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Abstract

A striking conjecture asserts that every exact covering family (ECF) of Z>0 into
m ≥ 3 sets with αk and βk real, αk > 1 and αk’s distinct for k = 0, . . . ,m − 1
satisfies α0, ..., αm−1 = (2m − 1)/2k, k = 0, ...,m − 1. We prove the conjecture for
the case where the αk’s are of the form T/ak, T a common numerator, a ≥ 2 a fixed
integer, k = 0, ...,m− 1.

– Another paper commemorating the unforget-
table Ron Graham, who combined mathematical
talent and brilliance with outright kindness and
tolerance to everybody. He also knew how to
fuse together outstanding mathematical research
with mathematical administration, having been the
president of both the AMS and MAA. In addition
he was a champion in various physical activities,
such as juggling and gymnastic trampolining. His
early passing keeps me yearning and sad.

1. Introduction

This paper is about covering the positive integers disjointly. We give a proof to an

important special case of the following.

Conjecture A: Every decomposition of Z>0 into m ≥ 3 sets bαi + βic, with αi > 1

and βi real and αi’s distinct for i = 0, ...,m− 1, satisfies

α0, ..., αm−1 =

{
2m − 1

2i

}
, 0 ≤ i ≤ m− 1. (1)

See Tijdeman [25] for the history of partial results about this conjecture. Later

developments include Barát and Varjú [2], Simpson [21], Schnabel and Simpson [19].

The conjecture is quoted in several papers; for this and related material see the

bibliography below. It is interesting that in [14], where exercises are classified into
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Warmups, Basics, Homework exercises, Exam problems, Bonus problems, Research

problems, Conjecture A appears in Research problems with the extra tag ‘expect

this to be hard’.

2. Background

A Beatty sequence is a sequence S(α, β) = bnα + βc, n = 1, 2, ... where α > 0

and β are real numbers and bxc is the integer part of x. A system of Beatty

sequences {S(αi + βi}ki=1 such that every integer belongs to exactly one Beatty

sequence is an ECF (Exactly Covering Family), also called a complementary family.

By density arguments, for such a system to be complementary, it is necessary that∑k
i=1 1/αi = 1. Without loss of generality, we may assume that α1 ≤ α2 ≤ ... ≤ αk.

A disjoint covering system of Beatty sequences admits multiplicity if there exist

1 ≤ i < j ≤ k such that αi = αj , i 6= j. For the case that all α’s are integers, Mirsky,

Donald Newman, Davenport and Rado proved, independently, that αk−1 = αk. For

example, 2n, 2n−1; 2n, 4n−3, 4n−1. So for integers, it holds even for k = 2. Their

slick proof, quoted by Erdős [6], uses a generating function and roots of unity. A

non-analytic proof was given later by Berger et al. [5]. Graham [13] showed that

if one modulus is irrational, than all are. He also concluded in the final corollary

of [12] that in an irrational ECF with k ≥ 3 moduli, αi = αj for some i 6= j –

the strongest known evidence supporting conjecture A. In fact, the case of (1) is

the only known case where this does not hold. The conjecture is just that this is

the only such case. Thus only the rationals stand out, stubbornly, according to

Conjecture A.

Usually in math, the rationals team up, if at all, with the integers; yet here

the irrationals join in with the integers. Somewhere we saw the following sentence:

“Number Theory concerns the study of properties of the integers, rational numbers,

and other structures that share similar features.” In the present study, rational

numbers do not share similar features with integers and irrationals.

We prove Conjecture A for sequences of the form S(ai) = T/ai, that is, we show

that these sequences form an ECF if and only if a = 2. This gives a boost for

proving Conjecture A, but is of interest on its own, since it is closest to the formula:

S(ai) = {bTn/ai + βic : n = 1, 2, . . . }

and

S(aj) = bTn/aj + βjc : n = 1, 2, . . . }, 0 ≤ i < j ≤ m− 1,

where m is the number of sequences for any integer a ≥ 2, with the numerator

T = (am − 1)/(a− 1).

This formula, which appears again right after Formula (2) below, gave rise to

Conjecture A in the first place.
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3. Introducing the Theorem

We chose a unique value for the common numerator T , namely, the integer T =

(am − 1)/(a− 1) = 1 + a+ a2 + ...+ am−1. Why this choice of T? We want to cut

the cake into slices of size T/ai. Each slice occupies ai/T of the cake, so in order

to cut the entire cake we need
∑
ai = T which holds precisely for the T we chose.

These are certainly necessary requirements.

Are they also sufficient? No! We need also that the cake is cut into distinct

portions. Our feeling is that this is achieved when all the slices T/ai are in lowest

terms. In fact, T/ai is in lowest terms if and only if a = 2. However, this feeling

must be proved. This is the essence of the proof of the following theorem. For

example, 1, 2, 3 satisfy 1/6 + 2/6 + 3/6 = 1, yet they are not moduli of an ECF;

2/6, 3/6 are not in lowest terms.

The crux is based on the powerful JRT (Japanese Remainder Theorem motivated

by conjecture A), due to Morikawa and Simpson. It cannot produce valid moduli,

it can only verify their suitability; nor can it produce valid shifts. But it is strong

nevertheless. The name JRT was given by Simpson to honor Morikawa.

Theorem (The Japanese Remainder Theorem [16], [17], [21]). Given two distinct

rational Beatty sequences {bTin/qi + βic : n = 1, 2, . . .} and {bTjn/qj + βjc : n =

1, 2, . . .}, and Ti, Tj , qi, qj positive integers, let T = gcd(Ti, Tj), q = gcd(qi, qj),

ui = qi/q, uj = qj/q. Then the sequences are disjoint for some shifts βi, βj if and

only if there exist positive integers x, y so that

xui + yuj = T − 2uiujq + 2uiuj . (2)

We are interested in the disjointness of sequences S(ai) = {bTn/ai + βic : n =

1, 2, . . . } and S(aj) = bTn/aj+βjc : n = 1, 2, . . . }, 0 ≤ i < j ≤ m−1, wherem is the

number of sequences for any integer a ≥ 2, with the numerator T = (am−1)/(a−1).

In terms of JRT, given any two such sequences S(ai), S(aj), 0 ≤ i < j ≤ m− 1, we

have q = gcd(ai, aj) = ai, ui = 1, uj = aj−i. The sequences S(ai) and S(aj) are

disjoint if and only if there exist positive integers x, y such that

x = (am − 1)/(a− 1)− 2aj + aj−i(2− y), 0 ≤ i < j ≤ m− 1. (3)

This is Equation (2) adapted to S(ai).

We have the following theorem.

Theorem 1. Sequences S(ai), S(aj) are disjoint if and only if a = 2 for all 0 ≤
i < j ≤ m− 1.

Proof. Let T = (am − 1)/(a − 1) = 1 + a + a2 + ... + am−1. For a = 2, we have

T = 2m − 1, and (3) becomes:
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x = 2m − 1− 2j+1 + 2j−i(2− y). (4)

For y = 1,

x = 2m − 1− 2j+1 + 2j−i > 0

for all 0 ≤ i < j ≤ m− 1.

So for all 0 ≤ i < j ≤ m− 1 we can choose βi and βj so that S(2i) and S(2j) are

disjoint.

Now let a > 2. Recall

x = (am − 1)/(a− 1)− 2aj + aj−i(2− y).

For j = m− 1, i = m− 2, y = 1, we have x = (am − 1)/(a− 1)− 2am−1 + a < 0 for

all a ≥ 3,m ≥ 3. So S(am−1) and S(am−2) intersect.

Notice that for j = 1, i = 0 and y = 1 the sequences S(a0) and S(a1) are disjoint.

Corollary 1. Sequences of the form {S(ai)}mi=1 form an ECF if and only if a = 2.

Remarks.

A. The reader is encouraged to see where the proof of the theorem fails for the

m-member sequence a, a2, ..., am.

B. In Fraenkel [10] it was shown that sequences S(2i) form an ECF. In particu-

lar, they are disjoint. Here we went the other way around: proved disjointness

of sequences (2i); the ECF property follows from the cake preamble covering dis-

cussed above. Here we showed that some sequences S(ai) intersect for a > 2, thus

supporting Conjecture A for this important subcase.

4. Further Work

(i) We showed that S(ai) and S(aj) intersect for a > 2. What are other pairs, if

any, of intersecting sequences for a > 2?

(ii) For a > 2, sequences intersect. For every two intersecting sequences there are

missing elements and multiple elements. Study the structure of the complementary

sequences of missing and multiple elements.

(iii) We proved Conjecture A for sequences {S(ai)}mi=1. Prove it for other con-

structed sequences.

Acknowledgement. Jamie Simpson has made many useful comments to this

paper, in addition to editing it. My deep appreciation to him.
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[7] P. Erdős, R.L. Graham, Old and new problems and results in combinatorial number theory.
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