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Abstract

Let up(r, t) = (a1a2 . . . ar)
t. We investigate the problem of determining the maxi-

mum possible integer n(r, t) for which there exist 2t−1 permutations π1, π2, . . . , π2t−1

of 1, 2, . . . , n(r, t) such that the concatenated sequence π1π2 . . . π2t−1 has no subse-

quence isomorphic to up(r, t). This quantity has been used to obtain an upper bound

on the maximum number of edges in k-quasiplanar graphs. It was proved by Gene-

son, Prasad, and Tidor that n(r, t) ≤ (r−1)22t−2

. We prove that n(r, t) = Θ(r(
2t−1
t )),

where the constant in the bound depends only on t. Using our upper bound

in the case t = 2, we also sharpen an upper bound of Klazar, who proved that

Ex(up(r, 2), n) < (2n+1)L where L = Ex(up(r, 2),K−1)+1, K = (r−1)4 +1, and

Ex(u, n) denotes the extremal function for forbidden generalized Davenport-Schinzel

sequences. We prove that K = (r− 1)4 + 1 in Klazar’s bound can be replaced with

K = (r − 1)
(
r
2

)
+ 1. We also prove a conjecture from Geneson, Prasad, and Tidor

by showing for t ≥ 1 that Ex(abc(acb)tabc, n) = n2
1
t!α(n)t±O(α(n)t−1). In addition,

we prove that Ex(abcacb(abc)tacb, n) = n2
1

(t+1)!
α(n)t+1±O(α(n)t).

1. Introduction

We say that a sequence v contains a sequence u if v has some subsequence v′

(not necessarily contiguous) that is isomorphic to u (v′ can be changed into u by
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a one-to-one renaming of its letters). Otherwise v avoids u. We call a sequence

r-sparse if every r consecutive letters are distinct. Davenport-Schinzel sequences

of order s avoid alternations of length s+ 2 and have no adjacent same letters [5].

Generalized Davenport-Schinzel sequences avoid a forbidden sequence u (or a family

of sequences) and are r-sparse, where r is the number of distinct letters in u.

For any sequence u, define Ex(u, n) to be the maximum possible length of an

r-sparse sequence with n distinct letters that avoids u, where r is the number of

distinct letters in u. Furthermore, define Ex(u, n,m) to be the maximum possible

length of a sequence with n distinct letters that avoids u and can be partitioned

into m contiguous blocks of distinct letters. Applications of Ex(u, n) include upper

bounds on the complexity of lower envelopes of sets of polynomials of bounded

degree [5], the complexity of faces in arrangements of arcs with bounded pairwise

crossings [24], and the maximum number of edges in k-quasiplanar graphs [6]. The

function Ex(u, n,m) has been used to find bounds on Ex(u, n).

Bounds on Ex(u, n) are known for several families of sequences such as alter-

nations [1, 21, 22] and more generally the sequences up(r, t) = (a1a2 . . . ar)
t [12].

Let as denote the alternation of length s. It is known that that Ex(a3, n) = n,

Ex(a4, n) = 2n−1, Ex(a5, n) = 2nα(n)+O(n), Ex(a6, n) = Θ(n2α(n)), Ex(a7, n) =

Θ(nα(n)2α(n)), and Ex(as+2, n) = n2
αt(n)
t! ±O(α(n)t−1) for all s ≥ 6, where t = b s−2

2 c
[5, 1, 21, 22].

Relatively little about Ex(u, n) is known for arbitrary forbidden sequences u.

However, one way to find upper bounds on Ex(u, n) for any sequence u is to use

(r, s)-formations, which are concatenations of s permutations of r distinct letters.

We define Fr,s to be the family of all (r, s)-formations. We define the function

Fr,s(n) to be the maximum possible length of an r-sparse sequence with n distinct

letters that avoids all (r, s)-formations, and we define the function Fr,s(n,m) to

be the maximum possible length of a sequence with n distinct letters that avoids

all (r, s)-formations and can be partitioned into m blocks of distinct letters. Like

Ex(u, n,m) and Ex(u, n), the function Fr,s(n,m) has been used to find bounds on

Fr,s(n).

Let the formation width fw(u) denote the minimum s for which there exists r such

that every (r, s)-formation contains u, and let the formation length fl(u) denote the

minimum value of r for which every (r, fw(u))-formation contains u. These param-

eters were defined in [12], where it was observed that Ex(u, n) = O(Ffl(u),fw(u)(n)).

This uses the fact that increasing the sparsity in the definition of Ex(u, n) only

changes the value by at most a constant factor, which was proved by Klazar in [17].

Using the upper bound with fw(u) and known bounds on Fr,s(n), it is possible to

find sharp bounds on Ex(u, n) for many sequences u.

In [12], Geneson, Prasad, and Tidor proved that fw(up(r, t)) = 2t − 1 and
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fl(up(r, t)) ≤ (r − 1)22t−2

+ 1. This implies

Ex(up(r, t), n) = n2
1

(t−2)!
α(n)t−2±O(α(n)t−3) (1)

for every r ≥ 2 and t ≥ 3, where the constants in the bounds depend on r. They

used this to sharpen the upper bound from [6] on the maximum number of edges

in k-quasiplanar graphs where no pair of edges intersect in more than O(1) points.

They also proved that fw(u) = 4 and Ex(u, n) = Θ(nα(n)) for any sequence u of

the form avav′a such that a is a letter, v is a nonempty sequence of distinct letters

excluding a, and v′ is obtained from v by only shifting the first letter of v. Based

on computing fw(abc(acb)tabc) for small values of t, they conjectured in [12] that

fw(abc(acb)tabc) = 2t+ 3 for all t ≥ 0 and that

Ex(abc(acb)tabc, n) = n2
1
t!α(n)t±O(α(n)t−1) (2)

for t ≥ 1. We affirm this conjecture, and we also prove that fw(abcacb(abc)tacb) =

2t+ 5 and

Ex(abcacb(abc)tacb, n) = n2
1

(t+1)!
α(n)t+1±O(α(n)t) (3)

for t ≥ 1. In addition, we improve an upper bound of Klazar [16], who proved that

Ex(up(r, 2), n) < (2n+ 1)L, with L = Ex(up(r, 2),K − 1) + 1 and K = (r− 1)4 + 1.

Here we prove that K = (r − 1)4 + 1 in Klazar’s bound can be replaced with

K = (r − 1)
(
r
2

)
+ 1.

We obtain this bound by proving that every ((r−1)
(
r
2

)
+1, 3)-formation contains

up(r, 2), using a result about strongly unimodal sequences. On the other hand, we

also prove that this result is sharp up to a constant factor. Specifically, we prove

that there exist (m, 3)-formations with m = Ω(r3) which avoid up(r, 2). As a result,

we have fl(up(r, 2)) = Θ(r3). A similar result was also proved in [2], but our result

is better by a constant factor. See Section 3.

More generally, we prove that fl(up(r, t)) = Θ(r(
2t−1
t )), where the constants in

the bound depend only on t. This improves the upper bound on fl(up(r, t)) from

[12], and we prove a lower bound that matches the upper bound up to a constant

factor that depends only on t. Using Klazar’s sparsity lemma from [17], our upper

bound on fl(up(r, t)) also implies for all n, r, t ≥ 1 that

Ex(up(r, t), n) ≤ (1 + Ex(up(r, t), (r − 1)(
2t−1
t ))) F

(r−1)(
2t−1
t )+1,2t−1

(n). (4)

These new results are proved in Section 4.

In addition to using formations to obtain upper bounds on Ex(up(r, t), n), we

also use formations in Section 5 to bound the extremal functions of other forbidden

sequences. We show that

Ex(abc(acb)tabc, n) = n2
1
t!α(n)t±O(α(n)t−1) (5)
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and

Ex(abcacb(abc)tacb, n) = n2
1

(t+1)!
α(n)t+1±O(α(n)t) (6)

using formation width.

In Section 6, we investigate subsequences u of up(r, 2) for which the exact values

of Ex(u, n) and Ex(u, n,m) were not previously known. We find the exact values

of Ex(up(r, 1)ax, n) and Ex(up(r, 1)ax, n,m) for x ∈ {1, . . . , r}. We also determine

the exact values of Fr,2(n), Fr,3(n), Fr,2(n,m), and Fr,3(n,m). In Section 7, we

extend the exact results about formations in sequences from Section 6 to exact

results about formations in d-dimensional 0–1 matrices.

2. Definitions

A restricted up(r, 2) is an up(r, 2) completely contained within any two permutations

among {π1, π2, π3} in a formation [π1, π2, π3]. For example, [12345, 15432, 32514]

has a restricted up(2, 2) of (24)
2

in [π1, π3] and a (non-restricted) up(3, 2) of (514)2.

Generalizing the definition of a restricted up(r, 2), a restricted up(r, t) is an up(r, t)

completely contained within any t permutations among {π1, π2, ..., π2t−1} in a for-

mation [π1, π2, ..., π2t−1]. We denote a restricted up(r, t) as Up(r, t). Whether a

formation contains up(r, t) may depend on the order of the permutations of the

formation, but whether a formation contains Up(r, t) is invariant under reordering

the permutations.

A permutation of a set A is said to have length |A|, i.e., the length of a permu-

tation is the number of characters in the permutation. Similarly, the length of a

subsequence of a permutation is the number of characters in the subsequence. Let

LCS(πi, πj) be the length of the longest common subsequence of πi and πj . Note

that LCS(πi, πj) is the maximum m such that a restricted up(m, 2) configuration

is present in πi and πj within the formation [π1, π2, π3].

Let π be a permutation of a totally ordered set S and σ a permutation of a totally

ordered set T . We define a permutation π⊗ σ of the Cartesian product S × T with

the lexicographic ordering by π⊗ σ(x, y) = (π(x), σ(y)). A subsequence a1, a2, ...at
of a permutation π is called strongly unimodal if it is increasing or decreasing, or

for some k ∈ {2, ..., t− 1},

a1 < a2 < . . . < ak > ak+1 > . . . > at.

If a, b are nonnegative integers, let a ⊕ b be their nim-sum,i.e., the integer whose

binary expansion is the bitwise-XOR of the binary expansions of a and b. So

4 ⊕ 6 = 2. Suppose n = 2k and 0 ≤ m < n. Letting S{0,1,2...,n−1} denote the

symmetric group on the set {0, 1, 2..., n− 1}, define τm to be the involution in

S{0,1,2...,n−1} so τm(a) = m⊕ a. For example, if n = 8 then τ4 = τ1002
= [45670123]
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in table form and τ6 = [67452301]. These can be used to construct formations with

no Up(r, t).

3. Bounds for up(r, 2)

In this section, we show that fl(up(r, 2)) = Θ(r3). Klazar’s proof that Ex(up(r, 2), n) <

(2n+ 1)L, where L = Ex(up(r, 2),K − 1) + 1 and K = (r− 1)4 + 1, uses the Erdős-

Szekeres theorem to find the copy of up(r, 2) [16]. We sharpen the upper bound on

Ex(up(r, 2), n) by proving that every ((r− 1)
(
r
2

)
+ 1, 3)-formation contains up(r, 2).

We also show that this containment result is best possible up to a constant factor

by proving that there exist (m, 3)-formations with m = Ω(r3) which avoid up(r, 2).

The following result is mentioned in [3] as an unpublished result of Steele and

Chvátal. The proof is not explicitly given in [3] so we supply one here.

Theorem 3.1 ([3]). Any permutation of length
(
t
2

)
+1 contains a strongly unimodal

sequence of length t.

Proof. For any index i, let x(i) be the length of the longest increasing subsequence

ending in position i. Let y(i) be the length of the longest decreasing subsequence

starting in position i. There is a strongly unimodal sequence of length maxi x(i) +

y(i)−1, and the map i 7→ (x(i), y(i)) is injective. There are only
(
t
2

)
possible images

with x+ y − 1 < t.

Theorem 3.1 is sharp. There are permutations of {1, 2, ...,
(
t
2

)
} with no unimodal

sequence of length t. See below for a general formula and Figure 1 for an example

with t = 4.

(
t

2

) (
t

2

)
− 2

(
t

2

)
− 1

(
t

2

)
− 5

(
t

2

)
− 4

(
t

2

)
− 3 ... 1 2 3 ... t− 1

Theorem 3.2. If n =
(
r
2

)
(r−1)+1, then any (n, 3)-formation contains an up(r, 2).

Proof. Let the formation be [π1, π2, π3]. Without loss of generality, let π1 = e,

where e denotes the identity permutation. By the Erdős-Szekeres theorem, π2

either contains an increasing subsequence of length r or a decreasing subsequence

of length
(
r
2

)
+ 1. In the first case, [π1, π2] contains an up(r, 2) on the symbols of

the increasing subsequence. In the second case, consider the
(
r
2

)
+ 1 symbols of the

decreasing subsequence in π3. By Theorem 3.1, this permutation contained in π3

has a strongly unimodal subsequence of length r, in positions a1 < a2 < . . . < ar
with π3(a1) < . . . < π3(ak) > π3(ak+1) > . . . > π3(ar). Then the values π3(a1) <

π3(a2) < ... < π3(ak) in π1 and the values π3(ak+1) > ... > π3(ar) in π2 form a

pattern in [π1, π2] repeated in π3, hence [π1, π2, π3] contains an up(r, 2).
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Figure 1: A geometric representation of the permutation 645123, which is a permu-
tation of length

(
t
2

)
with no strongly unimodal sequence of length t for t = 4.

Corollary 3.3. For all r, we have fl(up(r, 2)) ≤
(
r
2

)
(r − 1) + 1.

Besides the use of Theorem 3.2, the proof of the next theorem is the same as the

proof of Klazar’s bound in [16].

Theorem 3.4. If K = (r − 1)
(
r
2

)
+ 1 and L = Ex(up(r, 2),K − 1) + 1, then

Ex(up(r, 2), n) < (2n+ 1)L.

Proof. Let u be an r-sparse sequence with at most n distinct letters. Suppose that

u has length at least (2n+ 1)L. Split u into 2n+ 1 disjoint intervals, each of length

at least L. At least one interval I contains no first or last occurrence of any letter in

u. If I has fewer than K distinct letters, then I contains up(r, 2) by the definition

of I and L. If I has at least K distinct letters, then all of these letters occur before

I, in I, and after I. Thus u contains an ((r − 1)
(
r
2

)
+ 1, 3)-formation. By Theorem

3.2, u contains up(r, 2), completing the proof.

In the remainder of this section, we prove that the bound in Corollary 3.3 is

sharp up to a constant factor independent of r. In order to prove this, we first show

that any up(r, 2) in an (n, 3)-formation must contain a restricted up(dr/3e, 2).

Lemma 3.5. Any (n, 3)-formation containing an up(r, 2) contains a restricted

up(dr/3e, 2).

Proof. The up(r, 2) can be factored into six possibly empty words w1w2w3w1w2w3

so that π1 contains w1w2, π2 contains w3w1, and π3 contains w2w3. The longest

of w1, w2, and w3 contains the repeated sequence of a restricted up(dr/3e, 2), e.g.,

if w2 is the longest, then there is a restricted up(|w2|, 2) contained in [π1, π3] and

|w2| ≥ dr/3e.
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Next, we prove a lemma about the longest common subsequences of permutations

of Cartesian products, which we will use with a product construction to prove the

lower bound on fl(up(r, 2)).

Lemma 3.6. Let π1 and π2 be permutations of the same size and σ1 and σ2 be per-

mutations of the same size. Then LCS(π1⊗σ1, π2⊗σ2) = LCS(π1, π2) LCS(σ1, σ2).

Proof. Let n = LCS(π1, π2) and m = LCS(σ1, σ2). Given a common subsequence

a1, a2, . . . , an of π1 and π2, and a common subsequence b1, b2, . . . , bm of σ1 and σ2,

then a common subsequence of π1 ⊗ σ1 and π2 ⊗ σ2 is

(a1, b1), (a1, b2), . . . , (a1, bm), (a2, b1) . . . (a2, bm), . . . (an, bm).

Suppose we have a common subsequence of length mn+ 1, say

(c1, d1), (c2, d2), . . . , (cmn+1, dmn+1).

Suppose for h = 1, 2, the locations of the sequence are

(`h,1, kh,1) < (`h,2, kh,2) < . . . < (`h,mn+1, kh,mn+1)

in πh ⊗ σh, so πh ⊗ σh(`h,i, kh,i) = (ci, di).

By the lexicographic ordering, `h,1 ≤ `h,2 ≤ . . . ≤ `h,mn+1. Since for all h and i,

πh(`h,i) = ci, repetitions of first coordinates of values occur precisely when the first

coordinates of locations are repeated: `h,i = `h,j if and only if ci = cj . Since the first

coordinates of locations are weakly increasing, repetitions are adjacent, so repeated

values in the sequence (ci) are adjacent. The distinct elements of the sequences

(`1,i) and (`2,i) are the locations of a common subsequence of π1 and π2. Since

LCS(π1, π2) = n, there can be at most n distinct elements among these mn+ 1. By

the pigeonhole principle, the sequence c1, c2, . . . , cmn+1 contains at least m+ 1 rep-

etitions of some value, which must be adjacent, say ct = . . . = ct+m. Then the com-

mon subsequence contains (ct, dt), (ct, dt+1), . . . , (ct, dt+m). Then dt, dt+1, . . . , dt+m
is a common subsequence of σ1 and σ2 of length m+1, contradicting the assumption

that LCS(σ1, σ2) = m.

We provide a product construction in the next lemma, which we will use to prove

the claimed lower bound of fl(up(r, 2)) = Ω(r3).

Lemma 3.7. If we have permutations π1, π2, π3 ∈ Sk so LCS(πi, πj) ≤ r for each

(i, j) ∈ {(1, 2), (1, 3), (2, 3)}, then the (kt, 3)-formation [π⊗t1 , π⊗t2 , π⊗t3 ] contains no

restricted up(rt + 1, 2), hence no up(3rt + 1, 2).

Proof. The longest common subsequences of π⊗ti and π⊗tj have length at most rt so

there is no restricted up(rt + 1, 2) in any pair, hence not in the (kt, 3)-formation.

An up(3rt + 1, 2) would imply there is a restricted up(rt + 1, 2), so there are no

up(3rt + 1, 2)s.
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Finally, we are ready to show that the construction in the last lemma gives the

desired lower bound on fl(up(r, 2)).

Theorem 3.8. There are (Ω(r3), 3)-formations with no up(r, 2).

Proof. Let π1 = e, π2 = 43218765, and π3 = 65872143. Then for each (i, j) ∈
{(1, 2), (1, 3), (2, 3)}, LCS(πi, πj) = 2. By Lemma 3.7, for each t, there are (8t, 3)-

formations with no restricted up(2t + 1, 2) hence no up(3 · 2t + 1, 2).

We can use these constructions for powers of two to build examples of cubic size

when r is not a power of 2. For any r ≥ 4, there is a power of two 2t in
(
(r −

1)/6, (r − 1)/3
]
. Then there is a (23t, 3)-formation with no restricted up(2t + 1, 2)

hence no up(3 · 2t + 1, 2). Since 3 · 2t + 1 ≤ r and d (r−1)3

216 e ≤ 23t, there is an

(d (r−1)3

216 e, 3)-formation with no up(r, 2).

Corollary 3.9. For positive integers r, we have fl(up(r, 2)) = Θ(r3).

4. Bounds for up(r, t)

In this section, we show that for any fixed t, fl(up(r, t)) is θ(rg), where g =
(

2t−1
t

)
,

extending the result for t = 2. We start by proving an upper bound on fl(up(r, t)).

Since any formation which contains Up(r, t) must also contain up(r, t), we focus on

Up(r, t) instead of up(r, t) for the upper bound.

Theorem 4.1. In any ((r − 1)g + 1, 2t − 1)-formation, where g =
(

2t−1
t

)
, there is

an Up(r, t).

For i, j ∈ {0, ..., t} let gt(i, j) =
(

2t−i−j
t−i

)
. This counts the number of lattice paths

from (i, j) to (t, t) or the number of ways a best-of-(2t− 1) match can end starting

from a score of (i, j). If max(i, j) < t then gt(i, j) = gt(i+ 1, j) + gt(i, j + 1).

Theorem 4.2. Let i, j ∈ {0, ..., t}. In any ((r − 1)gt(i,j) + 1, 2t − 1)-formation

starting with i identity permutations and j copies of w = [n (n− 1) ... 2 1], there is

an Up(r, t).

Proof. Induct backwards on i+j. The base case is when max(i, j) = t, so gt(i, j) = 1

and the statement is trivially true here.

Suppose it is true for larger values of i+ j. Consider a
(
(r − 1)gt(i,j) + 1, 2t− 1

)
-

formation starting with eiwj . The size of each permutation is pq + 1 where p =

(r − 1)gt(i+1,j) and q = (r − 1)gt(i,j+1). Apply the Erdős-Szekeres theorem to the

next permutation after eiwj . In a permutation of size pq + 1 = (r − 1)gt(i,j) + 1,

there is either an increasing subsequence of length p + 1 = (r − 1)gt(i+1,j) + 1 or

a decreasing subsequence of length q + 1 = (r − 1)gt(i,j+1) + 1. Restricting to the
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symbols of this monotone subsequence gives us one more identity or w permutation.

By the inductive hypothesis, there must be an Up(r, t) using just those symbols.

Proof of Theorem 4.1. Theorem 4.2 with i = 0, j = 0 says that an unrestricted ((r−
1)(

2t
t )+1, 2t−1)-formation has an Up(r, t) whose pattern is increasing or decreasing.

However, if we don’t restrict the pattern to be monotone, we can relabel the symbols

so that the first permutation is the identity. So, any
(
(r − 1)gt(1,0) + 1, 2t− 1

)
=(

(r − 1)(
2t−1
t ) + 1, 2t− 1

)
-formation contains an Up(r, t).

Corollary 4.3. For all r, t ≥ 1, we have fl(up(r, t)) ≤ (r − 1)(
2t−1
t ) + 1.

By the sparsity lemma of Klazar in [17], we obtain the following upper bound on

Ex(up(r, t), n).

Theorem 4.4. Let n, r, t ≥ 1 and g =
(

2t−1
t

)
. We have

Ex(up(r, t), n) ≤ (1 + Ex(up(r, t), (r − 1)g)) F(r−1)g+1,2t−1(n).

In the remainder of this section, we prove that the bound in Corollary 4.3 is

sharp up to a constant factor. In order to prove this, we first generalize the result

in Lemma 3.5.

Theorem 4.5. If there is an up(r, t) in an (n, 2t− 1)-formation, then there is an

Up(d r
t(t−1)+1e, t) in the formation.

Proof. For each symbol in the up(r, t), there is a subset of size t of the 2t − 1

indices of the permutations containing the corresponding symbols in the up(r, t). In

particular, we let si be the t-element subset of {1, 2, . . . , 2t−1} that records the index

of each of the t instances of ai relative to its respective size-r permutation. Consider

the lattice of t-element subsets of {1, 2, . . . , 2t − 1} with grading given by sums of

elements of subsets. We can identify a longest chain in the lattice with t(t− 1) + 1

elements: the bottom element of the chain corresponds to s1 = {1, 2, ..., t} and the

top element of the chain corresponds to sr = {t, t+ 1, ..., 2t− 1}. By the pigeonhole

principle, at least one of the t-element subsets is repeated at least r
t(t−1)+1 times,

which means there is an Up(d r
t(t−1)+1e, t).

Let p, q be nonnegative integers. We will think of them in base 2. Suppose that

the value a appears in τp and τq, and suppose that the value b appears in τp and

τq, with a < b. Also, let i be the leftmost (most significant) index of a binary digit

where a and b disagree in binary.

Theorem 4.6. If a appears before b in both τp and τq, or if b appears before a in

both τp and τq, then p and q agree in binary position i.
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Proof. We prove the contrapositive: if p and q disagree in binary position i, then a

and b appear in different orders in τp and τq. Since a < b, and a and b first differ

in binary position i, a has a 0 in that position while b has a 1 there. Without loss

of generality, suppose p has a 0 in the ith position while q has a 1 there. Then

p⊕ a < p⊕ b while q⊕ a > q⊕ b. Hence, a and b occur in different orders in τp and

τq.

Next we show that the length of the longest common subsequence of {τp1 , ..., τpk}
can be determined from the number of bits where the binary expansions of p1, ..., pk
all agree.

Theorem 4.7. If s is the number of bits where the binary expansions of p1, ..., pk
all agree, then the longest common subsequence of {τp1 , ..., τpk} has length 2s.

Proof. This follows from the pigeonhole principle. More than 2s elements of a

subsequence would mean some pair a and b would have to agree in all s bits where

p1, ..., pk agree, so the highest bit where a and b disagree would have to be one where

p1, ..., pk are not unanimous. By Theorem 4.6, a and b would appear in a different

order in some pi from some pj , so they could not be in a common subsequence.

For example, τ01102
, τ00112

, τ00102
share a common subsequence of length 22 = 4

since 0110, 0011, and 0010 agree in two positions 0 ∗ 1∗:

τ01102
= 6 7 4 5 2 3 0 1 14 15 12 13 10 11 8 9

τ00112 = 3 2 1 0 7 6 5 4 11 10 9 8 15 14 13 12

τ00102
= 2 3 0 1 6 7 4 5 10 11 8 9 14 15 12 13.

Common subsequences of length 4 include 6 4 10 8 and 7 5 11 8.

Theorem 4.8. Let (π1, . . . , πu) be a formation containing an Up(r, t) but no Up(r+

1, t). Similarly, let (σ1, . . . , σu) be a formation containing an Up(s, t) but no Up(s+

1, t). Then (π1 ⊗ σ1, . . . , πu ⊗ σu) contains an Up(rs, t) but no Up(rs+ 1, t)).

Proof. It suffices to consider u = t. The proof is analogous to that of Lemma 3.6,

which considers the case t = 2.

The construction in the following result is suboptimal but potentially still of

interest.

Theorem 4.9. There are (Ω(r7), 7)-formations hence also (Ω(r7), 5)-formations

with no up(r, 3).
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Proof. The lines of a Fano plane have the property that any 3 either intersect in a

point and cover all points, or they all miss a single point. Thus, τ11010002
, τ01101002

,

τ00110102
, τ00011012

, τ10001102
, τ01000112

, τ10100012
have the property that any triple

has longest common subsequence 21 = 2. By Theorem 4.8, there is a (128k, 7)-

formation with no Up(2k + 1, 3).

The bound in the next theorem is sharp and better than the Fano construction

since it, for example, yields a
(
210, 5

)
-formation with no Up(3, 3).

Theorem 4.10. For all fixed t ≥ 1, there are
(

2(2t−1
t ), 2t− 1

)
-formations with no

Up(3, t).

Proof. Let S be the set of subsets of {1, 2, ..., 2t − 1} of size t, so |S| =
(

2t−1
t

)
.

Define sets S1, S2, ..., S2t−1 so that Si contains the subsets containing i. Then any

t sets Si1 , ...Sit will only agree on one element of S, the set {i1, ..., it}. Identify the(
2t−1
t

)
subsets with the numbers {0, 1, ...,

(
2t−1
t

)
− 1}. Let ni be

∑
j∈Si 2j . Then

[τn1
, ..., τn2t−1

] is a
(

2(2t−1
t ), 2t− 1

)
-formation with no Up(3, t) by Theorem 4.7.

The lower bound and upper bound meet, so these are the best possible for some

particular values of r. For example, let g =
(

2t−1
t

)
. We constructed a (2g, 2t− 1)-

formation with no Up(3, t) but every (2g + 1, 2t− 1)-formation contains an Up(3, t).

Theorem 4.11. For all fixed t ≥ 1, there are
(

Ω(r(
2t−1
t )), 2t− 1

)
-formations with

no up(r, t).

Proof. By applying Theorem 4.8 to the construction of Theorem 4.10, there are(
2(2t−1

t )k, 2t− 1
)

-formations with no Up(2k + 1, t). To avoid an up(r, t), let 2k be

the greatest power of 2 up to d r
t2−t+1e − 1. There is a

(
2(2t−1

t )k, 2t− 1
)

-formation

with no Up(2k + 1, t), hence no up((2k + 1)(t2 − t+ 1), t), hence no up(r, t). For a

fixed t, (2k)(
2t−1
t ) is Ω

(
r(

2t−1
t )
)
.

Corollary 4.12. For all fixed t ≥ 1, we have fl(up(r, t)) = Θ(r(
2t−1
t )), where the

constants in the bound depend only on t.

5. Sharp Bounds Using Formation Width

The next theorem confirms a conjecture from [12] that fw(abc(acb)tabc) = 2t + 3

for all t ≥ 0, where fw(u) denotes the minimum s for which there exists r such that

every (r, s)-formation contains u. This implies an upper bound of

Ex(abc(acb)tabc, n) = O(Ffl(abc(acb)tabc),2t+3(n)) ≤ n2
1
t!α(n)t+O(α(n)t−1) (7)
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for t ≥ 1 [12, 21]. The sequence abc(acb)tabc contains (ab)t+2, so there is also a

lower bound of

Ex(abc(acb)tabc, n) = Ω(Ex((ab)t+2, n)) ≥ n2
1
t!α(n)t−O(α(n)t−1) (8)

for t ≥ 1, where we are using Klazar’s sparsity result [17] in the first inequality.

The next result uses the fact proved in [12] that fw(u) is the minimum s for which

every binary (r, s)-formation contains u, where r is the number of distinct letters

in u. As in [12], an (r, s)-formation is called binary if there exists a permutation

p on r letters so that every permutation in the formation is p or the reverse of p.

Also in the next two results, we use the terminology u has v to mean that some

subsequence of u is an exact copy of v, so u has v is stronger than u contains v.

Theorem 5.1. For all t ≥ 0, fw(abc(acb)tabc) = 2t+ 3.

Proof. The proof is trivial for t = 0, so suppose t > 0. It suffices by [12] to show

that every binary (3, 2t+ 3)-formation contains u. Consider any binary (3, 2t+ 3)-

formation f with permutations xyz and zyx, abbreviated γ and δ respectively.

Without loss of generality suppose permutations 3 through 2t + 1 of f have (γ)t.

Then f has xzy(γ)txzy unless the first six letters of f are δγ or the last six letters

of f are δγ.

We split into cases depending on whether the first six letters of f are δγ or the

last six letters of f are δγ. If the first six letters of f are δγ, then f has δ(zxy)tδ.

So for the remaining cases, we assume that the last six letters of f are δγ and we

consider all possibilities for the first six letters. Now if the first six letters of f are

δγ or δδ, then f has δ(zxy)tδ. Otherwise if the first six letters of f are γγ or γδ,

then first note that f has xzy(γ)txzy if the 3rd through (2t+ 1)st permutations of

f have (γ)t+1. Otherwise the 3rd through (2t+ 1)st permutations of f have (δ)t−1,

in which case f has γ(xzy)tγ.

Corollary 5.2. For t ≥ 1, we have

Ex(abc(acb)tabc, n) = n2
1
t!α(n)t±O(α(n)t−1). (9)

Next we prove that fw(abcacb(abc)tacb) = 2t + 5, which implies as a corollary

that

Ex(abcacb(abc)tacb, n) = n2
1

(t+1)!
α(n)t+1±O(α(n)t) (10)

for t ≥ 1.

Lemma 5.3. For all t ≥ 0, fw(abcacb(abc)tacb) = 2t+ 5.

Proof. First note that abcacb(abc)tacb has an alternation of length 2t+6, so we have

fw(abcacb(abc)tacb) ≥ 2t+5. To check the upper bound it suffices to show that every



INTEGERS: 22 (2022) 13

binary (3, 2t + 5)-formation contains abcacb(abc)tacb [12]. We will denote an arbi-

trary binary (3, 2t + 5)-formation with permutations xyz or zyx by p1p2 . . . p2t+5.

Without loss of generality, assume that p5p6 . . . p2t+3 has (xyz)t. If p5p6 . . . p2t+3

has (xyz)t+1 and p1 = zyx, then p1 has zx, p2 has y, p3p4 has zy, p5p6 . . . p2t+3 has

xy(zxy)tz, and p2t+4p2t+5 has yx. Thus we have zxyzyx(zxy)tzyx. If p5p6 . . . p2t+3

has (xyz)t+1 and p1 = xyz then note that we can choose xzy from p2p3p4, (xyz)txyz

from p5p6 . . . p2t+3, and y from p2t+4.

Now suppose that p5p6 . . . p2t+3 has both (xyz)t and (zyx)t−1. If p1p2p3p4

has xyzxzy and p2t+4p2t+5 has xzy, then p1p2 . . . p2t+5 has xyzxzy(xyz)txzy. It

can be easily checked that p1p2p3p4 does not have xyzxzy or p2t+4p2t+5 does not

have xzy exactly when p2t+4p2t+5 = zyxxyz or p1p2p3p4 ∈ (zyx)(xyz)(zyx)(xyz),

(zyx)(zyx)(xyz)(zyx), (zyx)(zyx)(xyz)(xyz), or (zyx)(zyx)(zyx)(xyz).

Suppose p2t+4p2t+5 = zyxxyz but p1p2p3p4 6∈ ((zyx)(xyz))2, (zyx)2(xyz)(zyx),

(zyx)2(xyz)2, (zyx)3(xyz). We cover when p3 = zyx in three cases: the first case

covers when p1p2 6= xyzzyx, and there are two cases with p1p2 = xyzzyx which

depend on whether or not p4 = xyz. Then we cover when p3 = xyz in three

cases: the first case covers when p1p2 6= zyxxyz, and there are two cases with

p1p2 = zyxxyz which depend on whether or not p4 = xyz.

If p3 = zyx and p1p2 6= xyzzyx, then p1p2 has zxy, p3 has zyx, p4 has the letter

z, p5p6 . . . p2t+3 has xy(zxy)t−1z, and p2t+4p2t+5 = zyxxyz. Thus, we have the

subsequence zxyzyx(zxy)tzyx.

If p3 = zyx, p1p2 = xyzzyx, and p4 = xyz, then p1p2p3p4 has (xyz)(xzy)(xyz),

p5p6 . . . p2t+3 has (xyz)t−1x, and p2t+4p2t+5 = zyxxyz. Thus, we have the subse-

quence xyzxzy(xyz)txzy.

If p3 = zyx, p1p2 = xyzzyx, and p4 = zyx, then p1p2p3p4 has (xzy)(xyz)x,

p5p6 . . . p2t+3 has zy(xzy)t−2x, and p2t+4p2t+5 = zyxxyz. Thus, we have the sub-

sequence xzyxyz(xzy)txyz.

If p3 = xyz and p1p2 6= zyxxyz, then p1p2 has xzy, p3 has xyz, p4 has the letter

x, p5p6 . . . p2t+3 has zy(xzy)t−2x, and p2t+4p2t+5 = zyxxyz. Thus, we have the

subsequence xzyxyz(xzy)txyz.

If p3 = xyz, p1p2 = zyxxyz, and p4 = zyx, then p1p2p3p4 has (zyx)(zxy)(zyx),

p5p6 . . . p2t+3 has (zyx)t−1, and p2t+4p2t+5 = zyxxyz. Thus, we have the subse-

quence zyxzxy(zyx)tzxy.

If p3 = xyz, p1p2 = zyxxyz, and p4 = xyz, then p1p2p3p4 has (zxy)(zyx)z,

p5p6 . . . p2t+3 has xy(zxy)t−1z, and p2t+4p2t+5 = zyxxyz. Thus, we have the sub-

sequence zxyzyx(zxy)tzyx.

Next, suppose that p1p2p3p4 ∈ ((zyx)(xyz))2, (zyx)2(xyz)(zyx), (zyx)2(xyz)2,

(zyx)3(xyz). We first cover the cases when p1p2p3p4 is (zyx)3(xyz) or ((zyx)(xyz))2.

For p1p2p3p4 = (zyx)2(xyz)(zyx), we split into two cases depending on whether

or not p2t+4p2t+5 = xyzzyx. Finally for p1p2p3p4 = (zyx)2(xyz)2, we split into

four cases: there are two cases with p5 = xyz which depend on whether or not
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p2t+4p2t+5 = xyzzyx, and there are two cases with p5 = zyx which depend on

whether or not p2t+4p2t+5 = zyxxyz.

If p1p2p3p4 = (zyx)(zyx)(zyx)(xyz) or p1p2p3p4 = (zyx)(xyz)(zyx)(xyz), then

p1p2p3p4 has (zxy)(zyx)z, p5p6 . . . p2t+3 has xy(zxy)t−1z, and p2t+4p2t+5 has yx.

Thus, in this case we have the subsequence zxyzyx(zxy)tzyx.

If p1p2p3p4 = (zyx)(zyx)(xyz)(zyx) and p2t+4p2t+5 6= xyzzyx, then p1p2p3p4

has (zyx)(zxy)(zyx), p5p6 . . . p2t+3 has (zyx)t−1, and p2t+4p2t+5 has zxy. Thus, in

this case we have the subsequence zyxzxy(zyx)tzxy.

If p1p2p3p4 = (zyx)(zyx)(xyz)(zyx) and p2t+4p2t+5 = xyzzyx, then p1p2p3p4

has zxyzyx, p5p6 . . . p2t+3 has (zxy)t−1z, and p2t+4p2t+5 has xyzyx. Thus, in this

case we have the subsequence zxyzyx(zxy)tzyx.

If p1p2p3p4 = (zyx)(zyx)(xyz)(xyz), p5 = xyz, and p2t+4p2t+5 6= xyzzyx, then

p1p2p3p4p5 has (zyx)(zxy)(zyx), p6p7 . . . p2t+3 has (zyx)t−1, and p2t+4p2t+5 has

zxy. Thus, in this case we have the subsequence zyxzxy(zyx)tzxy.

If p1p2p3p4 = (zyx)(zyx)(xyz)(xyz), p5 = xyz, and p2t+4p2t+5 = xyzzyx, then

p1p2p3p4p5 has (zxy)(zyx)z, p6p7 . . . p2t+3 has (xyz)t−1, and p2t+4p2t+5 has xyzyx.

Thus, in this case we have the subsequence zxyzyx(zxy)tzyx.

If p1p2p3p4 = (zyx)(zyx)(xyz)(xyz), p5 = zyx, and p2t+4p2t+5 6= zyxxyz, then

p1p2p3p4p5 has xyzxzy, p6p7 . . . p2t+3 has (xyz)t, and p2t+4p2t+5 has xzy. Thus, in

this case we have the subsequence xyzxzy(xyz)txzy.

If p1p2p3p4 = (zyx)(zyx)(xyz)(xyz), p5 = zyx, and p2t+4p2t+5 = zyxxyz, then

p1p2p3p4p5 has (xzy)(xyz)(xzy)x, p6p7 . . . p2t+3 has zy(xzy)t−3x, and p2t+4p2t+5

has zyxyz. Thus, in this case we have the subsequence xzyxyz(xzy)txyz.

Corollary 5.4. For t ≥ 1, we have

Ex(abcacb(abc)tacb, n) = n2
1

(t+1)!
α(n)t+1±O(α(n)t). (11)

6. Exact Values

Klazar [17], Nivasch [21], and Pettie [22] showed that Fr,2(n) < rn, Fr,3(n) < 2rn,

Fr,2(n,m) < n+(r−1)m, and Fr,3(n,m) < 2n+(r−1)m. In this section, we provide

several elementary proofs to obtain exact values for all of the extremal functions in

the previous sentence. In particular, we show that Fr,2(n,m) = n+ (r− 1)(m− 1),

Fr,3(n,m) = 2n + (r − 1)(m − 2), Fr,2(n) = (n − r)r + 2r − 1, and Fr,3(n) =

2(n− r)r + 3r − 1. We assume that n ≥ r for all of the results in this section.

Theorem 6.1. For all integers m ≥ 1, n ≥ r we have

1. Fr,2(n,m) = n+ (r − 1)(m− 1);

2. Fr,3(n,m) = 2n+ (r − 1)(m− 2);
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3. Fr,2(n) = (n− r)r + 2r − 1;

4. Fr,3(n) = 2(n− r)r + 3r − 1.

Proof. We prove a matching upper bound and lower bound for each part.

1. Suppose that u is a sequence on m blocks with n distinct letters that avoids

Fr,2. Delete the first occurrence of every letter in u. This empties the first block,

leaving a sequence with at most m − 1 nonempty blocks that must have at most

r−1 letters per block, or else u would have contained a pattern of Fr,2. Thus u has

length at most n + (r − 1)(m − 1), giving the upper bound. For the lower bound,

consider the sequence obtained from concatenating up(n, 1) with up(r − 1,m− 1).

This sequence has n distinct letters, m blocks, and clearly avoids Fr,2.

2. Suppose that u is a sequence on m blocks with n distinct letters that avoids

Fr,3. Delete the first occurrence of every letter in u, as well as the last occurrence.

This empties the first and last blocks, leaving a sequence with at most m − 2

nonempty blocks that must have at most r − 1 letters per block, or else u would

have contained a pattern of Fr,3. Thus u has length at most 2n + (r − 1)(m − 2),

giving the upper bound. For the lower bound, consider the sequence obtained from

concatenating up(n, 1), up(r − 1,m − 2), and up(n, 1) again. This sequence has n

distinct letters, m blocks, and clearly avoids Fr,3.

3. Suppose that u is an r-sparse sequence with n distinct letters that avoids Fr,2.

Partition u into blocks of size r, except for the last block which may have size at

most r. Every block of length r must have the first occurrence of some letter (or

else u would contain a pattern in Fr,2), and the first block has r first occurrences.

This gives the upper bound. For the lower bound, consider the sequence obtained by

starting with up(r−1, 1) and concatenating ax up(r−1, 1) to the end for x = r, . . . , n.

This sequence has length (n− r)r + 2r − 1, it is r-sparse, and clearly avoids Fr,2.

4. Suppose that u is an r-sparse sequence with n distinct letters that avoids

Fr,3. Partition u into blocks of size r, except for some block besides the first or last

which may have size at most r. Every block of length r must have the first or last

occurrence of some letter (or else u would contain a pattern in Fr,3), the first block

has r first occurrences, and the last block has r last occurrences. This gives the

upper bound. For the lower bound, consider the sequence obtained by starting with

up(r − 1, 1) and concatenating ax up(r − 1, 1) to the end for x = r, . . . , n, r, . . . , n.

This sequence has length 2(n−r)r+3r−1, it is r-sparse, and clearly avoids Fr,3.

Next we find the exact value of Ex(up(r, 1)ax, n,m) and Ex(up(r, 1)ax, n) for

x ∈ {1, . . . , r}.

Theorem 6.2. For all integers m ≥ 1, n ≥ r, we have the following statements.

1. If x ∈ {1, . . . , r}, then Ex(up(r, 1)ax, n,m) = n+ (r − 1)(m− 1).

2. If x ∈ {1, . . . , r}, then Ex(up(r, 1)ax, n) = n+ x− 1.
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Proof. As in the last result, we prove a matching upper bound and lower bound for

each part.

1. The upper bound follows since every (r, 2)-formation contains up(r, 1)ax. For

the lower bound, consider the sequence u obtained from concatenating up(r−1,m−
1) with up(n, 1). For any copy of up(r, 1) in u, any letter occurring after the copy

must be making its first occurrence in u. Thus u avoids up(r, 1)ax, and it has n

distinct letters and m blocks.

2. For the upper bound, let u = u1u2 . . . be an r-sparse sequence with n distinct

letters that avoids up(r, 1)ax. Note that all of the letters ui for i ≥ x cannot occur

later in u, or else u would contain up(r, 1)ax. This implies the upper bound. For

the lower bound, consider the sequence obtained by concatenating up(n, 1) with

up(x−1, 1). Any letter that occurs twice in this sequence must have all occurrences

among the first x − 1 and last x − 1 letters in the sequence. Thus this sequence

avoids up(r, 1)ax, it has length n+ x− 1, and it is r-sparse for n ≥ r.

7. Hypermatrices and Generalized Formations

In this section, we extend some of the exact results we proved for (r, s)-formations in

Section 6 from sequences to d-dimensional 0–1 matrices. Before proving the results,

we discuss some additional terminology.

For any family of d-dimensional 0–1 matrices Q, define ex(n,Q, d) to be the

maximum number of ones in a d-dimensional matrix of sidelength n that has no

submatrix which can be changed to an exact copy of an element of Q by changing

any number of ones to zeroes. When Q has only one element Q, we also write

ex(n,Q, d) as ex(n,Q, d). Most research on ex(n,Q, d) has been on the case d = 2,

but several results for d = 2 have been generalized to higher values of d. For

example, Marcus and Tardos proved that ex(n, P, 2) = O(n) for every permutation

matrix P [20], and this was later generalized by Klazar and Marcus [18], who proved

that ex(n, P, d) = O(nd−1) for every d-dimensional permutation matrix P . Another

example is the upper bound ex(n, P, 2) = O(n) for double permutation matrices

P from [10], which was generalized to an O(nd−1) upper bound for d-dimensional

double permutation matrices in [13].

Define the projection P of the d-dimensional 0–1 matrix P to be the (d − 1)-

dimensional 0–1 matrix with P (x1, . . . , xd−1) = 1 if and only if there exists y such

that P (y, x1, . . . , xd−1) = 1. An i-row of a d-dimensional 0–1 matrix is a maximal

set of entries that have all coordinates the same except for the the ith coordinate.

An i-cross section of a d-dimensional 0–1 matrix is a maximal set of entries that

have the same ith coordinate.

Given a d-dimensional 0–1 matrix P with r ones, a (P, s)-formation is a (d+ 1)-

dimensional 0–1 matrix M with sr ones that can be partitioned into s disjoint
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(d+1)-dimensional 0–1 matrices G1, . . . , Gs each with r ones so that any two Gi, Gj
have ones in the same sets of 1-rows of M , the greatest first coordinate of any one in

Gi is less than the least first coordinate of any one in Gj for i < j, and P = M . For

each d-dimensional 0−−1 matrix P , define FP,s to be the set of all (P, s)-formations.

Geneson [11] proved that ex(n,FP,3, d + 1) ≤ 3(ex(n, P, d)n + nd) for all positive

integers n and d-dimensional 0–1 matrices P . Here we prove that ex(n,FP,3, d+1) =

2nd + ex(n, P, d)(n − 2) and ex(n,FP,2, d + 1) = nd + ex(n, P, d)(n − 1) for any d-

dimensional 0–1 matrix P . By using a generalization of the Kővári-Sós-Turán upper

bound, we also generalize a result from [9] by proving that ex(n,FP,s, d + 1) =

Ω(nd+1−o(1)) if and only if s = s(n) = Ω(n1−o(1)). Our first result in this section is

an analogue of Theorem 6.1.1 for d-dimensional 0–1 matrices.

Theorem 7.1. If P is a d-dimensional 0–1 matrix, then ex(n,FP,2, d+ 1) = nd +

ex(n, P, d)(n− 1).

Proof. Suppose that A is a (d + 1)-dimensional 0–1 matrix of sidelength n that

avoids FP,2. Delete the first one in every 1-row. This empties the first 1-cross

section, leaving a (d + 1)-dimensional 0–1 matrix with at most n − 1 nonempty 1-

cross sections that must have at most ex(n, P, d) ones per 1-cross section, or else A

would have contained an element of FP,2. Thus A has at most nd+ex(n, P, d)(n−1)

ones, giving the upper bound.

For the lower bound, consider the (d+ 1)-dimensional 0–1 matrix obtained from

concatenating a d-dimensional all-ones matrix with n−1 copies of a d-dimensional 0–

1 matrix with ex(n, P, d) ones that avoids P . This matrix has nd+ex(n, P, d)(n−1)

ones and clearly avoids FP,2.

The next equality improves on the bound ex(n,FP,3, d+1) ≤ 3(ex(n, P, d)n+nd)

from [11]. It is an analogue of Theorem 6.1.2 for d-dimensional 0–1 matrices.

Theorem 7.2. If P is a d-dimensional 0–1 matrix, then ex(n,FP,3, d+ 1) = 2nd+

ex(n, P, d)(n− 2).

Proof. Suppose that A is a (d + 1)-dimensional 0–1 matrix of sidelength n that

avoids FP,3. Delete the first and last one in every 1-row. This empties the first

and last 1-cross sections, leaving a (d + 1)-dimensional 0–1 matrix with at most

n− 2 nonempty 1-cross sections that must have at most ex(n, P, d) ones per 1-cross

section, or else A would have contained an element of FP,3. Thus A has at most

2nd + ex(n, P, d)(n− 2) ones, giving the upper bound.

For the lower bound, consider the (d+ 1)-dimensional 0–1 matrix obtained from

concatenating a d-dimensional all-ones matrix, n− 2 copies of a d-dimensional 0–1

matrix with ex(n, P, d) ones that avoids P , and a d-dimensional all-ones matrix

again. This matrix has 2nd + ex(n, P, d)(n− 2) ones and clearly avoids FP,3.
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Wellman and Pettie asked how large must s = s(n) be so that Ex(as, n, n) =

Ω(n2−o(1)) [25]. Geneson proved that Ex(as, n, n) = Ω(n2−o(1)) if and only if

s = s(n) = Ω(n1−o(1)) using the Kővári-Sós-Turán theorem [9]. We extend this

bifurcation result to formations in d-dimensional 0–1 matrices, but we need to use

an extension of the Kővári-Sós-Turán theorem for d-dimensional 0–1 matrices. One

such extension was proved in [13], where it was shown that ex(n,Rk1,...,kd , d) =

O(nd−α(k1,...,kd)), where α = max(k1,...,kd)
k1·k2···kd . This bound is not sufficient to extend

the bifurcation result, but the same proof that was used in [13] implies the following

stronger result.

Theorem 7.3. For fixed integers k1, . . . , kd ≥ 1, we have

ex(n,Rj,k1,...,kd , d+ 1) = O(j
1

k1·k2···kd n
d+1− 1

k1·k2···kd ). (12)

Using Theorem 7.3, we prove the following generalization of the result of Geneson

[9].

Theorem 7.4. If P is a nonempty d-dimensional 0–1 matrix, then

ex(n,FP,s, d+ 1) = Ω(nd+1−o(1)) (13)

if and only if s(n) = Ω(n1−o(1)).

Proof. Suppose that P is a nonempty d-dimensional 0–1 matrix with dimensions

k1 × · · · × kd. If s = Ω(n1−o(1)), then any (d+ 1)-dimensional 0–1 matrix that has

min(s−1, n) 1-cross sections with all entries equal to 1 and n−min(s−1, n) 1-cross

sections with all entries equal to 0 will avoid every (P, s)-formation. Thus in this

case we have ex(n,FP,s, d+ 1) ≥ nd(s− 1) = Ω(nd+1−o(1)).

If s 6= Ω(n1−o(1)), then there exists a constant α < 1 and an infinite sequence of

positive integers i1 < i2 < . . . such that s(ij) < iαj for each j > 0. Thus, it suffices

to show that for every 0 < α < 1, there exists a constant β < d + 1 such that

ex(n,FP,dnαe, d+1) = O(nβ). However this follows immediately from Theorem 7.3,

since every (d + 1)-dimensional 0–1 matrix that contains Rdn
αe,k1,...,kd must also

contain an element of FP,dnαe.

8. Conclusion

In this paper, we improved the upper bound on Ex(up(r, 2), n) by showing that every

((r−1)
(
r
2

)
+1, 3)-formation contains up(r, 2). We proved that this result is sharp up

to a constant factor by showing that there exist (m, 3)-formations with m = Ω(r3)

which avoid up(r, 2). More generally, we showed that fl(up(r, t)) = Θ(r(
2t−1
t )), where

the constant in the bound depends only on t.
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Since these bounds are sharp but not exact, they leave some natural open prob-

lems. First, what is the exact value for the minimum m = m(r) such that every

(m, 3)-formation must contain up(r, 2)? More generally, what is the exact value for

the minimum m = m(r, t) such that every (m, 2t− 1)-formation contains up(r, t)?

It was shown in [12] that fw(u) = 4 and Ex(u, n) = Θ(nα(n)) for any sequence

u of the form avav′a such that a is a letter, v is a nonempty sequence of distinct

letters excluding a, and v′ is obtained from v by only moving the first letter of v. As

in the last paragraph, there is the problem of determining the minimum m = m(v)

such that every (m, 4)-formation contains avav′a.

We determined the exact values of Fr,2(n), Fr,3(n), Fr,2(n,m), and Fr,3(n,m),

and we also found the exact values of Ex(up(r, 1)ax, n) and Ex(up(r, 1)ax, n,m) for

x ∈ {1, . . . , r}. A natural remaining problem is to determine the exact value of

Ex(up(r, 1)axay, n) and Ex(up(r, 1)axay, n,m) for any x, y ∈ {1, . . . , r}.
We also affirmed a conjecture from [12] that fw(abc(acb)tabc) = 2t + 3 for all

t ≥ 0 and that

Ex(abc(acb)tabc, n) = n2
1
t!α(n)t±O(α(n)t−1) (14)

for t ≥ 1. In order to determine other families of sequences u for which fw(u) gives

sharp upper bounds on Ex(u, n), it would be useful to have a faster algorithm for

computing fw(u). The current fastest algorithms are in [14] and [8]. The latter

algorithm is faster than the former when the number of distinct letters is fixed, as

the length of the sequences goes to infinity. However the former algorithm is faster

than the latter when the number of distinct letters approaches the length of the

sequence.
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