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Abstract

Symmetric valleys in Dyck paths were recently studied by Elizalde, who proved
using generating functions that the total number of symmetric valleys in all Dyck
paths of semilength n equals the total number of internal nodes of even outdegree
in all rooted ordered trees with n edges. In this note, we give a bijection exhibiting
this. This bijection has nice properties allowing us to refine the counting with
respect to other statistics such as height of the symmetric valley and depth of the
even degree vertex in an ordered tree.

1. Introduction

We start with the relevant definitions, following Elizalde [1] for the most part. A

Dyck path of semilength n is a lattice path with steps u = (1, 1) and d = (1,−1)

that starts at (0, 0), ends at (2n, 0), and never goes below the x-axis. Let Dn be

the set of Dyck paths of semilength n, and let D =
⋃

n≥0Dn be the set of all Dyck

paths. An ordered tree (or plane tree) is a rooted tree for which the subtrees of

every vertex are linearly ordered from left to right. Let Tn be the set of ordered

trees with n edges, and let T =
⋃

n≥0 Tn. It is well-known that |Dn| = |Tn|. The

standard bijection G from ordered trees to Dyck paths is as follows. G maps the

tree with no edges to the empty path. If the root r of a tree T has T1, T2, . . . , Tm as

its subtrees, G(T ) = uG(T1)duG(T2)d . . . uG(Tm)d. This is the same as traversing

the tree in preorder, writing u when going down an edge and writing d when going

up an edge.

A valley in a Dyck path is an occurrence of du. We say that a valley du is

symmetric if the maximal subsequence of the form diuj that contains it satisfies

i = j; see Figure 1 (from [1]) for an example. For a path D ∈ D, we denote its

number of symmetric valleys by sval(D). The weight of a symmetric valley is the
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Figure 1: A Dyck path with two symmetric valleys, circled in blue, having weights
1 and 2.

largest i such that the valley is contained in a subsequence of the form diui. Let

D′n be the set of all Dyck paths of semilength n with a marked symmetric valley

and D′ =
⋃

n≥0D′n. Then |D′n| =
∑

D∈Dn
sval(D). In what follows, by a marked

path we refer to such an element of D′. The height of a valley is defined to be the

y-coordinate of its lowest vertex. In Figure 1, the symmetric valley of weight 1 has

height 0 while the other symmetric valley has height 1.

The degree of a vertex v (denoted deg(v)) in an ordered tree is the number of

children of that vertex v. A vertex is internal if it has non-zero degree. For a tree

T ∈ T , denote by eval(T ) the number of internal nodes of T with even degree. Let

T ′n be the set of all ordered trees with a marked internal node of even degree and

let T ′ =
⋃

n≥0 T ′n. Then |T ′n| =
∑

T∈Tn eval(T ). The depth of a vertex is the length

of the path from the root to that vertex. In particular, the root has depth 0.

Elizalde [1] found that |D′n| = |T ′n| using the corresponding generating functions

and asked for a combinatorial proof. Possibly this was known even earlier according

to the comments for this sequence A014301 in the OEIS. We prove this here by

giving a bijection F from T ′ to D′ which is size-respecting. Moreover the bijection

gives the following refinement. Let D′n,h be the set of all Dyck paths of semilength

n with a marked symmetric valley of height h. Let T ′n,h be the set of all ordered

trees with a marked internal node of even degree that has depth h. Then F is a

bijection from T ′n,h to D′n,h which leads to the following theorem.

Theorem 1. The number of symmetric valleys at height h in all Dyck paths in Dn

is equal to the number of even degree internal nodes at depth h in all ordered trees

in Tn.

More statistics are preserved by F but other than the weight of a valley, they

are perhaps not as natural as those considered above, so we describe them in the

last section.

http://oeis.org/A014301


INTEGERS: 22 (2022) 3

Algorithm 1 The bijection F from T ′ to D′
T is an ordered tree with some even degree internal node marked.
Let c1, c2, . . . , ck be the children of the root and T1, T2, . . . , Tk the corresponding
subtrees.
if the root is the marked node then

j ← k/2 . k is even since the root is marked
Pl ← the path from the root going to cj and then repeatedly following

the rightmost child
Pr ← the path from the root going to cj+1 and then repeatedly following

the leftmost child
s← min (|Pl|, |Pr|)
vl ← the node on Pl at depth s
vr ← the node on Pr at depth s
LT ← the tree rooted at vl in T
RT ← the tree rooted at vr in T
T ′j ← Tj with the subtree LT (at vl) replaced by a single node
T ′j+1 ← Tj+1 with the subtree RT (at vr) replaced by a single node
T ′ ← the tree with subtrees T1, T2, . . . , Tj−1, T

′
j , T
′
j+1, Tj+2, . . . , Tk

D′ ← G(T ′) where the valley between the Dyck paths corresponding to
the modified subtrees T ′j and T ′j+1 is marked

D ← G(LT )D′G(RT )
return D

else
Let m be such that Tm contains the marked node.
D ← uG(T1)duG(T2)d . . . uG(Tm−1)duF (Tm)duG(Tm+1)d . . . uG(Tk−1)duG(Tk)d

return D
end if

2. The Bijection

The bijection is described in Algorithm 1. Some clarifying remarks are in order.

We use |Pl| to denote the number of edges in Pl. Equivalently |Pl| is the depth (in

T ) of the rightmost leaf of Tj . Similarly |Pr| is the depth (in T ) of the leftmost leaf

of Tj+1. By the choice of s, vl and vr must exist and at least one of vl and vr is a

leaf. The tree T ′j is obtained from Tj by removing the children of vl and similarly

for T ′j+1. If both vl and vr are leaves, then T ′ is simply T . We shall continue to use

the notation introduced in the algorithm in what follows.

An example is given in Figure 2. We explain next how F is applied to the ordered

tree T in the figure. The root has three children of which the second is marked.

Let T1, T2 and T3 be the corresponding subtrees as in Algorithm 1. So T1 is an

ordered tree where the root has two leaves as its children while in T3, the root has

just one leaf as its child. Then G(T1) is udud and G(T2) is the empty path. So the
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Figure 2: A marked ordered tree and the corresponding marked Dyck path for
n = 17

marked Dyck path corresponding to T would finally be uududduF (T2)dud once we

have F (T2).

The trees involved in the computation of F (T2) are shown in Figure 3. In the

figure and what follows, T2 will be denoted by T to be consistent with the nota-

tion in the algorithm. For this tree, j = 4/2 = 2 and s = min(4, 2) = 2. The

vertex circled in olive is vl and the one in red is vr. Now G(LT ) = ududuududd,

G(T ′) = uduudduududdud and G(RT ) is the empty path. So D′ is uduudduududdud

where the underlined valley is marked. Finally D is ududuududduduudduududdud.

Coming back to the tree of Figure 2, putting this marked Dyck path D for F (T2)

in uududduF (T2)dud gives the path shown in Figure 2.

T T ′ LT RT

Figure 3: Trees required for obtaining F (T2)

Table 1 gives the correspondence between all marked Dyck paths of semilength

4 and marked ordered trees with 4 edges.

Lemma 1. For any marked ordered tree T with n edges, F (T ) is a Dyck path of

semilength n with a marked symmetric valley. Moreover the height of the marked
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Marked ordered tree Marked Dyck path Marked ordered tree Marked Dyck path

Table 1: All 11 marked ordered trees and corresponding marked Dyck paths for
n = 4

valley in F (T ) is the same as the depth of the marked node in T .

Proof. We prove this by induction on the depth of the marked node.

If the root is marked (depth of the marked node is 0), then the algorithm first

obtains T ′, LT and RT . The total number of edges among T ′, LT and RT is n.

So D has semilength n. The marked valley between the paths corresponding to T ′j
and T ′j+1 is symmetric since the depth of the rightmost leaf of T ′j is the same as the

depth of the leftmost leaf of T ′j+1 by construction. It is also clear that the marked

valley has height 0.

Now suppose the statement holds for all trees with marked node at depth d.

Take any marked tree with the marked node at depth d + 1. The root of this

tree is unmarked and Tm has the marked node for some m and the depth of the

marked node in Tm is d. Let n1, n2, . . . , nk be the number of edges in T1, T2, . . . , Tk



INTEGERS: 22 (2022) 6

respectively so that
∑k

i=1 ni + k = n. By the induction hypothesis, we have that

F (Tm) is a marked Dyck path of semilength nm and the marked valley has height

d. Also G(T1), G(T2), . . . , G(Tk) are Dyck paths with semilengths n1, n2, . . . , nk

respectively. So D as defined in the algorithm is indeed a Dyck path of semilength

n. Moreover the marked valley in D is symmetric since it was symmetric in F (Tm)

and it has height d + 1 as required.

Algorithm 2 H : D′ → T ′
D is a Dyck path with some symmetric valley marked
if the marked valley has height 0 then

Let uDl
pduD

l
p−1d . . . uD

l
1duD

r
1duD

r
2d . . . uD

r
qd be the unique decomposition of

D where Dl
p, D

l
p−1, . . . , D

l
1, D

r
1, D

r
2, . . . D

r
q ∈ D and the valley

between Dl
1 and Dr

1 is marked.
j ← min(p, q)
D′ ← uDl

jduD
l
j−1d . . . uD

l
1duD

r
1duD

r
2d . . . uD

r
jd

LD ← uDl
pduD

l
p−1d . . . uD

l
j+1d

RD ← uDr
j+1duD

r
j+2d . . . uD

l
qd

T ′ ← G−1(D′) and let T ′1, T
′
2, . . . , T

′
j , T
′
j+1, . . . , T

′
2j be its subtrees

LT ← G−1(LD)
RT ← G−1(RD)
vl ← the rightmost leaf of T ′j
vr ← the leftmost leaf of T ′j+1

T ← T ′ with vl replaced by LT and vr replaced by RT

return T with its root marked
else

Let uD1duD2d . . . uDkd be the unique decomposition of D such that there is
m (1 ≤ m ≤ k) with D1, D2, . . . , Dm−1, Dm+1, . . . , Dk ∈ D and Dm ∈ D′.

Let T be the ordered tree with subtrees G−1(D1), G−1(D2), . . . , G−1(Dm−1),
H(Dm), G−1(Dm+1), . . . , G−1(Dk).

return T
end if

The inverse of F , call it H, is described in Algorithm 2. Here we note that at

least one of p and q is equal to j, so at least one of the paths Dl and Dr must be

empty.

Lemma 2. For any marked Dyck path D of semilength n, H(D) is an ordered tree

with n edges and a marked internal node having even degree.

Proof. The proof is by induction on the height of the marked valley in D.

Suppose the marked node has height 0. Let n′, nl and nr be the semilengths of the

paths D′, LD and RD respectively, so that n′+nl+nr = n. Then G−1(D′), G−1(LD)

and G−1(RD) have n′, nl and nr edges respectively. By construction, T then has
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n′+nl +nr = n edges. The root of T ′ has even degree 2j by the choice of D′. Since

the degree of the root remains unaffected while transforming T ′ to T , the root of T

also has even degree.

Now assume the statement holds for all marked paths with the marked valley hav-

ing height d. Consider any marked path with the marked valley having height d+1.

Then the path decomposes as uD1duD2d . . . uDkd such that there is m (1 ≤ m ≤ k)

with D1, D2, . . . , Dm−1, Dm+1, . . . , Dk ∈ D and Dm ∈ D′. Let n1, n2, . . . , nk be the

semilengths of D1, D2, . . . , Dk respectively. Then G−1(D1), G−1(D2), . . . , G−1(Dk)

have n1, n2, . . . , nk edges respectively. By induction, H(Dm) has nm edges and a

marked internal node with even degree. So T has
∑k

i=1 ni + k = n edges and the

marked node has even degree since it had even degree in H(Dm).

Now we show that H is indeed the inverse of F .

Lemma 3. H ◦ F is the identity map on T ′.

Proof. Again we use induction on the depth of the marked node. Let T ∈ T ′.
Suppose the marked node is the root. Consider the case |Pl| ≤ |Pr| so that

s = |Pl|. Then the tree LT is trivial and so G(LT ) is empty. The path D′ is

uG(T1)duG(T2)d . . . uG(T ′j)duG(T ′j+1)d . . . G(T2j) and the marked valley is between

G(T ′j) and G(T ′j+1). So when H is applied to F (T ), p ≤ q since G(LT ) is empty.

Thus j is set to p, which is precisely the j of Algorithm 1. The paths D′, G(LT ) and

G(RT ) are recovered in this way, and the corresponding trees are also obtained by

applying G−1. Now vr in T ′ is replaced by RT to get T . Indeed this is the reverse

of how T ′ was created from T in Algorithm 1. Therefore we have (H ◦ F )(T ) = T

in this case. The other case |Pl| > |Pr| is similar and so we have proved the base

case of the induction.

Suppose the statement is true for all trees with the marked node at depth d. Let

T ∈ T ′ have the marked node at depth d+1. Let T1, T2, . . . , Tk be the subtrees and

Tm contain the marked node. Then F (T ) is uG(T1)duG(T2)d . . . uG(Tm−1)duF (Tm)d

uG(Tm+1)d . . . uG(Tk−1)duG(Tk)d. Applying H to this marked path gives a tree

with subtrees G−1(G(T1)), G−1(G(T2)), . . . , G−1(G(Tm−1)), H(F (Tm)),

G−1(G(Tm+1)), . . . , G−1(G(Tk)). By induction, we have H(F (Tm)) = Tm. There-

fore H(F (T )) is the tree with subtrees T1, T2, . . . , Tm, . . . , Tk and this tree is just

T .

Lemma 4. F ◦H is the identity map on D′.

The proof is similar to that of the previous lemma, so we skip it.

Combining these lemmas we obtain our main theorem.

Theorem. The number of symmetric valleys at height h in all Dyck paths in Dn

is equal to the number of even degree internal nodes at depth h in all ordered trees

in Tn.
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3. Some Statistics on Marked Dyck Paths and Marked Ordered Trees

In this section, we define some more statistics on marked Dyck paths and marked

order trees, which behave nicely under the bijection F .

Recall that the weight (denoted wt) of a symmetric valley is the largest i such

that the valley is contained in a subsequence of the form diui. The corresponding

statistic s for an internal node v of even degree, say 2j, is defined as follows. If the

subtrees attached to v are T1, T2, . . . , Tj , Tj+1, . . . , T2j , let vl be the rightmost leaf

of Tj and vr be the leftmost leaf of Tj+1. Then s is defined to be the smaller of the

distance from v to vl and the distance from v to vr. Note that this coincides with

the definition of s in Algorithm 1. For the tree T in Figure 2, s(T ) = 2. Also for

the corresponding Dyck path D in Figure 2, we have wt(D) = 2.

Proposition 1. For any T ∈ T ′, s(T ) = wt(F (T )).

Proof. In the case where the root is marked, this follows from the observation that

the rightmost leaf of T ′j and the leftmost leaf of T ′j+1 are at the same distance s

from the root of T ′. In the other case, use the fact that the weight of a marked

Dyck path uD1duD2d . . . uDmd . . . uDkd (where Dm is a marked Dyck path and all

D1, D2, . . . , Dm−1, Dm+1, . . . , Dk are Dyck paths) is the same as the weight of Dm.

Similarly the statistic s of a marked ordered tree T which has a marked tree Ti as

a subtree is the same as s of Ti.

The difference (denoted diffp) of a marked Dyck path is defined recursively. If

the marked valley has height 0, then the difference is p− q where p and q are as de-

scribed in Algorithm 2. For a marked Dyck path D = uD1duD2d . . . uDmd . . . uDkd,

diffp(D) = diffp(Dm). The marked Dyck path in Figure 2 has difference 3− 0 = 3.

The difference (denoted difft) of a marked ordered tree is deg(vl)− deg(vr), where

vl and vr are defined above. Recall that at most one of deg(vl) and deg(vr) can be

positive, so we can recover both deg(vl) and deg(vr) from this single statistic. The

path in Figure 2 has difference 3 − 0 = 3. Like the previous proposition, we have

an easy correspondence between these statistics.

Proposition 2. For any T ∈ T ′, difft(T ) = diffp(F (T )).

It would be interesting to know how many marked Dyck paths of semilength n

have difference 0. Equivalently this is the number of marked Dyck paths on which

the action of H is essentially the same as G−1, the standard bijection from Dyck

paths to ordered trees.

The spread (sp) of a marked Dyck path is also defined recursively. For a marked

valley at height 0, it is defined as min(p, q). For a marked Dyck path D =

uD1duD2d . . . uDmd . . . uDkd, sp(D) = sp(Dm). The path in Figure 2 has spread

min(5, 2) = 2. The semiwidth sw of a marked ordered tree is deg(v)/2 by where v is
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the marked node. (This was denoted by j in the algorithms.) The tree in Figure 2

has semiwidth 4/2 = 2.

Proposition 3. For any T ∈ T ′, sw(T ) = sp(F (T )).

These propositions immediately imply further refinements of the main theorem.

Finally we note that the statistics difference and spread for valleys in Dyck paths

make sense even when the valleys are allowed to be asymmetric. Enumerating all

valleys in Dyck paths with respect to these statistics could be interesting.
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