
#A7 INTEGERS 21B (2021)

STRINGS-AND-COINS AND NIMSTRING ARE
PSPACE-COMPLETE

Erik D. Demaine
MIT Computer Science and Artificial Intelligence Laboratory, Cambridge,

Massachusetts
edemaine@mit.edu

Yevhenii Diomidov
MIT Computer Science and Artificial Intelligence Laboratory,

Cambridge, Massachusetts
diomidov@mit.edu

Received: 1/15/21, Accepted: 7/2/21, Published: 12/20/21

Abstract

We prove that Strings-and-Coins — the combinatorial two-player game generalizing
the dual of Dots-and-Boxes — is strongly PSPACE-complete on multigraphs. This
result improves the best previous result, NP-hardness, argued in Winning Ways.
Our result also applies to the Nimstring variant, where the winner is determined by
normal play; indeed, one step in our reduction is the standard reduction (also from
Winning Ways) from Nimstring to Strings-and-Coins.

– In memoriam Elwyn Berlekamp (1940–2019),

John H. Conway (1937–2020),

and Richard K. Guy (1916–2020)

1. Introduction

Elwyn Berlekamp loved Dots and Boxes. He wrote an entire book, The Dots and

Boxes Game: Sophisticated Child’s Play [3] devoted to explaining the mathematical

underpinnings of the game, after they were first revealed in Berlekamp, Conway,

and Guy’s classic book Winning Ways exploring many such combinatorial games

[2, ch. 16]. At book signings for both books,1 and after talks he gave about these

topics [1], Elwyn routinely played simultaneous exhibitions of Dots and Boxes —

him against dozens of players, in the style of Chess masters.

As many children will tell you, Dots-and-Boxes is a simple pencil-and-paper game

taking place on an m× n grid of dots. Two players alternate drawing edges of the

1The first author had the honor of playing such a game against Elwyn at a book signing on
April 13, 2004, at Quantum Books in Cambridge, Massachusetts. Elwyn won.

INTEGERS: 21B (2021) 2

grid, with one special rule: when a player completes the fourth edge of one or two

1×1 boxes, that player gains one or two points, respectively, and must immediately

draw another edge (a “free move” that is often a blessing and a curse). The game

ends when all grid edges have been drawn; then the player with the most points

wins. (Draws are possible on boards with an even number of squares.)

An equivalent way to think about Dots-and-Boxes is in the dual of the grid

graph. Think of each 1 × 1 square as a dual vertex or coin worth one point,

“tied down” by four incident strings or dual edges. Interior strings connect two

coins, while boundary strings connect a coin to the ground (not worth any points).

(Equivalently, boundary edges have only one endpoint.) Now players alternate

cutting (removing) strings, and when a player frees one or two coins (removing

the last strings attached to them), that player gains the corresponding number of

points and must move again. The game ends when all strings have been cut; then

the player with the most points wins.

Strings-and-Coins [2, pp. 550–551], [3, ch. 2] is the generalization of this game to

arbitrary graphs, where vertices represent coins and edges represent strings which

can connect up to two coins (the other endpoints being considered “ground”). Nim-

string [2, pp. 552–554], [3, ch. 6] is the closely related game where we modify the

win condition to normal play : the first player unable to move loses. Nimstring is

known to be a special case of Strings-and-Coins, a fact we use in our results; see

Lemma 1 below.

Related work. Dots-and-Boxes, Strings-and-Coins, and Nimstring are surpris-

ingly intricate games with intricate strategy [2, 3]. On the mathematical side, even

1× n Dots-and-Boxes is largely unsolved [8, 5].

To formalize this difficulty, Winning Ways [2] argued in 1984 that deciding the

winner of a Strings-and-Coins position is NP-hard by a reduction from vertex-

disjoint cycle packing. Around 2000, Eppstein [7] pointed out that this reduction

can be adapted to apply to Dots-and-Boxes as well; see [6].

This work left some natural open problems, first explicitly posed in 2001 [6]: are

Dots-and-Boxes, Strings-and-Coins, and Nimstring NP-complete or do they extend

into a harder complexity class? Being bounded two-player games, all three naturally

lie within PSPACE; are they PSPACE-complete?

Results. In this paper, we settle two out of three of these 20-year-old open prob-

lems by proving that Strings-and-Coins and Nimstring are PSPACE-complete. This

is the first improvement beyond NP-hardness since the original Winning Ways re-

sult from 1984. Our reductions from Game SAT are relatively simple but subtle.

Along the way, we prove PSPACE-completeness of a new Strings-and-Coins variant

called Coins-Are-Lava, where the first person to free a coin loses.

Our constructed game positions rely on multigraphs with multiple copies of some

INTEGERS: 21B (2021) 3

edges/strings, a feature not present in instances corresponding to Dots-and-Boxes.

Thus our results do not apply to Dots-and-Boxes. A generalization of Dots-and-

Boxes that we might be able to target is weighted Dots-and-Boxes, where each grid

edge has a specified number of times it must be drawn before it is “complete” and

thus can form the boundary of a 1 × 1 box. This game corresponds to Strings-

and-Coins on planar multigraphs whose vertices can be embedded at grid vertices

such that edges have unit length. However, our multigraphs are neither planar nor

maximum-degree-4, so they cannot be drawn on a square grid, so our approach does

not resolve the complexity of weighted Dots-and-Boxes.

In independent work, Buchin, Hagedoorn, Kostitsyna, and van Mulken [4]

proved that (unweighted) Dots-and-Boxes is PSPACE-complete by a reduction

from Gpos(POS CNF) [9] (roughly the same problem that we reduce from,

Gpos(POS DNF) [9]). They construct an instance where, after variable setting,

one player’s winning strategy is to select a maximum set of disjoint cycles. This

approach works well for Dots-and-Boxes (and thus Strings-and-Coins) where the

goal is to maximize score, but not for Nimstring like our approach does. Thus the

two approaches are incomparable.

2. Nimstring

We begin with more formal definitions of the games of interest, and some known

lemmas about them:

Definition 1 (Coin–String Multigraph). A multigraph G consists of vertices, also

called coins, and edges, also called strings, where each edge e ∈ E is a set of at most

two vertices in V . Notably, we allow edges incident to zero or one vertices in V ; we

view the missing endpoints of such an edge as being connected to the ground.

Definition 2 (Strings-And-Coins(G) and Nimstring(G)). Games Strings-

And-Coins(G) and Nimstring(G) are played on a multigraph G by two players

who alternate removing edges and, if a player frees one or two coins by remov-

ing their last incident edges, then that player gains the corresponding number of

points (one or two) and must move again. The games end when there are no more

strings; in Strings-And-Coins(G), the player with the most points wins, while in

Nimstring(G), the first player unable to move loses.

Next we prove the standard result that Nimstring is equivalent to a special case

of Strings-and-Coins, and thus hardness of the former implies hardness of the latter:

Lemma 1 ([2, p. 552]). For every graph G, there exists an efficiently computable

graph H such that the winner of Nimstring(G) is the same as the winner of

Strings-And-Coins(H).

INTEGERS: 21B (2021) 4

Proof. Let H = G ∪ Cn where Cn is a cycle on n > |V (G)| vertices. If a player

cuts any string in this cycle, then the opponent can claim n > |V (H)|
2 coins in a

single turn, winning the game. Therefore the players will try to only cut edges in

G, and the player who cannot do so loses. This goal is equivalent to just playing

Nimstring(G).

A final known result we will need is about “loony” positions in Nimstring:

Lemma 2 ([2, p. 557]). If G has a degree-2 vertex adjacent to exactly one degree-1

vertex, then the first player can always win in Nimstring(G). Such positions are

known as loony positions.

G′

a

b

(a) String b connects to a vertex of degree at
least 2.

G′

a

b

(b) String b connects to the ground.

Figure 1: Two loony positions

Proof. Let a be the string between the two coins, b be the other string connected

to a degree-2 coin, and G′ be the rest of the graph (Figure 1). One of the players

has a winning strategy in Nimstring(G′).

• If the first player has a winning strategy in Nimstring(G′), then we cut

strings a and b in this order. We get exactly G′ and it is still our turn. By

assumption we can win.

• If the second player has a winning strategy in Nimstring(G′), then we just cut

string b. We get graph G′ (plus an extra edge that does not affect the game),

and it is our opponent’s turn. By assumption opponent cannot win.

INTEGERS: 21B (2021) 5

3. Coins-are-Lava

We introduce a variant game played on strings and coins that we find easier to

analyze, called Coins-are-Lava:2

Definition 3 (Coins-Are-Lava(G)). Game Coins-Are-Lava(G) is played on a

multigraph G by two players who alternate removing edges and, if a player frees a

coin, that player loses. Equivalently, players are forbidden from removing an edge

that would free a coin, and the winner is determined according to normal play.

Now we show that Coins-are-Lava is a special case of Nimstring. Thus, its

hardness will imply the hardness of both Nimstring and (by Lemma 1) Strings-and-

Coins.

Lemma 3. For every graph G, there exists an efficiently computable graph H

such that the winner of Coins-Are-Lava(G) is the same as the winner of

Nimstring(H).

G′

(a)

G′

(b)

G′

(c)

G′

(d)

G′

(e)

G′

(f)

Figure 2: (a) The graph H; (b) freeing a coin in G results in a loony position; (c–f)
cutting a string outside G results in a loony position.

Proof. Let H be a graph obtained from G by connecting every coin to the ground

with a long chain (length ≥ 5); see Figure 2a.

If a player cuts a string in one of these chains, or cuts all strings in G attached

to the same coin, this creates a loony position and ends their turn; see Figure 2.

By Lemma 2, their opponent can then win.

2For a “practical” motivation for this game, consider the 1933 Double Eagle U.S. coin: until
2002, possession of this coin could result in imprisonment [10].

INTEGERS: 21B (2021) 6

Therefore the players will try to avoid cutting strings outside G or freeing a coin

in G. The first player to fail to do so loses. This goal is equivalent to Coins-Are-

Lava(G).

4. PSPACE-Hardness

It remains to prove that Coins-Are-Lava(G) is PSPACE-complete. Our reduction

is from the following known PSPACE-complete problem.

Definition 4 (Game-SAT(F)). Given a positive DNF formula F (an or of ands

of variables without negation), Game-SAT(F) is the following game played by two

players, Trudy and Fallon. Initially each variable is unset. In each turn, the player

may set a variable to true or false, or the player may skip their turn (do nothing).

The game ends when all variables are set; then Trudy wins if formula F is true,

while Fallon wins if formula F is false.

We allow players to skip turns and to set variables to the “wrong” value (Trudy

to false or Fallon to true). The player with a winning strategy can always avoid

such moves, however, replacing them with dominating “good” moves that do not

skip and play the “right” value (Trudy to true or Fallon to false), as such moves

never hurt the winning player’s final goal.

Schaefer [9] proved that this game is PSPACE-complete, under the name

Gpos(POS DNF).

Theorem 1. Coins-are-Lava is PSPACE-complete.

Proof. Let F be a positive DNF formula with n variables, m clauses, and ki occur-

rences of each variable xi. Without loss of generality, every clause contains at least

2 variables and every variable appears in at least 1 clause. Fix a sufficiently large

number N � m2n2.

First we define several useful gadgets, which will be connected together via shared

coins (merging the output coin of one gadget with the input coin of another gadget).

Many of these gadgets are parametrized by an integer level. Intuitively, doing

anything to a level-(` + 1) gadget requires an order of magnitude more time than

doing anything to a level-` gadget. This way we can make sure that players interact

with gadgets in the right order. However since each level-` gadget uses Nθ(`) strings,

we can only use a constant number of levels.

A rope (Figure 3) is a collection of strings that share both endpoints. The number

of strings in a rope is called its width. We say that a rope has been cut when all

of its strings have been cut. When the game ends, every rope has either been cut

completely, or it has only 1 string remaining. (Otherwise, a string in the rope can

always be safely cut without freeing any coin.)

INTEGERS: 21B (2021) 7

5 :=

Figure 3: A width-5 rope

xi :=

out

(a) Initial state (unset)

out out

(b) Variable set to true and
false respectively

Figure 4: Variable gadget

` :=

out

in

N2`−1

N2`

(a) Initial state

out

in

out

in

(b) Disabled and activated
wires

Figure 5: Wire gadget

` :=

in

N2`−1

Figure 6: Clause gadget

A variable gadget (Figure 4) consists of a chain of two strings, where the bottom

string is connected to the ground and the top string is connected to an output coin.

We say that is set to false if the bottom string has been cut, set to true if the top

string has been cut, and unset if neither string has been cut. A variable implicitly

has level 0.

A level-` wire gadget (Figure 5) consists of a chain of two ropes, a width-N2`−1

bottom rope connected to an input coin and a width-N2` top rope connected to an

output coin. We say that it is disabled if the input rope has been cut, activated if

the top rope has been cut. The HP (Hit Points) of the wire is the number of strings

remaining in the bottom rope. Note that activating a wire takes a factor of N more

moves than disabling it. This means that, if one player is racing to activate a wire

and the other is racing to disable it, then the disabler will win the race. Intuitively,

the only case where a wire will get activated is if disabling the wire would free a

coin.

A level-` clause gadget (Figure 6) consists of a single width-N2`−1 rope connected

to an input coin and the ground. We say that it is disabled if the rope has been

cut. The HP of the clause is the number of strings remaining in the rope.

The winner is determined solely by the parity of the number of removed strings.

INTEGERS: 21B (2021) 8

We can easily flip this parity, for example by adding an extra ground-to-ground

string. So without loss of generality, Fallon wins if (but not only if) every variable

and wire has one string remaining and all m clauses have no strings. Then Trudy

wins if every variable and wire has one string remaining, m − 1 clauses have no

strings, and the final clause has one string. In fact, we will show that the game has

to end in one of these two specific ways.

Let F ′ be a new formula with the following clauses:

• all clauses from F , which we call real clauses;

• for every variable, a singleton clause containing just that variable;

and

• one additional empty clause that contains no variables and is always

satisfied.

We construct a multigraph G by connecting the gadgets as follows; refer to

Figure 7:

• a variable gadget for each variable;

• a clause gadget for each clause;

• a level-1 wire from each variable xi to each of ki real clauses that

contain that variable;

• ki−1 level-1 wires from each variable to the corresponding singleton

clause;

• a single vertex called the root coin;

• a level-2 wire from the root coin to every real clause and every

singleton clause; and

• n + m− 1 level-2 wires from the root coin to the empty clause.

First we describe how typical gameplay in G should look (without proofs) to

give some intuition for why this construction makes sense, and then we prove that

it works more formally. Typical gameplay divides into four sequential phases:

1. First Trudy and Fallon set variable gadgets to true and false respectively.

2. Then the players disable all wires from false variables, and disable all but one

wire from each true variable (disabling all wires from a true variable would free

a coin). Then they activate the level-1 wires that have not been disabled (one

from each true variable). Note that almost half the wires from each variable

go to singleton clauses. If all real clauses are false, then those wires form the

majority, and Fallon can ensure that one of them gets activated. But if even

one real clause is true, the wires to true clauses (real or singleton) now form

a majority, and Trudy can ensure that one of them gets activated.

INTEGERS: 21B (2021) 9

3

empty

3 x1 3

x1 ∧ x2 ∧ x3

3 x2 3 x2∧x3 3 x3 3 x3∧x4 3 x4

x1 x2 x3 x4

2 2 2 22
2

2

2 2 2 2 2 2

1 11 1
1

1 1
1

1 1 1

Figure 7: Graph G for formula (x1 ∧ x2 ∧ x3) ∨ (x2 ∧ x3) ∨ (x3 ∧ x4). Clauses are
labeled and colored according to whether they are empty (“empty” and gray, at the
top), singleton (“xi” and green), or real (“xi ∧ xj · · · ” and orange). Dotted lines
indicate that there are supposed to be ki − 1 wires there, but ki − 1 = 0.

3. Then the players disable all but one level-2 wire and activate the remaining

level-2 wire (disabling all of them would free a coin). Almost half of these

wires go to the empty clause. If all real clauses are false, then they form

a majority, and Fallon can ensure that one of them gets activated. But if

even one real clause is true, then it together with the empty clause forms a

majority, and Trudy can ensure that one of them gets activated.

4. Finally, the players disable the clause gadgets. A clause can be disabled unless

all wires pointing at it got activated (in that case, disabling it would free a

coin). If the formula is not satisfied, then all clauses get disabled and Fallon

wins. If the formula is satisfied, then exactly one clause remains and Trudy

wins.

INTEGERS: 21B (2021) 10

We want to show that the winner of Coins-Are-Lava(G) is the same as the

winner of Game-SAT(F). We do a case split on the winner of Game-SAT(F),

and in each case provide a winning Coins-Are-Lava(G) strategy for that player.

If Fallon can win Game-SAT(F), then they can win Coins-Are-Lava(G) us-

ing the following strategy (where numbers match the phases of intended gameplay

above):

1. There is a natural mapping f from states of Coins-Are-Lava(G) to states

of Game-SAT(F): a variable xi in Game-SAT(F) is set to true if the corre-

sponding variable gadget is set to true, set to false if the gadget is set to false,

and unset if the gadget is unset. Every move in Coins-Are-Lava(G) maps

to a valid move in Game-SAT(F), where moves outside of variable gadgets

map to skip moves. Also, if we played Coins-Are-Lava(G) for less than

2n moves, then we can perform any move that is valid in the corresponding

Game-SAT(F) state. This does not free a coin, because the relevant coin

has degree Ω(N)� 2n. So we can transfer the strategy from Game-SAT(F)

to Coins-Are-Lava(G): for every opponent’s move in Coins-Are-Lava(G),

map it to Game-SAT(F), find the best response, and map it back to Coins-

Are-Lava(G). We remain in this phase until we have set all variable gadgets

to some assignment that does not satisfy F , as guaranteed by the winning

strategy in Game-SAT(F).

2. Call a level-1 wire from a true variable xi good if it points at a real clause and

bad if it points at a singleton clause. Wires from false variables are neutral.

Each true variable xi has ki good wires and ki − 1 bad ones. For each true

variable xi, the total HP of bad wires is still at most (ki− 1)N1 and total HP

of all good wires is at least kiN
1 − O(n) > (ki − 1)N1 (the opponent could

cut up to O(n) strings here while we were setting variables).

(a) Disable all bad wires, Specifically, if the opponent reduced HP of a good

wire connected to some true variable xi, we respond by reducing HP of

a bad wire connected to the same xi; if the opponent did something else

or xi has no bad wires left, we reduce HP of a bad wire connected an

arbitrary variable xj . This maintains the invariant that for each true

variable xi, HP of xi’s good wires is higher than HP of xi’s bad wires.

The opponent cannot activate any bad wires because that would take

Θ(N2)�
∑
i kiN

1 moves.

(b) Disable good and neutral level-1 wires until there is only one good wire

remaining per true variable. Once again, the opponent cannot activate

these wires because that would take too many moves.

(c) Activate the remaining good wires. Opponent cannot disable these wires,

because that would free a coin.

INTEGERS: 21B (2021) 11

(d) We have activated exactly one good wire per true variable. There are no

activated level-1 wires pointing at satisfied clauses, because real clauses

are unsatisfied and singleton clauses are bad.

3. Call a level-2 wire good if it points to a real or singleton clause and bad if

it points to the empty clause. The total HP of the n + m − 1 bad wires is

at most (n + m − 1)N3 and the total HP of the n + m good wires is still

(after O(nmN2) moves spent in the first two stages) at least (n + m)N3 −
O(nmN2) > (n + m− 1)N3.

(a) Disable all bad wires. The opponent cannot disable all good wires before

we disable the bad ones because good wires have more HP.

(b) Disable all but one good wire. Because all disabling and activating steps

done so far are for wires of HP Θ(N3), and activating a level-2 wire

requires Θ(N4) moves, the opponent cannot afford to activate any of

these good wires before we disable them.

(c) Activate the last good wire. The opponent cannot disable it because that

would free the root coin.

4. Disable all clause gadgets. This will not free a coin, because every clause

has at least one disabled wire: real clauses are unsatisfied so there is a false

variable whose adjacent wire we disabled in Step 2(b); singleton clauses have

bad level-1 wires that we disabled in Step 2(a); and the empty clause has a

bad level-2 wire that we disabled in Step 3(a). We win because there are no

clause gadgets remaining.

If Trudy can win Game-SAT(F), then they can win Coins-Are-Lava(G) us-

ing the following strategy (where numbers match the phases of intended gameplay

above):

1. Set the variable gadgets to some assignment that satisfies F . Let C ∈ F be a

satisfied clause.

2. Call a level-1 wire from a true variable xi ∈ C good if it points at a singleton

clause or C and bad otherwise. Wires from variables not in C are neutral.

Each variable xi ∈ C has ki− 1 bad wires (ki to real clauses, but one of them

is C) and ki good ones (ki − 1 to the singleton clause and one to C). Disable

all bad wires, then disable all neutral wires and all-but-one good wire per

variable in C, and then activate the remaining good wires. Each activated

wire points to a singleton clause or to C. Then either all of them point to C,

or at least one of them points to a singleton clause. Either way, we have some

satisfied real or singleton clause C ′ with only activated level-1 wires.

INTEGERS: 21B (2021) 12

3. Call a level-2 wire good if it points to C ′ or to the empty clause. There are

n+m− 1 bad wires (n+m to real clauses, but one of them is C ′) and n+m

bad ones (n + m − 1 to the empty clause plus one to C ′). Disable all bad

wires and activate exactly one good wire. Let C ′′ be the clause pointed by

the activated wire (either C ′ or the empty clause).

4. Disable all clause gadgets other than C ′′. This will not free a coin, because

every clause other than C ′′ has a disabled level-2 wire. But C ′′ cannot be

disabled, because all of the wires pointing at it have been activated. We win

because there is exactly one clause gadget remaining.

Corollary 1. Nimstring is PSPACE-complete.

Proof. This follows immediately from Theorem 1 and Lemma 3.

Corollary 2. Strings-and-Coins is PSPACE-complete.

Proof. This follows immediately from Corollary 1 and Lemma 1.

5. Open Problems

We have proved PSPACE-completeness of Strings-and-Coins and Nimstring on

multigraphs, while Buchin et al. [4] proved PSPACE-completeness of Dots-and-

Boxes, and thus Strings-and-Coins on grid graphs. The main open problem is

whether Dots-and-Boxes with normal play instead of scoring, i.e., Nimstring on

grid graphs, is also PSPACE-complete. Toward this goal, we could also aim to

prove PSPACE-completeness of Nimstring on simple graphs (with only one copy of

each edge/string) or planar graphs.

Acknowledgements. This work was initiated during an MIT class on Algorithmic

Lower Bounds: Fun with Hardness Proofs (6.892, Spring 2019). We thank the other

participants of the class for providing an inspiring research environment.

References

[1] American Mathematical Society, Elwyn Berlekamp Gives Arnold Ross Lecture, http://www.
ams.org/programs/students/arl2004, 2003.

[2] E. Berlekamp, J. Conway, and R. Guy, Winning Ways for Your Mathematical Plays, Volume
3, A K Peters, Wellesley MA, 2003.

[3] E. Berlekamp, The Dots and Boxes Game: Sophisticated Child’s Play, A K Peters, Mas-
sachusetts, 2000.

http://www.ams.org/programs/students/arl2004
http://www.ams.org/programs/students/arl2004

INTEGERS: 21B (2021) 13

[4] K. Buchin, M. Hagedoorn, I. Kostitsyna, and M. van Mulken, Dots & boxes is PSPACE-
complete, https://arXiv.org/abs/2105.02837, 2021.

[5] S. Collette, E. Demaine, M. Demaine, and S. Langerman, Narrow misère dots-and-boxes,
Games of No Chance 4, Cambridge University Press, 2015.

[6] E. Demaine and R. Hearn, Playing games with algorithms: algorithmic combinatorial game
theory, Games of No Chance 3, Cambridge University Press, 2009.

[7] D. Eppstein, Computational Complexity of Games and Puzzles, http://www.ics.uci.edu/
∼eppstein/cgt/hard.html.

[8] R. Guy and R. Nowakowski, Unsolved problems in combinatorial games, in More Games of
No Chance, Cambridge University Press, 2002.

[9] T. Schaefer, On the complexity of some two-person perfect-information games, J. Comput.
System Sci. 16(1978), 185–225.

[10] United States Mint, The United States government to sell the famed 1933 double eagle, the
most valuable gold coin in the world, https://www.usmint.gov/news/press-releases/20020207-
the-united-states-government-to-sell-the-famed-1933-double-eagle-the-most-valuable-gold-
coin-in-the-world, 2002.

https://arXiv.org/abs/2105.02837
http://www.ics.uci.edu/~eppstein/cgt/hard.html
http://www.ics.uci.edu/~eppstein/cgt/hard.html
https://www.usmint.gov/news/press-releases/20020207-the-united-states-government-to-sell-the-famed-1933-double-eagle-the-most-valuable-gold-coin-in-the-world
https://www.usmint.gov/news/press-releases/20020207-the-united-states-government-to-sell-the-famed-1933-double-eagle-the-most-valuable-gold-coin-in-the-world
https://www.usmint.gov/news/press-releases/20020207-the-united-states-government-to-sell-the-famed-1933-double-eagle-the-most-valuable-gold-coin-in-the-world

	Introduction
	Nimstring
	Coins-are-Lava
	PSPACE-Hardness
	Open Problems

