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Abstract

In this paper a set of elliptic curves E with explicit elements of order 3 in their
Tate-Shafarevich group is constructed. First, the theory of descent by 3-isogeny
is reviewed, including explicit equations for homogeneous spaces representing the
elements in the associated Selmer group. For the main result, elliptic curves ad-
mitting a rational 2-isogeny as well as a rational 3-isogeny are constructed. Using
elementary 2-isogeny descent, it is shown that our curves have rank zero. A result
of Cassels then shows that the Selmer group of the 3-isogeny is non-trivial. As a
consequence one obtains in a very simple way explicit examples of plane cubics over
Q that have a point everywhere locally, but not globally.

1. Introduction

In this article, we consider elliptic curves defined over Q that admit a rational

isogeny of degree 3. As is well known (see, for instance, [20, Theorem X.4.2]) such

an isogeny ψ : E → Ē gives rise to an exact sequence of F3-vector spaces

0→ Ē(Q)/ψ(E(Q))→ Sel(ψ)(E/Q)→X(E/Q)[ψ]→ 0.

The elements of Sel(ψ)(E/Q) are represented by genus-1 curves called homogeneous

spaces. As a preparation for our main result, section 2 presents explicit equations

for these curves. The fact that they come from the Selmer group means they have

points everywhere locally. A global point on such a curve gives rise to a point

on Ē(Q)/ψ(E(Q)). Section 2 is the “Descent via Three-Isogeny” analogue of the

classical “Descent via Two-Isogeny” described in [20, Proposition X.4.9]. Although

most of this is known to experts and parts of it can be found in the literature ([1],

[7, Section 8.4], [8], [12], [23]), we are convinced our short and complete exposition

is useful.
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In section 3 the main result of the paper is presented: it combines and compares

the two simplest types of descent, namely a 2-isogeny descent and a 3-isogeny de-

scent. We construct an explicit set of elliptic curves defined over Q (and admitting

both a rational 2-isogeny and a rational 3-isogeny) with elements of order 3 in their

Tate-Shafarevich group. Concretely, we prove the following theorem.

Theorem 1. Let h be a positive integer such that h ≡ 3 mod 8 and moreover h,

h− 2, h− 6 and h− 8 are prime numbers. Define

Eh : y2 = x3 − 216(x− h(h− 6)2)2.

Then Eh has the following properties:

1. Eh has a rational 2-isogeny φ and a rational 3-isogeny ψ (see section 3.1).

2. Eh,tors(Q) ∼= Z/2Z (see section 3.1).

3. Using 2-isogeny descent one concludes that Eh(Q) has rank zero (see sec-

tion 3.2).

4. #Sel(ψ)(Eh/Q) = 9; this gives rise to 9 pairwise distinct elements in the group

X(Eh/Q)[3] (see section 3.3).

By section 2, this yields explicit cubics violating the Hasse principle. For example

Ch : 3w2z + 2z3 + w3 + 6wz2 + 2(h− 2)2(h− 8) = 12z2 − 6w2

has a point over every completion of Q, but not over Q itself.

Schinzel’s hypothesis H ([17]) predicts as a specific case that

S = {h ∈ Z : h ≡ 3 mod 8 and h, h− 2, h− 6, h− 8 prime}

is infinite and hence that this set yields infinitely many examples as above.

An infinite family of genus 1 curves violating the Hasse principle and related

to X[3] is already given in [16], using the Brauer-Manin obstruction to show the

non-existence of rational points (the earliest examples coming from X[3] seem to be

those from Selmer’s paper [19]). In [3] it is shown that in fact a positive proportion

of plane cubics fail the Hasse principle. Furthermore, it is a classic result ([5], [1],

[13]) that the 3-torsion in Tate-Shafarevich groups of elliptic curves over Q gets

arbitrarily large. In contrast with our result, apart from [16] and [3] the papers

cited here discuss elliptic curves admitting a rational point of order 3. The method

of comparing 2- and 3-isogeny descents we used is very natural, yet we are not aware

of an earlier text presenting examples in this way.
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2. Homogeneous Spaces Corresponding to a Rational 3-Isogeny

In order to construct explicit counterexamples to the Hasse principle in section 3,

this section reviews via Galois cohomology the descent coming from a rational 3-

isogeny ψ. This builds up to Theorem 2, giving explicit equations for the homoge-

neous spaces in WC(E/Q) coming from ψ. As already stated, our aim is to provide

a description for 3-isogeny descent comparable to what is done for 2-isogenies in

[20, Proposition X.4.9].

2.1. Elliptic Curves with a Rational 3-Isogeny

Let E be an elliptic curve over Q with a Galois invariant subgroup T of size 3.

The quotient map ψ : E → E/T =: Ē is a rational 3-isogeny. By, for example, [20,

Proposition III.4.12], every rational 3-isogeny between elliptic curves is obtained

in this way. Following [23], one distinguishes the cases jE = 0 and jE 6= 0 to obtain

explicit descriptions for these curves and maps. The nice discussion of 3-isogeny

descent in [7, Section 8.4] avoids this distinction by using equations y2 = x3 +

d(ax+ b)2 (but different from our text, it does not discuss the Galois cohomological

derivation of various maps, nor the form of various homogeneous spaces).

In the case jE = 0, one gives E by

E : y2 = x3 +A

(here T is generated by a point with x = 0), and the isogeny ψ up to possibly

multiplication by −1 is

ψ : (x, y) 7→
(
y2 + 3A

x2
,
y(x3 − 8A)

x3

)
,

Ē : η2 = ξ3 − 27A.

For brevity, we introduce the notation Ā := −27A.

In the case jE 6= 0, one gives E by

E : y2 = x3 +A(x−B)2.

Again T is generated by a point with x = 0, and (up to ±1) here ψ is given by

ψ : (x, y) 7→
(

3(6y2 + 6AB2 − 3x3 − 2Ax2)

x2
,

27y(8AB2 − x3 − 4ABx)

x3

)
, (1)

Ē : η2 = ξ3 − 27A(ξ − 4A− 27B)2.

For brevity, we introduce B̄ := 4A+ 27B.

By ψ̂ : Ē → E we will denote the dual isogeny of ψ, such that ψ̂ ◦ ψ = [3].
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2.2. Galois Cohomology

For any field K, let GK = Gal(Ksep/K) be its absolute Galois group. The isogeny

ψ described above yields an exact sequence

0 E[ψ] E Ē 0
ψ

(2)

of GQ-modules. Taking GQ invariants yields a long sequence of Galois cohomology

0 E(Q)[ψ] E(Q) Ē(Q)

H1(GQ, E[ψ]) H1(GQ, E) H1(GQ, Ē),

ψ

δ

ψ∗

which is shortened to

0→ Ē(Q)/ψ(E(Q))
δ−→ H1(GQ, E[ψ]) −→ H1(GQ, E)[ψ∗]→ 0. (3)

Recall that a homogeneous space (also called a torsor) of E/Q is a smooth curve

C/Q with a simply transitive action E×C → C. By [20, Theorem X.3.6], elements

of H1(GQ, E) are in bijection with Q-isomorphism classes of homogeneous spaces.

Hence the set of Q-isomorphism classes of homogenous spaces inherits the structure

of a group, called the Weil-Châtelet group WC(E/Q) ∼= H1(GQ, E). In this section

we explicitly describe the homogeneous spaces coming from a certain subgroup of

H1(GQ, E).
Localizing (3) gives the commutative diagram with exact rows

Ē(Q)/ψ(E(Q)) H1(GQ, E[ψ]) WC(E/Q)[ψ]

∏
v∈MQ

Ē(Qv)/ψ(E(Qv))
∏

v∈MQ

H1(Gal(Q̄v/Qv), E[ψ])
∏

v∈MQ

WC(E/Qv)[ψ].

δ

δ

(4)

This allows one to define Selmer groups and Tate-Shafarevich groups, recalled

here.

Definition 1. The ψ-Selmer group of E over Q, denoted Sel(ψ)(E/Q), is defined

as the kernel of the composite map H1(GQ, E[ψ]) →
∏
v∈MQ

WC(E/Qv)[ψ] in the

diagram (4).

Definition 2. The Tate-Shafarevich group of E over Q, denoted X(E/Q), is the

kernel of the localization map WC(E/Q)→
∏
v∈MQ

WC(E/Qv).

From (4) one infers the exact sequence

0→ Ē(Q)/ψ(E(Q))→ Sel(ψ)(E/Q)→X(E/Q)[ψ]→ 0.



INTEGERS: 22 (2022) 5

2.3. Explicit Equations for Homogeneous Spaces

Define L := Q[T ]/(T 2 − Ā) and denote τ̄ := T mod (T 2 − Ā) ∈ L. The points in

Ē[ψ̂] have coordinates in any field obtained as the image of L under an algebra

homomorphism.

In case L is a field, one has E[ψ] ∼= µ3 as GL-modules. Since #E[ψ]GL divides 3

and hence is coprime to #Gal(L/Q), all cohomology groups Hk(Gal(L/Q), E[ψ]GL)

are trivial. Therefore (using the inflation - restriction exact sequence, as is done

in [23, Section 4]) the restriction H1(GQ, E[ψ]) → H1(GL, E[ψ])Gal(L/Q) is an iso-

morphism. Combining this with Hilbert’s Theorem 90 and writing Ker(NL/Q) :=

Ker
(
NL/Q : L×/L×

3 → Q×/Q×
3
)

gives

H1(GQ, E[ψ]) ∼= H1(GL, E[ψ])Gal(L/Q) ∼= H1(GL, µ3)Gal(L/Q) ∼= Ker(NL/Q).

Under this sequence of isomorphisms, (3) becomes

0 Ē(Q)/ψ(E(Q)) Ker(NL/Q) WC(E/Q)[ψ] 0.δ (5)

In case L is not a field one has L ∼= Q×Q. Under this identification the norm map

NL/Q : L×/L×
3 → Q×/Q×

3
yields multiplication Q×/Q×

3 ×Q×/Q×
3 → Q×/Q×

3
.

In particular, its kernel Ker(NL/Q) is isomorphic to Q×/Q×
3
. Since in the present

situation E[ψ] ∼= µ3 as GQ-modules, one obtains in an analogous but simpler way

as above again H1(GQ, E[ψ]) ∼= Ker(NL/Q) and therefore also the sequence (5).

The following lemma describes the connecting homomorphism δ in terms of the

equations presented in Section 2.1.

Lemma 1. Let E be given by y2 = x3 +A. The map δ : Ē(Q)/ψ(E(Q))→ L×/L×
3

is given by

δ : P + ψ(E(Q)) 7→


1 · L×3

if P = O,

(η + τ̄) · L×3
if P = (ξ, η) with ξ 6= 0,

(2A2, 4A)±1 ∈
(
Q×/Q×

3
)⊕2

if P = (0,±
√
Ā).

For E given by y2 = x3 + A(x − B)2, the connecting homomorphism takes the

form

δ : P + ψ(E(Q)) 7→


1 · L×3

if P = O,

(η + (ξ − B̄)τ̄) · L×3
if P = (ξ, η) with ξ 6= 0,

(2B̄2A, 4B̄A2) ∈
(
Q×/Q×

3
)⊕2

if P = (0,±
√
Ā · B̄).

Proof. The map δ : Ē(Q)/ψ(Q)→ H1(GQ, E[ψ]) sends the class of P in the group

Ē(Q)/ψ(E(Q)) to the cocycle σ 7→ Qσ − Q, where ψ(Q) = P . One finishes the

proof by a direct computation using the definition of ψ and Hilbert’s Theorem 90.

See also [20, Exercise 10.1] or [7, §8.4.4].
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In case L is a field, write ML for the set of primes (finite and infinite) of L. Let

S ⊂ML denote a finite set containing all infinite primes of L. We define

L(S, 3) := {t ∈ L×/L×3 : v(t) ≡ 0 mod 3 ∀v ∈ML \ S}

L(S, 3)∗ := {t ∈ L(S, 3) : NL/Q(t) ∈ Q×
3}.

Let SE,ψ ⊂ML denote the set of bad primes of E, together with the primes dividing

3 (which is the degree of ψ), and the infinite primes of L. It is well-known (see, for

instance, [20, Corollary X.4.4]) that im(δ) is contained in L(SE,ψ, 3). This implies

that im(δ) is finite, which is essentially the weak Mordell-Weil theorem. Note that

it is immediate from the equations (without using Galois cohomology) that im(δ)

is contained in the kernel of the norm map.

To adapt the above to the situation where L is not a field (so Ā is a non-

zero square), one considers in that case any of the two projections π : L×/L×
3 →

Q×/Q×
3

and defines, for S ⊂MQ containing the infinite prime of Q, the group

L(S, 3) := {t ∈ L×/L×3 : v(π(t)) ≡ 0 mod 3 ∀v ∈MQ \ S}.

The subgroup L(S, 3)∗ is defined exactly as before. With SE,ψ ⊂ MQ the set of

bad primes for E together with 3 and ∞, again the image of δ is contained in

L(SE,ψ, 3)∗.

Lemma 2. Suppose L is a field and t ∈ L(S, 3)∗. If v ∈ S is a finite place with

the property that v(t) mod 3 6≡ 0, then v is either a split prime of L/Q or a non-

principal ramified prime.

Proof. Suppose v ∈ S corresponds to an inert or a principal ramified prime, which

we write as p = αOL. Then NL/Q(α) ∈ {±p,±p2} for a prime number p. If

v(t) mod 3 6≡ 0, then any τ ∈ L× representing t has a norm containing the prime p

to a power that is not 0 mod 3. This violates the definition of L(S, 3)∗.

We now give explicit equations for the homogeneous space corresponding to such

t.

Theorem 2. Let t ∈ L represent a class in L(SE,ψ, 3)∗ and let s ∈ Q be the unique

rational number with NL/Q(t) = s3. The map L(SE,ψ, 3)∗ → WC(E/Q)[ψ] in (5)

sends t · L×3
to a homogeneous space Ct. An explicit affine equation for Ct in

variables w and z is as follows:

• If E is given by y2 = x3 +A and Ā is a square, then Ct : t
2w3 − 2t

√
Ā = z3.

• If E if given by y2 = x3 +A and Ā is not a square, write t = u+ v
√
Ā. Then

we have

Ct : 3uw2z + Āuz3 + vw3 + 3Ā = 1.



INTEGERS: 22 (2022) 7

• For E : y2 = x3 + A(x − B)2 and Ā a square, we have Ct : t
2w3 − 2t(wz −

B̄)
√
Ā = z3.

• For E : y2 = x3 +A(x−B)2 and Ā not a square, write t = u+ v
√
Ā. Then

Ct : 3uw2z + Āuz3 + vw3 + 3Āvwz2 + B̄ = s(w2 − Āz2).

Proof. Assume that t comes from P = (ξ, η) on Ē(Q)/ψ(E(Q)), so t equals the

image of δ in Lemma 1 up to multiplication by a cube. For every case this yields a

model of Ct.

In the first case, t ∈ im(δ) implies w3t = η+
√
Ā for some w ∈ Q. The condition

P ∈ Ē(Q) yields that (w3t−
√
Ā)2 = η2 = ξ3 + Ā. Setting z = ξ

w gives the equation

of Ct.

The second case is similar, starting from (w + z
√
Ā)3(u + v

√
Ā) = η +

√
Ā.

Comparing coefficients of
√
Ā yields the equation of Ct. Here P is automatically

on the curve by letting ξ3 be the norm of the left-hand side (which is a cube).

For the third case, t ∈ im(δ) implies w3t = η +
√
Ā(ξ − B̄). Just like in the first

case, the condition P ∈ Ē(Q) gives the equation for Ct.

In the fourth case, we have (w+ z
√
Ā)3(u+ v

√
Ā) = η+

√
Ā(ξ− B̄). Comparing

coefficients of
√
Ā yields 3uw2z + Āuz3 + vw3 + 3Āvwz2 + B = ξ. Now, observe

that

ξ3 = NL/Q(η +
√
Ā(ξ − B̄)) = NL/Q((w + z

√
Ā)3(u+ v

√
Ā)) = s3(w2 − Āz2)3.

Substituting ξ = s(w2 − Āz2) gives the equation for Ct.

Remark 1. Theorem 3.1 and Theorem 4.1 of [8] also describe the homogeneous

spaces of a rational 3-isogeny. Like in [7], the slightly different model Ē : y2 = x3 +

D(ax+b)2 is used. Theorem 3.1 treats
√
D ∈ Q, resulting in uX3+

(
1
u

)
Y 3+2bZ3 =

2aXY Z. This is equivalent to our first case (if a = 0) and third case (if a 6= 0), via

the change of variables (X,Y, Z) := (w,−z, 1). Theorem 4.1 of [8] treats the case√
D 6∈ Q, corresponding to the second case (if a = 0) and fourth case (if a 6= 0) in

Theorem 2. Introducing an extra variable for the cube root of NL/Q(t) is avoided

by writing Gal(L/Q) = 〈σ〉 and t = v2σ(v) (which is allowed because t is chosen

up to cubes), such that NL/Q(t) = (vσ(v))3. This yields a different, but equivalent

model of the corresponding homogeneous space.

3. A Set of Explicit Elements of Order 3 in Tate-Shafarevich Groups

In this section we exhibit a set {Eh} of elliptic curves with a rational 2-isogeny φ and

a rational 3-isogeny ψ. By the well-known method of 2-isogeny descent we show that

every Eh has rank zero. Then we show that the Selmer group Sel(ψ)(Eh/Q) must



INTEGERS: 22 (2022) 8

contain at least 9 elements. The non-trivial ones are represented by homogeneous

spaces (in fact plane cubics whose model is given by Theorem 2), that violate the

Hasse principle. We guarantee the existence of elements in the ψ-Selmer group

using the following result of Cassels ([6, Thm. 1.1], [14, Thm. 1], [9, § 7]).

Theorem 3. Let φ : E/Q → E′/Q be a rational isogeny and let φ̂ : E′/Q → E/Q

be its dual. Then the following relation between the corresponding Selmer groups

holds ([6, Theorem 1.1]):

#Sel(φ̂)(E′/Q)

#Sel(φ)(E/Q)
=

#E′(Q)[φ̂]ΩE
∏
p cE,p

#E(Q)[φ]ΩE′
∏
p cE′,p

,

where ΩE :=
∫
E(R)

ωE denotes the real period of E and cp := #E(Qp)/E0(Qp)

denotes the Tamagawa number of E at p.

3.1. The Elliptic Curves Eh

Recall the general form of an elliptic curve with a rational 3-isogeny and non-zero

j-invariant:

E : y2 = x3 +A(x−B)2.

We wish to use descent by 2-isogeny to show that E has rank zero, so we want

to impose on the parameters A and B the condition that E admits a rational 2-

isogeny. This is equivalent to the right-hand side polynomial having a rational root

x = c. This implies A = − c3

(c−B)2 . Multiplying by (c− B)6, rescaling x and y and

introducing h := B yields

E : y2 = x3 − c3(x− h(h− c)2)2.

We now make a strategic choice of c; we will later do arithmetic in Q(Ē[ψ̂]) =

Q(
√

3c), so we pick c = 6 to land in the convenient number field Q(
√

2). This gives

the model of the curve we will use:

Eh : y2 = x3 − 216(x− h(h− 6)2)2. (6)

We denote the rational 2-isogeny by φ : Eh → E′h, and the rational 3-isogeny by

ψ : Eh → Ēh.

Remark 2. Viewing h as a variable, one can view Eh/Q(h) as the generic fiber of

an elliptic surface E → P1 defined over Q. This turns out to be a quadratic twist of

Beauville’s rational modular elliptic surface associated to the congruence subgroup

Γ0(6). Indeed, Beauville in [2] describes this surface as the pencil of plane cubics

given by

(x+ y)(x+ z)(y + z) + txyz = 0.
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Using for instance the basepoint/section (0 : 0 : 1) on the curves in this pencil, one

readily obtains the Weierstrass equation

y2 = x3 + ((t+ 2)x+ 4t)2

for the latter surface. The Möbius transformation h 7→ t = −2h/(h− 6) transforms

this, after scaling, into

y2 = x3 + (6x+ h(h− 6)2)2

which is the quadratic twist over Q(h)(
√
−6)/Q(h) of Eh. As a consequence (see

also [25, § 2.3.2] and No. 66 in the table of [15]), as an elliptic curve over the function

field Q(h) one finds Eh(Q(h)) ∼= Z/2Z and Eh(Q(h)(
√
−6)) ∼= Z/6Z. In [18, p. 167

Table 8.3] another equation defining Beauville’s example is presented.

We now consider values h ∈ Z and take E = Eh/Q. In order to maintain some

control over the local computations, we minimize the number of bad primes of E;

we make sure that the discriminant

∆E = −21039h3(h− 2)2(h− 6)6(h− 8)

has only 6 bad primes, by demanding that h, h − 2, h − 6 and h − 8 are prime

numbers. Note that this implies h ≡ 4 mod 15.

From reduction modulo 5, which we have rigged to be a good prime, and the fact

that −6 and 2 are not squares (meaning the 3-torsion is not rational), it follows

that the rational torsion subgroups of Eh, E′h and Ēh are isomorphic to Z/2Z, as

claimed in Theorem 1.

In view of Theorem 3, we wish to manipulate the Tamagawa numbers such that∏
p cE,p <

∏
p cĒ,p and hence Sel(ψ)(E/Q) grows. Using the algorithm in [22] one

obtains the results described in Table 1.

h ≡ 1 mod 8 h ≡ 3 mod 8 h ≡ 5 mod 8 h ≡ 7 mod 8
p = 2 Additive Additive Additive Additive
p = 3 Additive Additive Additive Additive
p = h− 8 Split Non-split Non-split Split
p = h− 6 Non-split Non-split Split Split
p = h− 2 Split Split Non-split Non-split
p = h Split Non-split Non-split Split∏
p cEh,p 48 16 48 144∏
p cE′h,p 48 16 48 144∏
p cĒh,p 144 48 16 48

Table 1: A table representing the local properties of Eh. ‘Split’ and ‘non-split’ refer
to multiplicative reduction.

The cases h ≡ 1, 3 mod 8 are favorable in view of Theorem 3. In order to keep

the local computations required for descent by 2-isogeny manageable, it helps to
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have small Tamagawa numbers, so we pick the case h ≡ 3 mod 8. Combining this

with the earlier congruence relation h ≡ 4 mod 15 yields h ≡ 19 mod 120, which we

assume from here on out.

3.2. Descent by 2-Isogeny

Let Eh be given by (6) with h ≡ 3 mod 8 and h, h − 2, h − 6 and h − 8 primes.

In order to apply the classical theory of 2-isogeny descent, we move the 2-torsion

point to (0, 0). This yields the models

Eh : y2 = x3 +
(
18(h− 6)2 − 216

)
x2 + 108(h− 2)(h− 6)3x (7)

E′h : Y 2 = X3 +
(
432− 36(h− 6)2

)
X2 − 108h3(h− 8)X. (8)

One verifies that both these models are globally minimal. The algorithm in [22] is

needed to show that this model of E′h is minimal at 2 (we have ord2(∆E′h
) = 14),

while in the other instances the computation of the discriminant suffices.

Lemma 3. E′h(Q)/φ(Eh(Q)) = {O, (0, 0)}.

Proof. Following the classical descent by 2-isogeny in [20, Proposition X.4.9], there

is an injective homomorphism

α : E′h(Q)/φ(E(Q))→ Q×/Q×
2

(X,Y ) 7→ X ·Q×2
(for X 6= 0),

(0, 0) 7→ −108h3(h− 8) ·Q×2
= −3h(h− 8) ·Q×2

.

Hence

〈−3h(h− 8)〉 ⊆ im(α) ⊆ Sel(φ)(E/Q) ⊆ 〈−1, 2, 3, h, h− 2, h− 6, h− 8〉.

We prove that Sel(φ)(E/Q) = {1,−3h(h− 8)} by localizing to various primes.

Note that the square-free part of X has to divide −108h3(h−8) in order to yield

a point (X,Y ) ∈ E′h(Q) (see [21, page 86-87] for a more elaborate argumentation).

This gives im(α) ⊆ 〈−1, 2, 3, h, h− 8〉.
For any prime p, we let αp : E′h(Qp)/φ(E(Qp)) → Q×p /Q

×
p

2
denote the localiza-

tion of α at p. We first show that E′h,1(Qp) does not contribute. For odd p this

is immediate as pZp/2pZp ∼= 0. For p = 2, this is a straightforward calculation

using the Laurent series in [20, page 118]. See also [24, Lemma 3.2.1] for a similar

calculation.

First, we analyze

α2 : E′h(Q2)/φ(Eh(Q2))→ Q×2 /Q
×
2

2
= 〈−1, 5, 2〉.

Using our computation of Tamagawa numbers and the minimality of the model, we

infer #(E′(Q2)/E′0(Q2)) = 2 (note that to ease notation, here and once more below
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we removed the subscript h in E′h). The reduction of (X,Y ) is singular precisely

when X is even, in which case it reduces to (0, 0). If X is odd, then so is Y and

they satisfy the homogeneous equation

Y 2Z = X3 +
(
432− 36(h− 6)2

)
X2Z − 108h3(h− 8)XZ2,

implying

Z ≡ X + 4Z + 4X ≡ X mod 8.

Hence X/Z = 1 ·Q×2
2
. Moreover, observe that

α2((0, 0)) = −108h3(h− 8) ·Q×2
2

= 5Q×2
2
,

and hence im(α2) = 〈5〉. This gives the restriction im(α) ⊆ 〈−3,−h,−(h− 8)〉.
Now consider the localized map

α3 : E′h(Q3)/φ(Eh(Q3))→ Q×3 /Q
×
3

2
= 〈−1, 3〉.

Again we have computed #(E′(Q3)/E′0(Q3)) = 2. The point (X,Y ) reduces to a

singular point if and only if 3|X, and otherwise X ≡ 1 mod 3. Moreover, (0, 0) is

mapped to −3h(h − 8) · Q×3
2

= 3Q×3
2
. We conclude that im(α3) = 〈3〉, giving the

restriction im(α) ⊆ 〈3h,−(h− 8)〉.
The final restriction comes from the localized map

αh−2 : E′h(Qh−2)/φ(Eh(Qh−2))→ Q×h−2/Q
×
h−2

2
= 〈−3, h− 2〉.

We see that −3h(h − 8) · Q×h−2

2
= 36 · Q×h−2

2
= 1 · Q×h−2

2
. The algorithm in [22]

shows that all points of E′h(Qh−2) have good reduction. Over Fh−2 the curve E′h is

given by

E′h : Y 2 = X(X − 72)2.

Following [20, Proposition III.2.5], let γ =
√

72 ∈ Fh−2 be the slope of a tangent

line at the node of E′h(Fh−2). The isomorphism

E′h,ns(Fh−2)
∼−→ F×h−2 : (X,Y ) 7→ Y + γ(X − 72)

Y − γ(X − 72)

maps the point (18, 27γ) to −3, which is not a square, so this point is not a multiple

of 2. Finally, 18 is a square in Qh−2, so we infer im(αh−2) = {1}. This gives the

final restriction

im(α) = Sel(φ)(E/Q) = {1,−3h(h− 8)}

and therefore

E′h(E/Q)/φ(Eh(Q)) = {O, (0, 0)},

as desired.
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Lemma 4. Eh(Q)/φ̂(E′h(Q)) = {O, (0, 0)}.

Proof. We make use of Theorem 3. Clearly #E′h(Q)[φ̂] = #Eh(Q)[φ] = 2. Further-

more, Table 1 shows
∏
p cEh,p =

∏
p cE′h,p = 16. For the real periods, we make use

of [10, Lemma 7.4]:

ΩEh

ΩE′h
=

#ker (φ : Eh(R)→ E′h(R))

#coker (φ : Eh(R)→ E′h(R))
·

∣∣∣∣∣ ωEh

φ∗ωE′h

∣∣∣∣∣ , (9)

where ωE denotes the invariant differential of a minimal model of an elliptic curve

E. First we observe that

#ker (φ : Eh(R)→ E′h(R)) = #coker (φ : Eh(R)→ E′h(R)) = 2.

Recall that the models (7) and (8) are minimal. Using the explicit form of φ

(see, for instance, [20, Proposition X.4.9]) and writing a := 432 − 36(h − 6)2 and

b := −108h3(h− 8), we compute

φ∗ωE′h = φ∗
(
dX

2Y

)
=
d(x−2(x3 + ax2 + bx))

2y(bx−2 − 1)

=
(1− bx−2)dx

2y(bx−2 − 1)
= −ωEh

.

Thus (9) yields that ΩEh
= ΩE′h . Now one applies Theorem 3 to infer that

#Sel(φ)(Eh/Q) = #Sel(φ̂)(E′h/Q) = 2, from which the result follows immediately.

Corollary 1. The Mordell-Weil groups Eh(Q), E′h(Q) and Ēh(Q) have rank zero.

Proof. This is a consequence of the formula (see, for example, [21, page 91])

2rankQ(Eh) =
#im(α)#im(α′)

4
.

Since E′h and Ēh are isogenous to Eh, these also have rank zero over Q.

3.3. Descent by 3-Isogeny

We now compute Sel(ψ)(E/Q). Corollary 1 guarantees that Eh(Q) has rank zero

and our choice of Equation (6) shows that Eh(Q) does not have 3-torsion. Thus

non-zero elements of Sel(ψ)(Eh/Q) cannot come from points on Ēh(Q)/φ(E(Q)).

Theorem 4. Sel(ψ)(E/Q) consists of 9 elements and is isomorphic to X(Eh/Q)[3].
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Proof. The lower bound for #Sel(ψ)(E/Q) comes from Theorem 3. The only quan-

tities yet unknown are the real periods of E and Ē. We again use (9). Both the

real kernel and the real cokernel of ψ are trivial, so we need only compute ωEh
and

ψ∗ωĒh
. A minimal model of Ēh is given by y2 = x3 + 8(3x− (h−2)(h−6)2)2. Now

write A := 8 and B := (h− 2)(h− 6)2. The explicit form (1) of ψ then gives

ψ∗ωĒh
= ψ∗

(
dξ

2η

)
=
d
(
3−3x−2(6y2 + 6AB2 − 3x3 − 2Ax2)

)
2 · 3−3y(8AB2 − x3 − 4ABx)x−3

=
x3d

(
x−2(6

(
x3 +A(x−B)2

)
+ 6AB2 − 3x3 − 2Ax2)

)
2y(8AB2 − x3 − 4ABx)

=
x3(3 + 12ABx−2 − 24AB2x−3)dx

2y(8AB2 − x3 − 4ABx)

=
−3dx

2y
= −3ωEh

.

Equation (9) in the present situation reads

ΩEh

ΩĒh

=
1

1
· 1

3

so Theorem 3 yields

#Sel(ψ̂)(Ēh/Q)

#Sel(ψ)(Eh/Q)
=

#Ēh(Q)[ψ̂]ΩEh

∏
p cEh,p

#Eh(Q)[ψ]ΩĒh

∏
p cĒh,p

=
1 · 1 · 16

1 · 3 · 48
=

1

9
.

As a consequence, 9|#Sel(ψ)(Eh/Q).

An upper bound on #Sel(ψ)(Eh/Q) is obtained by arithmetic in L = Q(
√

2) =

Q(Ēh[ψ̂]). We compute L(SE,ψ, 3)∗, the elements of L×/L×
3

that only ramify at

the bad primes and have cube norm. Recall that by Lemma 2 the inert primes and

the principally ramified primes of OL cannot contribute. The prime 2 is ramified

in OL = Z[
√

2], a principal ideal domain. Since 2 is non-square in F3, Fh, Fh−6 and

Fh−8, these primes are inert. Only the prime h − 2 = (k + l
√

2)(k − l
√

2) is split.

Thus L(SE,ψ, 3)∗ is generated by (k + l
√

2)2(k − l
√

2) and the fundamental unit

1 +
√

2, but this gives #L(SE,ψ, 3)∗ = 9. We conclude

9 ≤ #Sel(ψ)(E/Q) ≤ #L(SE,ψ, 3)∗ ≤ 9.

Since Eh(Q) and Ēh(Q) have rank zero and no 3-torsion, Ēh(Q)/ψ(E(Q)) is

trivial. The exact sequence

0→ Ēh(Q)/ψ(Eh(Q))→ Sel(ψ)(Eh/Q)→X(Eh/Q)[ψ]→ 0

then implies Sel(ψ)(Eh/Q) ∼= X(Eh/Q)[ψ]. Finally, since Sel(ψ̂)(E′h/Q) is trivial by

Theorem 3, we conclude X(Eh/Q)[ψ] ∼= X(Eh/Q)[3], which finishes the proof.
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Corollary 2. Assume h is a positive integer that satisfies the following conditions:

• h ≡ 3 mod 8.

• h, h− 2, h− 6 and h− 8 are prime numbers.

Then the plane cubic

Ch
1+
√

2
: 3w2z + 2z3 + w3 + 6wz2 + 2(h− 2)2(h− 8) = 12z2 − 6w2

has a point over every completion of Q, but not over Q itself.

Proof. The equation for Ch
1+
√

2
is an application of Theorem 2 with t = 1 +

√
2.

We use a minimal model of Ēh with Ā = 72 and B̄ = (h − 2)2(h − 8)/3 to reduce

the size of the coefficients. Theorem 4 asserts that these curves represent non-

trivial elements of the Tate-Shafarevich group, meaning that they violate the Hasse

principle.

Observe that h = 19 satisfies the conditions, hence the homogeneous space

C19
1+
√

2
: 3w2z + 2z3 + w3 + 6wz2 + 6358 = 12z2 − 6w2

violates the Hasse principle. By Magma [4], the values h < 120000 (besides h = 19)

that satisfy our conditions are:

3259, 5659, 15739, 21019, 55339, 67219, 69499, 79699, 88819, 99139, 116539, 119299.

Not surprisingly, the set {Eh} gives a sparser set of elements of order 3 in a Tate-

Shafarevich group than the list in [11]. An advantage is that the examples coming

from {Eh} are easy to generate; one only needs the congruence h ≡ 3 mod 8 and

the primality of h, h− 2, h− 6 and h− 8.
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