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Abstract

In this short note, we extend results in several papers by proving effectively that
for m sufficiently large, an elliptic curve given by y2 = f(x)+m2, with f(x) a cubic
polynomial that splits over Z, has rank at least 2. This also constitutes an effective
version of a theorem of Shioda.

1. Introduction

In a well known paper on a family of elliptic curves, Brown and Myers [3] prove

that the rank of any elliptic curve of the form

y2 = x3 − x+m2, m ∈ Z

is always at least 2 for m ≥ 2. Since then, a number of other papers have been

written on families of curves extending the result of Brown and Myers. These

include the work of Antoniewicz [1] on curves of the form y2 = x3−m2x+ 1, Tadić

[10] on curves of the form y2 = x3 − x + m2, Fujita and Nara [4] and Juyal and

Kumar [6] on curves of the form y2 = x3 − m2x + n2, and most recently, Hatley

and Stack [5] on curves of the form y2 = x3 − x+m6.

In this article, we consider the slightly more general family of curves given by

Ef,m : y2 = f(x) +m2, (1.1)

in which f(x) is a cubic polynomial with three distinct integer roots a, b, c, and

m ≥ 0 is an integer. Our goal is to prove that the rank of Ef,m is similarly bounded

from below because of the existence of independent points on the curve provided

that m is large enough with respect to a,b and c. In fact, it is not difficult to

construct examples with relatively smallm for which the result is false. For example,

Voutier [11] has found that the families of curves y2 = x(x− a)(x− b) + m2, with

(a, b,m) = (1, 4k2, 4k3 − 4k) and (a, b,m) = (3, 8k2 + 6, 8k3 + 6k), are very often

curves of rank 1.
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Proving a lower bound for the rank as discussed above was the topic of an earlier

version of our work prior to learning of the much earlier work of Shioda in [7],

wherein he proves a lower bound of 2 for the rank of

Ef (t) : y2 = f(x) + t2

regarded as an elliptic surface. Applying Silverman’s Specialization Theorem in

[8] to Shioda’s result is already enough to effectively prove the result we present

here. However, we feel the methods used here are somewhat more natural, using

a combination of group theoretic and Diophantine methods, and provide perhaps

more hope of getting a bound for m which is closer to the truth. Indeed, we are

unable to find any curve of the form (1.1) of rank 1 for which m ≥ max(|a|, |b|, |c|)2.

We first remark that if the curve in question is given by

y2 = (x− a)(x− b)(x− c) +m2,

and we let X = x− c, then the curve can be rewritten as

y2 = X(X + c− a)(X + c− b) +m2,

and so there is no loss in generality by restricting our focus to the case that f(x) has

a root at x = 0, i.e., that c = 0. However, we will state our result in full generality.

We now state the main result of this paper.

Theorem 1. Let a, b, c be distinct integers. Then there is a computable constant

C = C(a, b, c), depending on a, b, c, with the property that if m > C, then the rank

of the curve

y2 = (x− a)(x− b)(x− c) +m2 (1.2)

is at least 2.

We fall short of proving an effective result on the torsion subgroup. In particular,

it appears that for fixed a, b, c, the torsion subgroup is trivial for m sufficiently large,

however we are unable to effectively deal with the possibility that it has order 5. In

fact, a much stronger property appears to hold; if φ5(x) denotes the fifth division

polynomial of the curve in (1.2), our computations show that this polynomial is

actually irreducible for all m sufficiently large.

2. An Independence Criterion

In this section we prove a simple result which will provide our overall strategy to

prove Theorem 1.1.
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Lemma 1. Assume that E(Q) is 2-torsion free. If P and Q are points of infi-

nite order such that all three of P,Q, P + Q are not in 2E(Q), then P and Q are

independent.

Proof. The order of the torsion subgroup T is odd by hypothesis, which by Mazur’s

theorem, implies that it is one of 3, 5, or 7. Let p denote this order, and notice that

for any P ∈ T , P = 2∗ (((p+1)/2)∗P ), so that P ∈ 2E(Q). It is well-known that if

for an arbitrary rational torsion point T , any linear combination of P , Q, T (except

for T alone) is not in 2E(Q), then P and Q are independent. The assertion now

immediately follows from the observation above that T ∈ 2E(Q) for any rational

torsion point T of odd order.

3. Proof of Theorem 1.1

Proof. We now turn our attention to the proof of Theorem 1.1. By Lemma 2.1, it is

enough to prove that if m is large enough, then E has no rational 2-torsion; (a,m)

and (b,m) are not points of order 3, 5 or 7; (a,m), (b,m) and (a,m)+(b,m) (which

equals (0,−m)) are not in 2E(Q).

In order to achieve these, it becomes significantly simpler to deal with a short

Weierstrass equation, and a short computation shows that the curve in (1.1), with

c = 0 (as remarked just prior to the statement of Theorem 1.1), can be written in

the form

Y 2 = X3 +AX +B, (3.1)

where A = −27(a2 − ab+ b2) and B = (27m)2 + 3A(a+ b) + 27(a+ b)3.

We begin by considering the problem of eliminating 2-torsion. If (r, s) denotes a

2-torsion point on the curve given in (3.1), then s = 0 and r is an integer root of

the cubic therein. This implies that there is an integer t for which

X3 +AX +B = (X − r)(X2 + rX + t).

Therefore, A = t− r2 and B = −rt, and by substituting t = r2 + A into B = −rt,
we see that B = −r3 −Ar. Using the expression above for B shows that

(27m)2 = (−r)3 +A(−r)− 3A(a+ b)− 27(a+ b)3.

Therefore, the pair (−r, 27m) is an integral point on the curve

y2 = x3 +Ax− (3A(a+ b) + 27(a+ b)3).

By the main result in [2], it follows that m ≤ C1(a, b).

The next step is to show that for m large, both (a,m) and (b,m) are not points

of order 3, 5 or 7. This is achieved by computing the division polynomials of the
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curve defined by (3.1), and evaluating at x = a and x = b. This was achieved using

MAGMA’s Evaluate function, and not surprisingly, the resulting values were found

not to be identically zero. The division polynomials were of the form Fa,b(x,m),

and thus m is bounded in terms of a and b by the height of F after making the

substitution x = a and x = b respectively. As one would expect, the largest height

arose from the 7-th division polynomial, which we do not display here. If we let

C2(a, b) denote this height, then for m ≥ max(C1(a, b), C2(a, b)), we deduce that

both (a,m) and (b,m) are points of infinite order.

To complete the proof of Theorem 2.1, we will show that for m large enough,

none of (a,m), (b,m) or (0,−m) are in 2E. We will describe the case for (0,−m),

as the other two cases give similarl bounds. We will use the doubling formula from

p.58-59 of [9], which allows us to use the equation y2 = x(x − a)(x − b) + m2 for

our curve. In this case, the basic quantities from [9] are

a1 = a3 = 0, a2 = −(a+ b), a4 = ab, a6 = m2,

from which we deduce that

λ =
3x2 − 2(a+ b)x+ ab

2y
, ν =

−x3 + abx+ 2m2

2y
,

from which it follows that 0 = λ2 + (a + b) − 2x and −m = −λ · 0 − ν = −ν. The

two expressions for ν combine to give the equation

x4 − 2abx2 − 8m2x+ (a2b2 + 4m2(a+ b)) = 0.

This equation in x and m satisfies the condition of Runge’s theorem on Diophantine

equations (see [12]), giving an upper bound C3(a, b) for m.
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