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Abstract
We give some generalizations to three identities of Srinivasa Ramanujan involving
the greatest integer function.

1. Introduction

Let |z] denote the greatest integer less than or equal to . Ramanujan [8] proposed
three interesting identities involving the greatest integer function as a problem to
the Journal of the Indian Mathematical Society. If n is any positive integer, prove
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EJr\/@J:EjL n+iJ (2)
[Vn+ v+l =|Vin+2]. 3)

This problem involving (1)—(3) appears as Problem 723 in Ramanujan’s third note-
book [7, vol. 2, page 361], and proofs of (1)—(3) can be found in Berndt’s book [3,
pp. 76-78]. A.A. Krishnaswami Aiyangar [1] posed a problem giving analogues, one

involving fourth roots and one involving fifth roots, of all three parts of Problem
723. In [2], he established results generalizing the results in his problem. Chen in
[4] gave some extensions and conjectures to (2) and (3), such as

[Vn4+vVn+1| = |vVn+vn+2]
= |Vin+1| = [VAn+2| = |V4n + 3]
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We give a few generalizations of all the identities (1), (2), (3). In this article,
by natural numbers, we mean positive integers. In Section 2, we will show that (1)
is a direct consequence of Hermite’s identity (see [9]). It states that for any real
number z and natural number m, we have

m—1

> {x+ ;J = |ma]. (4)

=0

We give some corollaries to Hermite’s identity in Section 2.
Next, in Section 3, we prove identities similar to (2). We prove that for any
natural numbers a,b, and n > g, we have

{b-h/élni—HJ _ Vﬂr\/mJ _ {b—ka’

a a a

and for any natural number m, we have

{b—l— @J {b—i— WJ

b+ vVIm+6 b+ vVIm+7
a a '
We prove these identities from the following theorem (which is also proved in Section
3).

Theorem 1. Let S be any set containing all natural numbers and let f : S — R be a
strictly increasing (resp. decreasing) function whose restriction to natural numbers
18 in integers. Let a,b, and m be any three natural numbers such that a < b. If

f(z)=y modm
has no solutions in x € N for ally € {a,a+1,--- ,b—1,b}, then
[ mta—1)) = |f m 4 0)] = = | m+ D)

(resp. Lf_l(nm—i—a)J = Lf_l(nm—i—a—i—l)J =...= Lf_l(nm—i—b—i—l)J)

for all natural numbers n such that =1 exists for all elements in [nm+a—1,nm +
b|NZ (resp. [nm+a,nm+b+1]NZ).

In Section 4, we consider two identities of the form (3) and prove Theorems 2
and 3.
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Theorem 2. For all natural numbers n,k > 1, except for finitely many exceptions
3\ k
of the form n = {(5) J, we have

|+ Ynt) = {25/%”.

For proving that there are only finitely many exceptions, we use a result of Mahler
[6].

Theorem 3. Letl, k,x1,x0,...,x; be natural numbers, and let p be a prime number
k—1 2 2
such that p|l,p* 11, and p{ (x1 + 22 + -+ 7). If n > M, then

|[Vntz + Vnta+-+ ntal = {li\c/n_kxl—kxz-ly..._kle.

2. Identities in the Spirit of (1)

Now let us prove Ramanujan’s identity (1) using Hermite’s identity.

2.1. Proof of (1) using Hermite’s Identity

Proof. Set x = ¢, m =3 and x = %, n (4) to get:

31- L H"”J
LZH"”’J Gt

Adding both the equations and canceling out | % | on both sides, we get (1). O

2.2. Corollaries of Hermite’s Identity
We have the following corollary of Hermite’s identity.

Corollary 4. For any x € R and natural number n > 1, we have

oo n—1 .
x il |z forz >0
ZZLTLJ“H*—nJ_{LIJ-Fl for x < 0.
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Hence
Sl i i T T T
SY || =i X (15 - ) = i (- (5] ).
§=0 i=1 J=0
Since limg o0 [ 57| = 0 if 2 > 0 and limy o0 | 57| = —1 otherwise, we obtain
the claim. ]

By setting n = 2 and x = m in Corollary 4, we can prove Question 6 of the
International Math Olympiad held in 1968.

Corollary 5. For every natural number m, we have

B 252 o

=0

3. Generalizations of (2)

Let us now prove Theorem 1.

Proof of Theorem 1. Let us assume that the function f is strictly increasing (the
proof of the decreasing case is analogous). Let n be a natural number such that f
has an inverse for all elements in [nm+a—1,nm~+b]NZ and let ¢ = | f~(nm+a—1)].
The equation

f(z)=y mod m

has no solutions in z € N for y € {a,a+ 1,...,b— 1,b}. This implies
floo<nmm+a—-1l<nm+a<---<nm+b< f(c+1).
Applying f~! on all expressions, we get
c<f M mnmta—1) < frnmta) << fHnm+b) <c+1,
which implies the claim. O

Let us prove Ramanujan’s identity (2) using Theorem 1.

3.1. Proof of (2) Using Theorem 1

Proof. Let us take a function f(x) := (22 — 1)? defined on the interval [1, +00).
This function is increasing and is invertible in [1,00). As

f(x)=(22—-1)>=2 mod 4
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has no solutions in integers, applying Theorem 1 for m = 4 and a = b = 2, we have

T An+ )| = [f ' (4n+2)].

The inverse of f is f~!(z) = 2%, and therefore {H\/FJ _ {1+\/§n+2J or

A A Y U PO A
2 TV T T2V T

Let us look at some corollaries of Theorem 1.

3.2. Corollaries of Theorem 1

Corollary 6. Let a and b be any two natural numbers and n > g be any other
natural number. We have

{bJr\/MJ _ {b-l-\/WJ _ {b—i-\/mJ.

a a a

Proof. Let f(z) := (ax —b)? be a function defined on [2,00) (here f~!(x) = %)

a’
As a square can never be equivalent to 2 or 3 modulo 4, the claim follows from
Theorem 1. O

Corollary 7. Let a,b, and n be any three natural numbers. We have

{b+€/mJ _ {b+€/mJ o VﬂrmJ _ VjLWJ'

a a a a

Proof. Let f(x) := (ax — b)? be a function defined on R (here f~!(z) = %)
As a cube can never be equivalent to 2,3,...,7 modulo 9, the claim follows from
Theorem 1. O

4. Generalizations of (3)

4.1. Proof of Theorem 2

We will prove it using three lemmas. For proving one of these lemmas, we use an
inequality known as the generalized mean inequality. If p is a non-zero real number,
and x1,...,x, are positive real numbers, then the generalized mean with exponent
p of these positive real numbers is:

1

1 ’

Mp(xl,...,xn):<n2xf> .
i=1
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For p = 0, we set the generalized mean equal to the geometric mean:

Mo(z1,...,2,) = (H%) .
i1

The generalized mean inequality states that, for all real numbers p, ¢, z1, ..., Ty, if
p<gqandxy >0,...,2, >0, then

Mp(z1, ..., 20) < Mg(21,...,25).

The two means are equal if and only if 1 =29 = ... = z,.

The inequality of arithmetic and geometric means, or more briefly the AM-GM
inequality, states that the arithmetic mean of a list of non-negative real numbers
is greater than or equal to the geometric mean of the same list. Further, equality
holds if and only if every number in the list is the same. For a list of n non-negative
real numbers x4, ..., xz,, we have

n ® L
(H xi) < o Z Ti,
=1 =1
with equality if and only if x1 =z = ... = x,,.

Lemma 8. For natural numbers n,k > 1, we have
|V2kn 211 = | Y2k 21

Proof. 1f H/2kn + Qk—lJ #* {\"/an + 2k-1 1J , then there exists an integer m such
that ¥/2kn 4+ 28—1 > m > /2kn + 2k—1 — 1 or 2kn 4+ 251 > mF > 2kp 4 k-1 _ 1,
This implies 2Fn + 2F~1 = mF.

As 281 (2kn4-28=1) and 2% { (28n+4-28—1), we can see that 2¥n+2%~! cannot be a
perfect kth power and therefore cannot be equal to m*. Hence H/ 2kn 4 2k-1 1J =

| V22T 0

Lemma 9. For natural numbers n,k > 1 such that n > 283

V/2kn 4281 -1 < ¥/n+ ¥/n+1.

Proof. From the AM-GM inequality, we have % Vntl S 2/n2 1. As A/mZ +n >

—_ b B
W when n > 28=3_ we have {c/ﬁ% vntl o b/ 4 28 2;_1, By multiplying

both sides by 2, we get the desired inequality. O

, we have

Lemma 10. For natural numbers n,k > 1, we have

Yn+ Vn+1< V/2kn 4 261,
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Proof. From the generalized mean inequality, we have

My (/n, V/n+1) < M(/n, V/n+1).

Hence
Y Y 1 1 1
S a g CETES
2 2 2
By multiplying both sides by 2, we get the desired inequality. O

Let us prove Theorem 2.

Proof of Theorem 2. If . > 2*=3_ then from Lemma 9 and Lemma 10, we have
V2Fn +2F-1 —1 < ¥/n+ /n+1 < V/2Fn + 281, From Lemma 8, we get

[+ Yot 1) = [ V/2Fn+ 2T = {ﬂ“/miJ.

Ifn<2F3 thenas 2 < /n+ Yn+1<4and?2< P{“/n—i—%J < 4, we have

| V/n+ Vn+1], \‘2\k/n+ ;J € {2,3}.

The only possible exceptions to the theorem would occur when

[&/n+Yn+1]=2 and {an-F;J:?). (5)

1t [24/n+ 1] =3 thenn > (3)" L andif |+ ¥nF1] =2 thenn < (3)".
Therefore (5) implies n € [(%)k — %, (%)k) and n = {(%)RJ .
Suppose n = {(%)kJ is an exception. From (5), we have {/n + /n+1 < 3.

Applying the AM-GM inequality, we get 2 %/n(n+1) < 3 or n(n+ 1) < (2)%* or
(2n +1)? < 4(2)? + 1. Hence

EARER WU /S TS SN S A R N
2 2~ 2 4 2 2 8(§)k

2

DN | =

Multiplying both sides by 2 and adding 1 on both sides, we get

3\ " 3\ * 1
2(2) <om+1<2(2) + —.
2 2) A
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k
2(2) —(2n+1) ik
4(3)
Now we use (5) of Mahler’s [6] paper. For all u > v > 2,¢ > 0, and ¢ any positive
algebraic number, the following holds for all but a finite number of values of k

Hence

<

(6)

k
‘19 (E) — (nearest integer)| > e~ ¥, (7)

v

Putu=3, v=2,9=2, ¢=log2 in (7) to see that (6) can only hold for finitely
many pairs (n, k). Therefore there can be at most finitely many exceptions (n, k)

such that k£ > 1 and
. 1
[/n+ Vn+1] # {2\/n+2J .

The method used in Theorem 2 allows us to show that there can only be finitely
many exceptions. It would be an interesting research problem to study the proper-
ties of the exceptional set

{(n,k:) ENxN:k>1n= K;)kJ and [ ¥/n+ Vn+1] # {2(/@”

4.2. Proof of (3) Using Theorem 2

O

Proof. By setting k = 2 in Theorem 2, we obtain (3) for all n # [(2)?| = 2. Note
that (3) is true for n = 2, as |2 + V3] = |V/10] = 3. Hence (3) is true for all

natural numbers n. O

Let us now prove Theorem 3.

4.3. Proof of Theorem 3

Proof of Theorem 3. We will prove this by proving the following inequalities:

(8) [VnFai+¥n+a+-+ Ynta] < V@J

9) Vntai+¥nFta+-+¥nFto >l (n+a)(n+a) - (n+a)

k—
(10) for n > M, we have

1
ZLV(H+$1)(n+x2)...(n+xl)>l</n+x1+x2+ ta

! I
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(11) V@J = VVTLJFW_ILJ

k—1 2 2
We claim that the above inequalities imply Theorem 3. If n > I(I++%), then

|Vn+ai+ n+a+- + n+a (g Ll{/(n+z1)(n+x2)~~(n+xl)J

(1>0) \‘ZQ/H+I1+ZE2+"'+17 _IJ
- l Ik

(11) \‘li‘/n—kxl"'xQ—;'"‘*‘ale.

H/n+x1+\k/n+x2+m+ k/7n+l_lj > {l,\c/n+z1+xz+...+le. (12)

Therefore

Now (8) and (12) imply the desired result

YnTaoi+ Yt agt -+ Ynta| = lkn+x1+x2+...+xz _
i v

Proofs of (8) to (11) are given:

(8) Consider f(z) = ¥/n+x. As f’(x) < 0, from the finite form of Jensen’s
inequality, we have

wif(z1) + - Fwi f(x) < flwizr + - +way)

for all real w; satisfying wy; > 0,...,w; > 0 and wy; + --- +w; = 1. Put
wy=...=w = % in the above inequality to get

el By PO ki e ki
l

Therefore

[nta+-+ ¥nta < {li/n+x1+x24lr...+xl

(9) This follows from the AM-GM inequality.
(10) Now for n > w, we have

(P4 4ap) 1
2n2 = klp]




INTEGERS: 22 (2022) 10

Adding BH£2 on both sides, we get

T4+ (x%+~--+x12)>x1+~-+xl 1

n 2n2 = n Ikb=1p’

Therefore

2 2 z 22 T 2 e e w7 R
71_712 + 72_722 4 J_ilz > —t— .
n 2n n 2n n 2n n

Using elementary inequality x — % <log(l+x) <z for 0 <z <1, we have

2 2
10g<1+ﬂ)+...+10g(1+ﬂ)2 ﬂ_ﬂ 4+ 4+ ﬂ_i
n n n  2n? n  2n?

zitetwy Lk
n

ity 1
>llog |14+ —— |,
n

Adding [logn on both sides of the above inequality and exponentiating we
get

l
e 1
(n+ 1)+ ) (n+21) > <n+$1+l+$l_lk>

Raising both sides of the above inequality to the ith power, and multiplying
both sides of the resulting inequality by I, we get the desired result.

(11) We claim that [ {/n + £3F222F2 is never an integer. Note that

li/n+l’1+l'2?+xl _ {/lkfl(ln+x1+x2+~~+zl).

Now let v,(a) denote the highest power of p that divides a, and let v, () = m.
Since p|l and p* {1, we have 1 <m < k. As p{ (21 + 29 + -+ + ;) and p|in,
we have p{ (In 4+ x1 + 22+ --- + 2;). Hence

(P YIn 4+ 2y + 20+ -+ 1)) = (b — 1)m.

Now, k1 (k—1)m as k|(k—1)m implies k|m, which is impossible as 1 < m < k.
Hence
Etv,(I"Yin+zy + 20 + - + 1)),

Therefore [¥=(In 4 21 + x2 + --- + ;) cannot be a perfect kth power, and

I{/n+ w cannot be an integer.
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For the sake of contradiction, assume (11) is false. If (11) is false, then there
exists an integer a such that

RS SN AN R R

but as the right-hand side cannot be an integer, we have

li/n—kleerJlr Jrzl—lk<a<l’\”/n—¢—x1+x2jlL erl.

Now raise all expressions to the kth power to get
Fn+ P Yoy 4o+ +x)—1<a <P+ Yoy + a4+ 4 2). (13)

In (13), the left-hand side and the right-hand side are consecutive integers,
and a” is an integer. As there cannot be an integer between two consecutive
integers, (13) is impossible. Hence (11) is true.

O
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