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Abstract

In 2021, Chu and Kiliç experimentally discovered a conjectured evaluation for the
binomial sum

n∑
k=0

(−1)k
(

2n− 2k

n− k

)(
n + k

2k

)
Ck

using Mathematica commands, and left it as an open problem to prove a closed-
form evaluation for this hypergeometric sum, letting Ck denote the kth Catalan
number. For each case whereby n is a member of a given congruence class modulo
6, numerical evidence suggests that the above sum is always equal to a single hyper-
geometric expression, but it is not clear how to prove these conjectured evaluations
using classical hypergeometric series, and, remarkably, the Maple implementation
of the WZ method is not able to provide WZ proof certificates for any of the finite
hypergeometric sum identities obtained, out of all congruence classes mod 6. In
this article, we solve the open problem due to Chu and Kiliç concerning the above
sum, using Zeilberger’s algorithm in a nontrivial way. We also introduce further
results, again via nontrivial applications of Zeilberger’s algorithm, inspired by the
Chu–Kiliç sum given above.

1. Introduction

Finite summations involving binomial coefficients are ubiquitous in both combina-

torics and number theory, and the development of both classically oriented and

computer-based tools to explicitly evaluate such summations forms a huge and

active area of research. In the recent article [1], Chu and Kiliç made use of classi-

cal hypergeometric series identities to prove remarkable evaluations for finite sums

involving Catalan numbers. The article [1] concluded with the open problem of

proving an evaluation for

n∑
k=0

(−1)k
(

2n− 2k

n− k

)(
n + k

2k

)
Ck, (1)
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and it is indicated in [1] that any attempts to prove this identity would be of great

interest. This appears to be a difficult problem [1], and it is not clear as to how

it could be possible to use classical hypergeometric series identities to evaluate

(1). Furthermore, as we consider below, implementations of the WZ method in

commercially available software cannot be used to prove experimentally discovered

conjectured evaluations for (1). In this article, we solve the open problem given in

[1] of proving evaluations for (1). Our proofs rely in a nontrivial way on Zeilberger’s

algorithm [3, §6].

Chu and Kiliç [1] claimed to have experimentally discovered a conjectured evalu-

ation for (1) using Mathematica. This conjectured evaluation is given as a product

of (⌊ 1
3 (2n− 1)

⌋
+ 1⌊

n
3

⌋ )(
2
⌊
1
3 (2n− 1)

⌋
+ 1⌊

1
3 (2n− 1)

⌋ )
(2)

and (−1)bn
3 c

n(n+1) times an expression depending on the parity of n. Numerical evidence

suggests that this conjectured evaluation is not quite right, and it appears that there

may have been a minor typographical error in Chu and Kiliç’s expression for (1) as

given in [1]. However, this conjectured evaluation has led us to discover a correct

closed form for (1). By considering the arguments of the floor function indicated in

(2), together with the aforementioned parity condition, we need to consider 2×3 = 6

cases, as given by the congruence classes of n modulo 6.

2. Solution to a Problem Due to Chu and Kiliç

We begin with the congruence class of the form 0 (mod 6). Applying the mapping

n 7→ 6n to (1), we have experimentally discovered the identity shown in (4) (cf. [1]).

In the hope of applying the WZ method [3] to prove the binomial sum identity in

(4), we set

F (n, k) :=
3(−1)k(6n + 1)

(
6n+k
2k

)(
12n−2k
6n−k

)
Ck

2
(
4n
2n

)(
8n−1
4n−1

) , (3)

as we would want to find a companion function G so that F and G form a WZ pair.

Inputting

with(SumTools[Hypergeometric]):

into Maple, and then letting f be defined as F (n, k), and setting r := 1, we find

that Maple 2020 is not able to prove (4) via the WZ method. In particular, inputting

WZpair := WZMethod(f, r, n, k, ’cert’):

results in the error message indicated below.
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Error, (in SumTools:-Hypergeometric:-WZMethod) WZ method fails

We remark that the integer sequences corresponding to the sums highlighted in (1)

and in the below Theorem are not currently indexed in the OEIS [2]. In addition

to CAS software not being able to produce a WZ proof certificate for (4), such

software also cannot provide WZ proofs certificates for any of the other summation

identities listed below, which is indicative of the remarkable nature about these

hypergeometric identities.

Theorem 1. The following binomial sum identities hold true for all positive integers

n, and the last five such identities hold for n ∈ N0 (cf. [1]).

6n∑
k=0

(−1)k
(

6n + k

2k

)(
12n− 2k

6n− k

)
Ck =

2
(
4n
2n

)(
8n−1
4n−1

)
18n + 3

(4)

6n+1∑
k=0

(−1)k
(

6n + k + 1

2k

)(
12n− 2k + 2

6n− k + 1

)
Ck =

(2n + 1)
(
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2n

)(
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4n

)
(3n + 1)(6n + 1)

(5)
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k=0

(−1)k
(

6n + k + 2

2k

)(
12n− 2k + 4

6n− k + 2

)
Ck =

2(n + 1)
(
4n+2
2n

)(
8n+3
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k=0

(−1)k
(
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2k

)(
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Ck = −
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2n+1

)(
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(7)

6n+4∑
k=0

(−1)k
(

6n + k + 4

2k

)(
12n− 2k + 8

6n− k + 4

)
Ck = −

2(n + 1)
(
4n+3
2n+1

)(
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4n+2

)
(3n + 2)(6n + 5)

(8)

6n+5∑
k=0

(−1)k
(

6n + k + 5

2k

)(
12n− 2k + 10

6n− k + 5

)
Ck = −

(2n + 3)
(
4n+4
2n+1

)(
8n+7
4n+3

)
3(n + 1)(6n + 5)

(9)

Proof. To prove (4), we apply Zeilberger’s algorithm in the following manner, letting

F (n, k) be as in (3). Through the use of Zeilberger’s algorithm, we can show

that there exist polynomials p0(n), p1(n), p2(n), and p3(n) with integer coefficients

together with a hypergeometric function G(n, k) such that the identity

p3(n)F (n + 3, k) + p2(n)F (n + 2, k) + p1(n)F (n + 1, k) + p0(n)F (n, k)

= G(n, k + 1)−G(n, k)

holds for 0 ≤ k ≤ n ∈ {1, 2, . . .}. Verifying the four-term summation identity given

above is, of course, a matter of finite computation. Explicit evaluations for the poly-

nomials pi(n) and for the hypergeometric function G are given in the Mathematica

notebook 6n.nb associated with this article, and this notebook contains programs

for numerically verifying that the above identities are correct. We write

b(n) =

6n∑
k=0

F (n, k)
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to denote the binomial sum we want to evaluate, noting that b(n) is independent of

k. In view of the binomial coefficients in the numerator in our definition for F , we

find that

b(n) =

m∑
k=0

F (n, k)

for m > 6n,

b(n + 1) =

m∑
k=0

F (n + 1, k)

for m > 6(n + 1), and so forth. So, we apply the operator
∑6(n+3)

k=0 · to the above

identity involving the hypergeometric F - and G-functions, with the right-hand side

of this identity telescoping under the application of
∑6(n+3)

k=0 ·. So, we obtain that

p3(n)b(n + 3) + p2(n)b(n + 2) + p1(n)b(n + 1) + p0(n)b(n)

= G(n, 6n + 19)−G(n, 0)

for all positive integers n. Equivalently,

p3(n)b(n + 3) + p2(n)b(n + 2) + p1(n)b(n + 1) + p0(n)b(n) = 0 (10)

for all n ∈ N. We may verify the base cases whereby b(1) = b(2) = b(3) = 1. We

may also verify that

p3(n) + p2(n) + p1(n) + p0(n) = 0 (11)

for all n ∈ N. So, since the sequences (b(n) : n ∈ N) and (1 : n ∈ N) satisfy the

same recursion with polynomial coefficients indicated in (10) and (11), and satisfy

the same base conditions, we may conclude that b(n) = 1 for all n ∈ N.

Now, to prove (5), we proceed to set

F (n, k) :=
(−1)k(3n + 1)(6n + 1)

(
6n+k+1

2k

)(
12n−2k+2
6n−k+1

)
Ck

(2n + 1)
(
4n+1
2n

)(
8n+1
4n

) . (12)

Again, we apply Zeilberger’s algorithm, via the Maple CAS, to prove this result. In

this regard, we again input

with(SumTools[Hypergeometric]):

into Maple. We then set the expression T to be equal to the right-hand side of (12),

and we input the following into Maple.

Zpair := Zeilberger(T, n, k, En):

In order to compute the required hypergeometric G-function corresponding to (12)

according to Zeilberger’s algorithm, we input the following.
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G := Zpair[2]

To compute the polynomials corresponding to the p-functions in expressions as in

(10), we input the following.

L := Zpair[1]

The corresponding data are provided in the 6nplus1 Mathematica notebook corre-

sponding to this article. We again can show that an identity of the form

p3(n)F (n + 3, k) + p2(n)F (n + 2, k) + p1(n)F (n + 1, k) + p0(n)F (n, k)

= G(n, k + 1)−G(n, k)

holds for the hypergeometric F -function defined in (12). In this case, the hyper-

geometric G-function corresponding to F and satistfying the above equality is as

given in the 6nplus1 NB file corresponding to this article. The polynomials p sat-

isfying the above equality are also given in this notebook file. Again, verifying the

four-term summation identity indicated above is a finite computation. So, making

use of the right-hand side of the above equality telescoping as we sum with respect

to k, we may use the same recursive argument as before to show that

6n+1∑
k=0

F (n, k) = 1

for all n ∈ N0.

Now, to prove (6), we first set

F (n, k) :=
3(−1)k(2n + 1)(3n + 1)

(
6n+k+2

2k

)(
12n−2k+4
6n−k+2

)
Ck

2(n + 1)
(
4n+2
2n

)(
8n+3
4n+1

) . (13)

Again, we apply Zeilberger’s algorithm to find a corresponding G-function. Once

again, we obtain, via Zeilberger’s algorithm, an identity of the form

p3(n)F (n + 3, k) + p2(n)F (n + 2, k) + p1(n)F (n + 1, k) + p0(n)F (n, k)

= G(n, k + 1)−G(n, k)

for the case whereby F is as (13). An explicit computation for the hypergeometric

G-function is given in the provided 6plus2 notebook file, and explicit computations

for the p-polynomials given above are also given in this NB document. So, we may

mimic our proof of (4).

Now, as a first step toward proving (7), we set

F (n, k) :=
3(−1)k+1(3n + 2)

(
6n+k+3

2k

)(
12n−2k+6
6n−k+3

)
Ck(

4n+2
2n+1

)(
8n+3
4n+1

) . (14)
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Again we obtain an identity of the form

p3(n)F (n + 3, k) + p2(n)F (n + 2, k) + p1(n)F (n + 1, k) + p0(n)F (n, k)

= G(n, k + 1)−G(n, k)

through Zeilberger’s algorithm, letting F be as defined in (14). The required com-

putations are given in the 6nplus3 NB file. Again, we may mimic our proof of

(4).

In view of (8), we set

F (n, k) :=
(−1)k+1(3n + 2)(6n + 5)

(
6n+k+4

2k

)(
12n−2k+8
6n−k+4

)
Ck

2(n + 1)
(
4n+3
2n+1

)(
8n+5
4n+2

) .

We may again use Zeilberger’s algorithm according to the above F -function, in

much the same way as in with our proof of (4). Relevant computations are given in

the 6nplus4 NB file. As for the final binomial sum identity listed in the Theorem

under consideration, Zeilberger’s algorithm may once again be applied, in much the

same way as above. The required computations are given in the 6nplus5 file.

So, from our above proofs of the summation formulas in (4)–(9), we have com-

pletely solved the problem due to Chu and Kiliç on the binomial sum in (1).

The nontrivial nature about our application of Zeilberger’s algorithm, as above,

is reflected in the very complicated evaluations for the G-functions involved in our

above proof. As a way of illustrating this, a TXT file containing Mathematica input

for the evaluation for the G-function corresponding to (3) is about 230 KB in its

size, whereas a TXT file containing Mathematica input for the one-line expression

for F shown in (3) only takes up about 1 KB of disk space. So, in other words,

writing out the evaluation for the hypergeometric G-function required in our proof

of (4) takes about 230 times as much space compared to the one-line expression for

F shown in (3).

The nontrivial nature about our application of Zeilberger’s algorithm, as above,

is also reflected in the complexity of the polynomials involved in our above proof.

Example 1. The polynomial p3(n) utilized in our proof of (4) is reproduced below

explicitly, again with reference to the 6n.nb file provided.

− 24119932307043622042264928256n34

− 1359761183809584192632685330432n33

− 36931133852211895874922102128640n32

− 643638565076924203089918582325248n31

− 8088587152343236701264869087772672n30

− 78089348275265321224086362787938304n29
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− 602522276841251948670717745176772608n28

− 3816443048972441510860540628711768064n27

− 20228807190977321599275577298569396224n26

− 91005559657577213124066273225087123456n25

− 351250347215991000017150949872803774464n24

− 1172720612403899907929461064621956792320n23

− 3408428989917854678583309698987773132800n22

− 8665598695374414516449976697880366284800n21

− 19341884066971851553684223948302602731520n20

− 37999322231213995312313502573606556139520n19

− 65819606013546101186922428519581448232960n18

− 100600921835497894903834012563493373322240n17

− 135687315360520585435729708394154745873920n16

− 161381646001334204995218914566833552552960n15

− 169000972657471702402836614441288184945024n14

− 155460671195511448164041875944759700612288n13

− 125204382503365421506890720658974166069920n12

− 87901104890141308878518080258146888615632n11

− 53493892257277351928301463547557019679528n10

− 28017887770802882709821352464418678029376n9

− 12514685929321414029926417403811490728872n8

− 4711563155150684255328552925686236476931n7

− 1472428535406256885440139453492011522936n6

− 374255750433146992645423628141375939104n5

− 75215735749371880680572550079315420056n4

− 11469957898864266470013845624369391825n3

− 1243274796935491837745138574151952100n2

− 85041712133127860500452600457920000n

− 2747956966522709059542187764000000

The unwieldy polynomial computation highlighted in Example 1 reflects the very

elegant nature about the one-line binomial identity shown in (4). The polynomials

required in our proofs of (5)–(9) are similarly unwieldy, with regard to Example 1.
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3. Further Results

We generalize the above binomial sum evaluations by taking the first moments of

the corresponding summands and evaluating the resultant sums in closed form. We

discovered the following identities experimentally using Mathematica and the OEIS

[2].

Theorem 2. The following identities all hold for n ∈ N. The last five such identities

hold for all n ∈ N0.

6n∑
k=0

(−1)k
(

6n + k

2k

)(
12n− 2k

6n− k

)
kCk =

4(9n + 1)
(
4n
2n

)(
8n−1
4n−1

)
3(6n + 1)

6n+1∑
k=0

(−1)k+1

(
6n + k + 1

2k

)(
12n− 2k + 2

6n− k + 1

)
kCk =

(2n + 1)
(
4n+1
2n

)(
8n+1
4n

)
(3n + 1)(6n + 1)

6n+2∑
k=0

(−1)k+1

(
6n + k + 2

2k

)(
12n− 2k + 4

6n− k + 2

)
kCk =

2(n + 1)
(
4n+2
2n

)(
8n+3
4n+1

)
3(2n + 1)(3n + 1)

6n+3∑
k=0

(−1)k+1

(
6n + k + 3

2k

)(
12n− 2k + 6

6n− k + 3

)
kCk =

(18n + 11)
(
4n+2
2n+1

)(
8n+3
4n+1

)
3(3n + 2)

6n+4∑
k=0

(−1)k
(

6n + k + 4

2k

)(
12n− 2k + 8

6n− k + 4

)
kCk =

2(n + 1)
(
4n+3
2n+1

)(
8n+5
4n+2

)
(3n + 2)(6n + 5)

6n+5∑
k=0

(−1)k
(

6n + k + 5

2k

)(
12n− 2k + 10

6n− k + 5

)
kCk =

(2n + 3)
(
4n+4
2n+1

)(
8n+7
4n+3

)
3(n + 1)(6n + 5)

Proof. Zeilberger’s algorithm may be applied to all of the above identities in virtu-

ally the same way as in Section 2. The required data are given in the “Generaliza-

tion” Mathematica notebooks associated with this article.
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