therefore {d | 1} > k
2j with j > i.

Observe now that inserting one more “1” in the position i produces a dyadic strictly

larger than d and strictly smaller than 1. Therefore, the simplest dyadic that fits

between d and 1 is 1− 1
2i =2 0.11 . . . 11.

Regarding the third case, since d < {d | d′} < d′ the first i − 1 digits of the

binary expansion of {d | d′} must be d1, d2, d3, . . . , di−1. Therefore, {d | d′} = k
2w

for some k and w > i. If d′ 6=2 0.d1d2d3 . . . di−11 then 0.d1d2d3 . . . di−11 is the

simplest dyadic that fits between d and d′. If d′ =2 0.d1d2d3 . . . di−11, and since

d < {d | d′} < d′, then the first j − 1 digits of the binary expansion of {d | d′} must

be d1, d2, d3, . . . , dj−1. In that case, the simplest dyadic that fits between d and d′

is 0.d1d2d3 . . . dj−11.

We have seen that there are two types of ordinal sums that occur in

clockwise blue-red hackenbush. We write the formulas explicitly. The first,

in Theorem 1.3, is standard and appears in the analysis of blue-red

hackenbush strings. The second happens when the literal form of the base is

{x | } or { |x}, where x is a number. That is analyzed in the next section.
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2.2. Ordinal Sums of Numbers: The Literal Form of the Base Is {x | } or
{ |x}, Where x Is a Number

The second type of ordinal sum that occurs in clockwise blue-red hackenbush

is {d | } : m. It still involves numbers but the base is not in canonical form. Some

preliminary results are needed first.

If n is a number then the Translation Principle states

{GL + n | GR + n} = n + {GL | GR} [1, 4, 6, 13]. The following theorem

describes a version of the translation principle for ordinal sums. Once we have this

result, the case { d | } : number (0 6 d < 1) turns out to be the only case to study.

Lemma 2.7 (Translation principle for ordinal sums of numbers). Let 0 6 d < 1 be

a dyadic rational, w any number, and n an integer. Now,

{n + d | } : w = n + ({d | } : w) .

Proof. Let {wL |wR} be the canonical form of w. We have

{n + d | } : {wL |wR}
=

{
n + d, {n + d | } : wL

∣∣∣ {n + d | } : wR
}

=︸︷︷︸
induction

{
n + d, n +

(
{d | } : wL

) ∣∣∣n +
(
{d | } : wR

)}

=︸︷︷︸
translation principle

n +
{
d, {d | } : wL

∣∣∣ {d | } : wR
}

= n +
(
{d | } : {wL |wR}

)
.

Lemma 2.8. Let d be a dyadic rational, 0 6 d < 1 and m an integer. If m > 0,

then

{d |} : m = {{d |} : m− 1 |}.
If m < 0, then

{d |} : m = {d | {d |} : (m + 1)}.

Proof. Let m be a positive integer. By definition,

{d |} : m = {d, {d |} : 0, {d |} : 1, . . . , {d |} : (m− 1) | },
{d |} : (−m) = {d | {d |} : 0, {d |} : −1, . . . , {d |} : (−m + 1)}.

For any integer k, let G = {d |} : k−{d |} : (k−1). We claim that G > 0. Suppose

k > 0. In G, Right can only play in −{d |} : (k − 1) and for any move he makes,

Left has the corresponding move in {d |} : k. This results in {d |} : i−{d |} : i = 0.



INTEGERS: 21B (2021) 13

Suppose k ≤ 0. Now, in G, Right has moves in both components but, again, Left

has the corresponding move in the other component. This leaves a position equal

to 0. Thus {d |} : k − {d |} : (k − 1) > 0 for all m.

This result shows that

{d |} : m = {d, {d |} : (m− 1) | }, if m > 0, and

{d |} : m = {d | {d |} : (m + 1)}, if m < 0.

Finally, if m > 0, then d 6 {d |} : (m−1). This follows since, in {d |} : (m−1)−d >
0, Right can only move to {d |} : (m − 1) − d′ where −d′ > −d. Left responds to

d− d′ > 0.

Thus, for m > 0, the canonical form of {d |} : m is {{d |} : (m− 1) |}.

Corollary 2.9. Let d be a dyadic rational, 0 ≤ d < 1 and m an integer. If m is

positive, then {d |} : m = ({d |} : m− 1) : 1. If m is negative, then {d |} : m = ({d |
} : (m + 1)) : −1.

Proof. If m > 0, then

({d |} : m− 1) : 1 = {{d |} : m− 1 |} = {d |} : m.

If m < 0, then

({d |} : (m + 1)) : −1 = {d | {d |} : (m + 1)} = {d |} : m.

Theorem 2.10. Let d =2 0.d1d2 . . . dk and let m be an integer.

1. If m > 0, then {d |} : m = m + 1.

2. If m < 0, then {d |} : m =2 0.d1d2d3 . . . dj−11, where j is the index of the

|m|-th zero digit of the binary expansion of d.

Proof. First suppose m ≥ 0. We have {d |} : m = ({d |} : m − 1) : 1. Since

{d |} : 0 = 1, then, by induction, ({d |} : m− 1) : 1 = m : 1. Finally, m : 1 = m+ 1.

Now suppose m < 0.

If d = 0, then the theorem states {0 |} : m = 2m. This follows easily by induction

as follows. First, by Lemma 2.8, {0 | } : 0 = 1 and, {0 |} : m = {0 | {0 |} : m + 1}.
By induction, {0 |} : m = {0 | 2m+1}, and since, by Theorem 2.5, {0 | 2m+1} = 2m

then this part of the result is proved.

We may now assume that d > 0.

If m = −1, then, by Lemma 2.8, {d |} : −1 = {d | {d |}} = {d | 1}. Now, by

Theorem 2.5, {d | 1} =2 0.d1d2d3 . . . dj−11, where j is the index of the first 0-bit of

the binary expansion of d.
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If m < −1, then, by induction, {d |} : (m + 1) =2 0.d1d2d3 . . . dj−11, where j

is the index of the |m + 1|-th zero digit of the binary expansion of d. Now, by

Lemma 2.8, {d |} : m = {d | {d |} : (m + 1)}. Again, by Theorem 2.5, the binary

expansion of {d | {d |} : (m + 1)} is obtained by replacing by “1” the first 0-bit in

the binary expansion of d, after the position j (and the following digits are all zero).

That bit is the |m|-th zero digit of the binary expansion of d, and this finishes the

proof.

Observation 2.11. One consequence of Theorem 2.10 is that, for 0 6 d < 1 and

m a positive integer, { d | } : m = { d | }+m, that is, the ordinal sum coincides with

the usual sum.

Example 2.12.

{
309

512

∣∣∣
}

: −3 =2 {0.100110101 | } : −3 =2 0.100111 =
39

64
.

As mentioned before, the signed binary notation is more useful for game practice

because of the correspondence of 1-‘blue edge’ and 1-‘red edge’. The following

theorem, concerning the use of signed binary representations, is presented without

proof, since it is similar to the previous one.

Theorem 2.13. Let d be a dyadic rational such that 0 < d < 1, and 1.1d2 . . . dk is

its signed binary expansion. Let m be a negative integer. The signed binary

expansion of {d | } : m is obtained in the following way:

Case 1. If the number of minus ones in the signed binary expansion of d is larger

than |m|, then the signed binary expansion of {d | } : m is 1.1d2d3 . . . di−1, where i

is the index of the (|m|+ 1)-th 1-bit in the signed binary expansion of d.

Case 2. If the number of minus ones in the signed binary expansion of d (n) is

less or equal than |m|, then the signed binary expansion of {d | } : m is

1.1d2d3 . . . dk1 1 1 . . . 1 1︸ ︷︷ ︸
|m|−n 1

′
s

.

Example 2.14.

{
173

512

∣∣∣
}

: −3 =2 {1.1 11111111 | } =2 1.1 1111 =
11

32
.

The last case that needs to be evaluated is when G = {d | } : (m + d′), m is an

integer and d and d′ are dyadic rationals between 0 and 1.
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Corollary 2.15. Let d be a dyadic rational such that 0 6 d < 1.

1. If m is a positive integer, then {d |} : m = m + 1.

2. If m is a negative integer, then {0 |} : m = 2m.

3. If m is a negative integer and d =2 0.d1d2 . . . dk, d 6= 0, then {d |} : m =2

0.d1d2d3 . . . dj−11, where j is the index of the |m|-th zero digit of the binary

expansion of d.

Proof. These are re-statements, via Lemma 2.8, of Theorem 2.10 for part 1, and

Theorem 2.10 for parts 2 and 3.

Theorem 2.16 (main result for numbers). Consider G = {n+d | } : (m+d′) where

0 6 d, d′ < 1 are dyadics, and n,m ∈ Z. Let k
2j be the simplest form of {d |} : m.

Then,

G = n +
k

2j
+

d′

2j
.

Proof. By Lemma 2.7, {n + d | } : (m + d′) = n + ({d | } : (m + d′)), so we only

need to analyze G′ = {d | } : (m + d′), using the fact that G = n + G′.

Case 1. d = 0 and m > 0.

We have that G′ is {0 | } : (m + d′), and {0 | } is the canonical form of 1.

Therefore, by Theorem 1.3, G′ = {0 | } : (m + d′) = 1 + m + d′. By Corollary 2.15,

{d |} : m = m + 1 = m+1
20 , G′ = m+1

20 + d′

20 , and the theorem holds.

Case 2. d = 0 and m < 0.

We have that G′ is {0 | } : (m+d′), and {0 | } is the canonical form of 1. Therefore,

by Theorem 1.3,

G′ = {0 | } : (m + d′) = 1 +
1

2|m|
(1− 2|m| + d′) =

1

2|m|
+

d′

2|m|
.

By Corollary 2.15, {d |} : m = 1
2|m| , G

′ = 1
2|m| + d′

2|m| , and the theorem holds.

Case 3. d > 0 and m > 0.

By Corollary 2.15 part 1, G′ = m + d′ + 1. By Corollary 2.15 part 2,

{d |} : m = m+1
20 , G′ = m+1

20 + d′

20 , and the theorem holds.
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Case 4. d > 0 and m < 0.

This is the hardest case. In order to prove it we will construct a blue-red

hackenbush string H whose value is k
2j + d′

2j (Part 1). We will then prove that

G′ −H is a P-position (Part 2).

(Part 1) Let 1.11 . . . 111 . . . 11 . . . 11 . . . 1︸ ︷︷ ︸
q 1

′
s

be the signed binary expansion of d.

Since 0 < d < 1, the first digit after the binary point is 1. Also, assume that this

expansion has q 1’s.

Let 1.1d′2d
′
3 . . . d

′
w be the signed binary expansion of d′. Since 0 < d′ < 1, the

first digit after the binary point is 1.

Consider the hardest case |m| > q. By Theorem 2.13, we know that

1.11 . . . 111 . . . 11 . . . 11 . . . 1︸ ︷︷ ︸
d (q 1

′
s)

1 1 1 . . . 1 1︸ ︷︷ ︸
|m|−q 1

′
s

is the signed binary expansion of the game value of {d |} : m. The hypothesis of

the current theorem states that this is k
2j . Hence, there are j binary places.

Now, the game value of the following blue-red hackenbush string H is k
2j + d′

2j .

That happens because the added rightmost part d′ is shifted by j binary places.

1.11 . . . 111 . . . 11 . . . 11 . . . 1︸ ︷︷ ︸
d (q 1

′
s)

1 1 1 . . . 1 1︸ ︷︷ ︸
|m|−q 1

′
s︸ ︷︷ ︸

{d|}:m= k

2j
(|m| 1′s)

11d′2d
′
3 . . . d

′
w︸ ︷︷ ︸

digits of d′

=
k

2j
+

d′

2j

(Part 2) In order to finish the proof, we have to show that G′−H is a P-position.

By Theorem 1.2, we can use the following game form of G′, which also uses blue-

red hackenbush strings. The subordinate is a blue-red hackenbush string

whose value is m + d′.

G′ = {1.11 . . . 111 . . . 11 . . . 11 . . . 1︸ ︷︷ ︸
d (q 1

′
s)

| } : 1 . . . 1︸ ︷︷ ︸
(|m| 1′s)

11d′2d
′
3 . . . d

′
w︸ ︷︷ ︸

digits of d′

Let us verify that G′ −H = 0, that is, let us check that

{1.11 . . . 111 . . . 11 . . . 11 . . . 1︸ ︷︷ ︸
d (q 1

′
s)

| } : 1 . . . 1︸ ︷︷ ︸
(|m| 1′s)

11d′2d
′
3 . . . d

′
w︸ ︷︷ ︸

digits of d′+

1.11 . . . 111 . . . 11 . . . 11 . . . 1︸ ︷︷ ︸
−d (q 1′s)

1 1 1 . . . 1 1︸ ︷︷ ︸
|m|−q 1′s︸ ︷︷ ︸

{|−d}:(−m) (|m| 1′s)

11d′2 d
′
3 . . . d

′
w︸ ︷︷ ︸

digits of −d′

is a P-position.
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First, there is a correspondence between the moves in the digits of d′ and −d′.
Also, there is a correspondence between Right moves in the |m| 1’s of the

subordinate of the upper component and Left moves in the ones of

{| −d} : (−m) in the bottom component. Regarding those correspondences, there

is a Tweedledee-Tweedledum strategy.

Second, if Left moves to 1.11 . . . 111 . . . 11 . . . 11 . . . 1 = d in the upper component

(entering the base), Right answers by removing the 1 immediately after the digits

of −d in the bottom component, and vice-versa.

Third, if Right removes any 1 of the digits of −d in the bottom component,

Left answers with 1.11 . . . 111 . . . 11 . . . 11 . . . 1 (entering the base) in the upper

component, and wins.

Since the second player wins, G′ −H ∈ P, and G′ = H = k
2j + d′

2j .

Observation 2.17. Essentially, if m + d′ > 0, the ordinal sum {d | } : (m + d′) is

the sum {d | }+ m + d′; if, instead, m + d′ < 0, Corollary 2.15 is needed.

2.3. Determination of the Game Value of a clockwise blue-red
hackenbush Position

Consider again the clockwise blue-red hackenbush position exhibited in

Figure 1. In order to compute its game value, let us compute first the game value

of the subposition presented in Figure 6.

− 1
2

{ ∣∣∣ 1
}

1

Figure 6: A relevant subposition.

We have to determine the value of − 1
2 : ({ | 1} : 1). In order to compute { | 1} : 1,

we need the position to be in the correct form to apply Theorem 2.16. Hence, we

instead use {−1 | } : −1 and will negate the resulting value.

Consider ({−1 | } : −1). By Theorem 2.16, since n = −1, d = 0, m = −1, d′ = 0,

and {d | } : m = 1
2 , we have {−1 | } : −1 = −1 + 1

2 = − 1
2 . Hence, { | 1} : 1 = 1

2 .
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Finally, using van Roode’s evaluation, − 1
2 : ({ | 1} : 1) = − 1

2 : 1
2 = − 3

8 .

Regarding the clockwise blue-red hackenbush position exhibited in

Figure 1, we have the situation presented in Figure 7.

1
2

{
− 3

8

∣∣∣
}

−1

Figure 7: Figure 1 revisited.

We have to determine the value of 1
2 :
(
{− 3

8 | } : −1
)
; we start with {− 3

8 | } : −1.

To apply Theorem 2.16, to find the value of {− 3
8 | } : −1, we first rewrite the

expression as
{
−1 + ( 5

8 )
∣∣ } : −1. We observe that n = −1, d = 5

8 , m = −1, d′ = 0.

By Theorem 2.10,

{d | } : m =2 {0.101 | } : −1 =2 0.11 =
3

4
.

Now using Theorem 2.16, we have {− 3
8 | } : −1 = −1 + 3

4 = − 1
4 .

Using again van Roode’s evaluation, 1
2 :
(
{− 3

8 | } : −1
)

= 1
2 : − 1

4 = 7
16 . This is

the game value of the proposed position.

Exercise: Verify that the game value of the clockwise blue-red hackenbush

position exhibited in Figure 2 is given by

{−2 | } : (−1 : ({−1 | } : −1)) = −1
1

4
.
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3. domino shave

We first find a normalized version of domino shave and then show that this is

equivalent to clockwise hackenbush by giving a bijection between the positions.

We then note which selection of dominoes give rise to games already in the literature.

As well, we show that Hetyei’s Bernoulli game is a subset of stirling shave.

3.1. Normalized domino shave

Let D be a domino shave position d1, d2, . . . , dk. We normalize the string using

the following algorithm. Part of the algorithm involves assigning new colours. So in

Step 2, with s = 1, we consider the whole line, but with s > 1 there will be colours

other than red, blue, and green.

1. Set s = 1 and p = 1.

2. In the right-most consecutive line that contains no aqua, pink or emerald

dominoes, let Es be the set of indices of the dominoes that can be played.

Consider the dominoes with indices in Es. Starting at the left (least index)

domino:

• if it is blue, then replace it by (p, p + 1), coloured aqua;

• if it is red, then replace it by (p + 1, p), coloured pink;

• if it is green, then replace it by (p, p), coloured emerald.

Repeat with the blue, red or green domino of least index in Es. When all

dominoes in Es have been replaced go to Step 3.

3. Set s := s + 1 and p := p + 2. If there are any blue, red or green dominoes,

repeat Step 2. If not, then recolour the aqua dominoes blue, the pink dominoes

red, and the emerald dominoes green and stop.

Example 3.1. Let G = (2, 4)(7, 3)(1, 2)(4, 4)(3, 2). The steps of the algorithm are

shown in Table 1, where a change of colour is indicated by [a, b].

The partition of the indices into E1, E2, . . . is independent of the normalization.

It does point to a very important result.

Lemma 3.2. Let f be the largest index in Ea, a > 1. The domino df+1 prevents

every domino in Ea from being played.

Proof. Let g be the smallest index of the dominoes in Ea. This gives Ea = {g, g +

1, . . . , f}. After df+1 has been played then every domino di, g 6 i 6 f is playable.

Thus

min{lf , rf} > min{lf−1, rf−1} > . . . > min{lg, rg}.
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(s, p) Old Line Dominoes indexed New Line
in Es

(1, 1) (2, 4)(7, 3)(1, 2)(4, 4)(3, 2) (1, 2)(3, 2) (2, 4)(7, 3)[1, 2](4, 4)[2, 1]

(2, 3) (2, 4)(7, 3)[1, 2](4, 4)[2, 1] (4, 4) (2, 4)(7, 3)[1, 2][3, 3][2, 1]

(3, 5) (2, 4)(7, 3)[1, 2][3, 3][2, 1] (2, 4)(7, 3) [5, 6][6, 5][1, 2][3, 3][2, 1]

(4, 7) [5, 6][6, 5][1, 2][3, 3][2, 1] (5, 6)(6, 5)(1, 2)(3, 3)(2, 1)

Table 1: Conversion to Normalized domino shave.

Since g ∈ Ea, there exists dj , j > g, and j ∈ Ea−1 which prevents dg from being

played. (If no such domino exists then g ∈ Ea−1.) We may assume that j is the least

index. Thus min{lg, rg} > min{lj , rj}. Since f + 1, j ∈ Ea−1 and f + 1 6 j then

dj does not prevent df+1 being played. This gives min{lj , rj} > min{lf+1, rf+1}.
Combining the inequalities yields min{li, ri} > min{lf+1, rf+1} for g 6 i 6 f . That

is, df+1 prevents all of Ea being played.

The properties of the normalization algorithm that we require follow immediately

from the algorithm steps.

Lemma 3.3. Let D = (d1, d2, . . . , dk) be a domino shave position and D′ =

(d′1, d
′
2, . . . , d

′
k) be the normalized position.

1. The indices of the dominoes of D are partitioned into subsets E1, E2, . . . , Ef ;

2. If i ∈ Ea, j ∈ Eb and a < b then the left and right spots of d′i are smaller than

the left and right spots of d′j.

3. Let i < j, i ∈ Ea and j ∈ Eb. If a < b then d′j does not prevent d′i being

played. If a > b then d′j does prevent d′i being played.

Lemma 3.4. If D is a domino shave position and D′ is its normalized version

then D = D′.

Proof. Let {di : i = 1, 2, . . . , k} be the dominoes in D and {d′i : i = 1, 2, . . . , k} the

dominoes in D′. We show that D −D′ = 0.

The strategy will be the usual mimic strategy: if the first player plays the

domino with index i in one of the two strings then the second player plays the

other domino of index i. To prove this we need to show that at every stage of the

game, di is playable if and only if d′i is playable.
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On the first move, the only dominoes playable in D are those di, i ∈ E1. By

Lemma 3.3 (3), the dominoes d′i, i ∈ Ea, a > 1 are not playable.

Now consider the dominoes d′i, d
′
j , i, j ∈ E1, and i < j. If there is a green domino

d′c, c ∈ E1, i < c 6 j then both spots of d′j are greater than those of d′i. If there is

no such domino then the spots of d′i and d′j are p and p + 1 for some p. The order

depends on the domino colour. Consequently, d′j does not prevent the playing of

d′i. Therefore, for i ∈ E1, both di and d′i are playable.

Now suppose di, i ∈ Ea, a > 1, is playable. This is only possible if dj , j > i,

j ∈ Eb, and b < a have been played or eliminated. By the mimic strategy played so

far, it is also true that d′j , j > i, j ∈ Eb, and b < a have been played or eliminated.

By Lemma 3.3 (3), the dominoes d′i, i ∈ Eb, b > a are not playable. By Lemma 3.3

(2), the dominoes d′j , i < j and i, j ∈ Eb, do not prevent d′i from being played.

Therefore d′i is playable.

Suppose d′i, i ∈ Ea, is playable. Again, the dominoes d′j , j > i, j ∈ Eb, and b < a

have been played or eliminated. By the mimic strategy played so far, it is also true

that dj , j > i, j ∈ Eb, and b < a have been played or eliminated. However, by the

normalization algorithm, once the dominoes dj , j ∈ ∪a−1f=1, and i < j are gone then

every domino, and specifically di, with index in Ea is playable.

This shows that the mimic strategy is possible and therefore D−D′ is a second

player win.

3.2. domino shave Is clockwise hackenbush

The proof of the equivalence between domino shave and clockwise hackenbush

is similar to that of domino shave and normalized domino shave.

Theorem 3.5. There is a bijection, f , between domino shave and clockwise

hackenbush positions such that D − f(D) = 0.

Proof. Let D = (d1, d2, . . . , dk) be a normalized domino shave position. Let Ea be

the index set of the last line of dominoes replaced in the normalization algorithm.

The proof follows by induction on a.

Suppose a = 1. Let T = (e1, e2, . . . , ek) be a string where ei is the same colour

as di. Every domino in D is playable and remains playable until it is eliminated.

Similarly, T is a trunk so every edge is playable and remains playable until it is

removed.

Suppose a > 1. Consider D′ = D \ {di : i ∈ Ea}. Now D′ is a normalized

domino shave position and by induction, there exists a unique clockwise

hackenbush T ′ with f(D′) = T ′. Also, D′′ = (di : i ∈ Ea) is equivalent to a

string T ′′. Let j be the greatest index, in Ea and let ej+1 be the edge of T ′ which

corresponds to dj+1. Create a new tree, T , by identifying the bottom vertex of T ′′

and the bottom vertex of ej+1. Place T ′′ to the left of the edge ej+1. Set
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f(D) = T . Note that every edge of T is associated with a domino, specifically,

di ↔ ei.

Claim: D − T = 0.

Proof of Claim. This follows in a similar fashion the previous equivalence result.

The mimic strategy is to play the corresponding other object of the same index.

If a = 1 then all edges and dominoes are playable and remain playable until

eliminated.

If i 6∈ Ea then both the dominoes in D′′ and the edges of T ′′ do not prevent di
and ei from being played.

Suppose i ∈ Ea. If di is playable then dj+1 has been eliminated. In T , therefore,

ej+1 has also been eliminated. The string T ′′ is now part of the trunk and every

edge, including ei is playable. If ei is playable then it is on the trunk and ej+1

has been eliminated. Therefore, dj+1 has been eliminated and every domino in D′′,
including di is playable.

This proves the claim and the equivalence.

From a clockwise hackenbush position it is possible to get the normalized

domino shave position by realizing the first trunk corresponds to the dominoes

in E1 and the next strings to the left, in order, correspond to the dominoes of

E2, E3, . . . , En. The normalization algorithm then gives a set of dominoes.

3.3. Relationship with Other Games

Versions of domino shave include, as special cases, several other rulesets each of

which has been shown to have interesting or intriguing properties.

1. If all the dominoes are (1, 1) then the clockwise hackenbush version is

a single string of green edges. This is nim, which is the foundation of all

impartial games [5].

2. If all the pieces are of the form (a, a) then this is stirling shave [8]. An

explicit formula for evaluating the ordinal sums of nimbers is developed to

give the values of the positions. If the dominoes are a permutation of the

dominoes (1, 1), (2, 2), . . . , (n, n) then the number of P-positions of length n

is given in terms of the Stirling numbers of the second kind.

3. In Hetyei’s Bernoulli game [9], the domino di is restricted to having both spots

between 1 and i. Only the right spot is used to determine when a domino can

be removed thus it is an impartial game. The number of P-positions with n

dominoes is given in terms of the Bernoulli numbers of the second kind. The

game can be shown to be equivalent to stirling shave via the following. A
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domino is unplayable if it can never be the first of the string to be removed.

A blue domino is unplayable since the right stop is greater than the left. If

the dominoes di+1, di+2, . . . , dj are unplayable and di is prevented from being

played by df , i + 1 6 f 6 j then di is unplayable. Removing all unplayable

vertices does not affect the options of all followers in the game. Remaining are

a subset of the red and green dominoes all of which have their right spots no

larger than their left spots. If di is prevented from being played by dj then,

in particular, ri > rj . Thus when each domino (l, r) is replaced by (r, r), the

same dominoes can be played and the dominoes that prevent a domino from

being played is the same in both games.

4. If all the pieces are (1, 2) and (2, 1) then it is equivalent to blue-red

hackenbush strings.

5. If all the pieces are (1, 2), (2, 1) and (1, 1) then this is blue-red-green

hackenbush strings. The value can be given via the ordinal sums of

numbers and nimbers. It is a well-known open problem to give an explicit

formula. It seems clear that the values of the strings are unique but we do

not know of a proof.
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