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Abstract
In this short note, we extend results in several papers by proving effectively that
for m sufficiently large, an elliptic curve given by y? = f(x)+m?, with f(x) a cubic
polynomial that splits over Z, has rank at least 2. This also constitutes an effective
version of a theorem of Shioda.

1. Introduction

In a well known paper on a family of elliptic curves, Brown and Myers [3] prove
that the rank of any elliptic curve of the form

3

v =a>—z+m? meZ

is always at least 2 for m > 2. Since then, a number of other papers have been
written on families of curves extending the result of Brown and Myers. These
include the work of Antoniewicz [1] on curves of the form y* = 2® —m?2x + 1, Tadi¢
[10] on curves of the form y?> = x3 — 2 + m?, Fujita and Nara [4] and Juyal and
3 — m22 4+ n?, and most recently, Hatley

3 — x4+ mb.

Kumar [6] on curves of the form y? = z
and Stack [5] on curves of the form y? = z
In this article, we consider the slightly more general family of curves given by

Epm: y* = f(z) +m?, (L.1)

in which f(z) is a cubic polynomial with three distinct integer roots a,b,c, and
m > 0 is an integer. Our goal is to prove that the rank of E¢ ,, is similarly bounded
from below because of the existence of independent points on the curve provided
that m is large enough with respect to a,b and c. In fact, it is not difficult to
construct examples with relatively small m for which the result is false. For example,
Voutier [11] has found that the families of curves y? = z(z — a)(z — b) + m?, with
(a,b,m) = (1,4k? 4k — 4k) and (a,b,m) = (3,8k? + 6,8k> + 6k), are very often
curves of rank 1.
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Proving a lower bound for the rank as discussed above was the topic of an earlier
version of our work prior to learning of the much earlier work of Shioda in [7],
wherein he proves a lower bound of 2 for the rank of

By(t): y* = f(z) +t*

regarded as an elliptic surface. Applying Silverman’s Specialization Theorem in

[8] to Shioda’s result is already enough to effectively prove the result we present

here. However, we feel the methods used here are somewhat more natural, using

a combination of group theoretic and Diophantine methods, and provide perhaps

more hope of getting a bound for m which is closer to the truth. Indeed, we are

unable to find any curve of the form (1.1) of rank 1 for which m > max(|al, |b|, |c|)?.
We first remark that if the curve in question is given by

v’ = (¢ —a)(z —b)(z —c) +m?,
and we let X = x — ¢, then the curve can be rewritten as
V¥ =XX+c—a)(X +c—b)+m?

and so there is no loss in generality by restricting our focus to the case that f(x) has
aroot at x = 0, i.e., that ¢ = 0. However, we will state our result in full generality.
We now state the main result of this paper.

Theorem 1. Let a,b,c be distinct integers. Then there is a computable constant
C = C(a,b,c), depending on a,b, c, with the property that if m > C, then the rank
of the curve

y> = (z—a)(z —b)(z —c)+m? (1.2)

is at least 2.

We fall short of proving an effective result on the torsion subgroup. In particular,
it appears that for fixed a, b, ¢, the torsion subgroup is trivial for m sufficiently large,
however we are unable to effectively deal with the possibility that it has order 5. In
fact, a much stronger property appears to hold; if ¢5(z) denotes the fifth division
polynomial of the curve in (1.2), our computations show that this polynomial is
actually irreducible for all m sufficiently large.

2. An Independence Criterion

In this section we prove a simple result which will provide our overall strategy to
prove Theorem 1.1.
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Lemma 1. Assume that E(Q) is 2-torsion free. If P and Q are points of infi-
nite order such that all three of P,Q, P + Q are not in 2E(Q), then P and Q are
independent.

Proof. The order of the torsion subgroup 7" is odd by hypothesis, which by Mazur’s
theorem, implies that it is one of 3, 5, or 7. Let p denote this order, and notice that
forany P € T, P =2(((p+1)/2)* P), so that P € 2E(Q). It is well-known that if
for an arbitrary rational torsion point T, any linear combination of P, @, T (except
for T alone) is not in 2E(Q), then P and @ are independent. The assertion now
immediately follows from the observation above that T' € 2E(Q) for any rational
torsion point 7" of odd order. O]

3. Proof of Theorem 1.1

Proof. We now turn our attention to the proof of Theorem 1.1. By Lemma 2.1, it is
enough to prove that if m is large enough, then E has no rational 2-torsion; (a, m)
and (b, m) are not points of order 3, 5 or 7; (a,m), (b,m) and (a, m)+ (b, m) (which
equals (0, —m)) are not in 2E(Q).

In order to achieve these, it becomes significantly simpler to deal with a short
Weierstrass equation, and a short computation shows that the curve in (1.1), with
¢ = 0 (as remarked just prior to the statement of Theorem 1.1), can be written in
the form

Y?=X*+AX + B, (3.1)

where A = —27(a®? — ab +b?) and B = (27m)? + 3A(a + b) + 27(a + b)3.

We begin by considering the problem of eliminating 2-torsion. If (r, s) denotes a
2-torsion point on the curve given in (3.1), then s = 0 and r is an integer root of
the cubic therein. This implies that there is an integer ¢ for which

X34+ AX + B= (X —r) (X% +7X +1).

Therefore, A =t — 2 and B = —rt, and by substituting t = 72> + A into B = —rt,
we see that B = —r3 — Ar. Using the expression above for B shows that

(27m)? = (—r)® + A(—r) — 3A(a +b) — 27(a + b)>.
Therefore, the pair (—r,27m) is an integral point on the curve
y? = 2%+ Az — (3A(a +b) + 27(a + b)?).

By the main result in [2], it follows that m < Cy(a,b).
The next step is to show that for m large, both (a, m) and (b, m) are not points
of order 3, 5 or 7. This is achieved by computing the division polynomials of the
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curve defined by (3.1), and evaluating at = @ and « = b. This was achieved using
MAGMA’s Evaluate function, and not surprisingly, the resulting values were found
not to be identically zero. The division polynomials were of the form F, ;(z, m),
and thus m is bounded in terms of a and b by the height of F' after making the
substitution x = a and x = b respectively. As one would expect, the largest height
arose from the 7-th division polynomial, which we do not display here. If we let
Cs(a,b) denote this height, then for m > max(Cy(a,b),Cs(a,b)), we deduce that
both (a,m) and (b,m) are points of infinite order.

To complete the proof of Theorem 2.1, we will show that for m large enough,
none of (a,m), (b,m) or (0,—m) are in 2E. We will describe the case for (0, —m),
as the other two cases give similarl bounds. We will use the doubling formula from
p.58-59 of [9], which allows us to use the equation y? = z(z — a)(x — b) + m? for
our curve. In this case, the basic quantities from [9] are

a1 =a3 =0,a3 = —(a+b),ay = ab,ag = m?,

from which we deduce that

5= 322 —2(a+b)x + ab —3 + abx + 2m?>

2y 2y
from which it follows that 0 = A2 + (a +b) — 2z and —m = —X-0— v = —v. The
two expressions for v combine to give the equation

z* — 2abx? — 8m2x + (a®b* + 4m>(a + b)) = 0.

This equation in « and m satisfies the condition of Runge’s theorem on Diophantine
equations (see [12]), giving an upper bound Cs5(a,b) for m. O
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