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Abstract

For a positive integer s, a lattice L is said to be s-integrable if
√
s · L is isometric

to a sublattice of Zn for some integer n. Conway and Sloane found two minimal

non-2-integrable lattices of rank 12 and determinant 7 in 1989. In this paper, we

use a method of embedding a given lattice into a unimodular lattice and see that

15 is the next smallest candidate for the determinant of a non-2-integrable lattice

of rank 12. We also find two more minimal non-2-integrable lattices of rank 12 and

determinant 15.

1. Introduction

In this paper, by a lattice we mean a positive definite integral Z-lattice, and a uni-

modular lattice is a positive definite unimodular Z-lattice, unless otherwise speci-

fied. Let s be a positive integer. A lattice L is said to be s-integrable if
√
s · L is

isometric to a sublattice of Zn for some integer n. Let φ(s) be the smallest rank in

which there is a non-s-integrable lattice. In 1937, Ko [8] and Mordell [12] showed

φ(1) = 6. Also, the values φ(2) = 12 and φ(3) = 14 were shown in [4, Theorem 1],

and the value φ(s) is not determined if s is at least 4.

There are infinitely many non-1-integrable lattices of rank at least 6. In fact, we

can construct infinitely many non-1-integrable lattices of rank 6 as sublattices of

E6 ⊥ Z. In addition, it is known that every non-1-integrable lattice of rank 6 is a
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sublattice of E6 ⊥ Zm (see [13, Theorem 3]). These facts lead us to pay attention to

the“minimal” non-1-integrable lattices. Formally, we have the following definition.

A lattice L is said to be non-s-minimal, if there exist a lattice M and a positive

integer m such that
√
s ·L is isometric to a sublattice of

√
s ·M ⊥ Zm which is not

contained in
√
s ·M . Otherwise it is said to be s-minimal. Notice that a non-zero

s-integrable lattice is always non-s-minimal. For brevity’s sake, if a non-s-integrable

lattice is s-minimal, we say it is a minimal non-s-integrable lattice. In the case of

s = 1, Ko [9, 10, 11] proved that the lattices E6, E7 and E8 are the only minimal

non-1-integrable lattices of rank 6, 7 and 8 respectively, and Plesken [13] gave a

short proof by embedding lattices into unimodular lattices. Conway and Sloane [4]

gave non-2-integrable lattices as shown in Theorem 1, and suspected that these

lattices are the only minimal non-2-integrable lattices of rank 12.

Definition 1. For each positive integer n, let An := {x ∈ Zn+1 | (x, e) = 0} be a

lattice, where e denotes the all one vector in Zn+1. Let A+
15 denote the unimodular

overlattice of A15, that is, the lattice generated by A15 and the vector

[4] := (4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,−12,−12,−12,−12)/16 ∈ R16.

Theorem 1 ([4, Theorem 14]). The sublattices in A+
15 that are orthogonal to a

sublattice in A+
15 with Gram matrix3 2 2

2 3 2
2 2 3

 (1.1)

are non-2-integrable lattices of rank 12 and determinant 7.

Furthermore, Conway and Sloane remarked that Theorem 1 gives precisely two

minimal non-2-integrable lattices up to isometry. Our motivation comes from ver-

ifying the claim that Conway and Sloane suspected and determining the minimal

non-2-integrable lattices of rank 12.

In order to find more candidates for non-2-integrable lattices and prove their

minimality, in Theorem 2 we introduce a method of embedding lattices into uni-

modular lattices as follows, which can also be used to study the s-integrability of

lattices with higher rank. For undefined notation, we refer to the next section.

Theorem 2. Let m and n be positive integers. Let L be a lattice on the n-

dimensional quadratic Q-space V . Then L is a sublattice of a unimodular lattice of

rank m if and only if one of the following holds:

(1) m = n, and for each prime number p, det(Vp) = 1 and Sp(V ) = 1.

(2) m = n+ 1, and for each prime number p, Sp(V )(det(V ),det(V ))p = 1.
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(3) m = n+ 2, and for each prime number p,

Sp(V ) =

{
1 if p > 2 and det(Vp) = −1,

−1 if p = 2 and det(V2) = −1.

(4) m ≥ n+ 3.

Conway and Sloane [4, Theorem 7] proved that (4) is a sufficient condition for

Theorem 2. Following their argument, we prove this theorem in more detail, and

give applications. For instance, we present a theorem to embed lattices into an

odd unimodular lattice (see Theorem 10). In addition, we show that if a lattice of

rank 12 is non-2-integrable and its determinant is at most 27, then its determinant is

7, 15, 18, 23 or 25 (see Corollary 2), and we give two more minimal non-2-integrable

lattices.

Theorem 3. There are precisely two lattices with Gram matrix3 2 0
2 3 0
0 0 3

 (1.2)

up to Aut(A+
15) in A+

15, and they are given by 〈a,b, c〉 and 〈a,b, c′〉, where

a := (−3,−3,−3,−3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)/4 ∈ A+
15,

b := (−3,−3,−3, 1,−3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)/4 ∈ A+
15,

c := (−3, 1, 1, 1, 1,−3,−3,−3, 1, 1, 1, 1, 1, 1, 1, 1)/4 ∈ A+
15,

c′ := (1, 1, 1,−3,−3,−3,−3, 1, 1, 1, 1, 1, 1, 1, 1, 1)/4 ∈ A+
15.

The non-isometric sublattices 〈a,b, c〉⊥ and 〈a,b, c′〉⊥ are minimal non-2-integrable

lattices of rank 12 and determinant 15.

Although it is possible to provide a proof of the non-2-integrability in this theorem

without a computer, it goes along the lines of Conway and Sloane’s proof (see

[4, Proof of Theorem 14]) and is long. Hence we will explain that a lattice is

s-integrable if and only if a corresponding system of linear equations has a non-

negative integer solution (see Lemma 12), and show the non-2-integrability with

the aid of a computer. We remark that Plesken [14] provided an algorithm which

enumerates sublattices of Zn (for some n) all of which are isometric to a given

1-integrable lattice. Enumerating them corresponds to enumerating all the non-

negative integer solutions of some system of linear equations. Since we want to

show that such a system has no non-negative integer solution in order to show the

non-2-integrability of some lattice L, or equivalently, the non-1-integrability of
√

2L,

his algorithm is not effective for our purpose.
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Also, we point out that every non-2-integrable lattice of rank 12 is a sublattice

of A+
15 (see Lemma 9). Let L be a sublattice in A+

15 which is orthogonal to a lattice

generated by 3 linearly independent elements of norm at most 4. If L is non-2-

integrable, then it is isometric to one of the lattices of rank 12 in Theorem 1 and

Theorem 3 (see Corollary 3 and Remark 1). It is natural to wonder if there exist

more minimal non-2-integrable lattices of rank 12, and this problem is still open.

This paper is organized as follows: We introduce notation in Section 2, and

well-known results for quadratic spaces in Section 3. In Section 4, for every prime

number p, we introduce properties of the maximal Zp-lattices. In Section 5, we

show a method of embedding a lattice into another by applying the results in the

previous two sections. In Section 6, we give necessary and sufficient conditions for a

lattice to be s-integrable. In Section 7, we study the lattice A+
15, and prove the first

statement of Theorem 3. In Section 8, we discuss the minimality of non-2-integrable

lattices and complete the proof of Theorem 3.

2. Notation

We will follow the book [7] and give the basic notation as follows. Throughout this

paper, let R denote a principal ideal domain with quotient field F ) R. Let R∗

denote the set of units of R, and F ∗ denote the set of the non-zero elements of F .

Let (V,B, q) be a quadratic F -space, where B is a symmetric bilinear form on

V , and q is the quadratic form associated with B. For simplicity we usually just

write V . We write V ' W if two quadratic F -spaces V and W are isometric. The

quadratic spaces mentioned in this paper are always regular, that is, they have no

non-zero vector v such that B(v,u) = 0 holds for all its vectors u. Let det(V )

denote the determinant of V , which is the coset in F ∗/(F ∗)2 represented by the

determinant of the Gram matrix with respect to a basis of V .

An R-module L ⊆ V is called an R-lattice in V if L = 0 or if there exist linearly

independent elements v1, . . . ,vr of V such that L = Rv1 ⊕ · · · ⊕ Rvr. We call

v1, . . . ,vr a basis of L and r the rank of L (and rank 0 = 0). We say L is on V if

dim(V ) = r. We write L 'M or L 'R M if two R-lattices L and M are isometric.

Let det(L) denote the determinant of an R-lattice L, which is the coset in F ∗/(R∗)2

represented by the Gram matrix with respect to a basis of L. For a ∈ F , let aL

denote the R-lattice {au | u ∈ L}.
Let L′ be a sublattice of L. The orthogonal complement of L′ in L is the R-

module {u ∈ L | B(u,v) = 0 for all v ∈ L′}, which is also a sublattice of L and is

denoted by (L′)⊥.

For every positive integer n, a matrix in Mn(R) is said to be unimodular if

its determinant is in R∗. The set of unimodular matrices in Mn(R) is denoted by

GLn(R). For two matrices M1 and M2 in Mn(R), we say that they are R-congruent,
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denoted by M1 ∼R M2, if there exists a unimodular matrix P ∈ GLn(R) such that

P>M1P = M2. Given a symmetric matrix M and an R-lattice L (respectively

quadratic F -space V ), we write L ∼= M (respectively V ∼= M) if the Gram matrix

of L (respectively V ) with respect to some basis isM . Furthermore, anR-lattice L of

rank n is said to be unimodular if L ∼= M for some symmetric matrix M ∈ GLn(R).

In the whole paper, let S be the set of prime numbers. For each p ∈ S, let Zp
denote the ring of p-adic integers, Qp the field of p-adic numbers, νp(a) the p-adic

order of each a ∈ Qp, and | · |p the p-adic valuation. The set R of real numbers is

denoted by Q∞. Furthermore, the Hilbert symbol (·, ·)p over Qp for p ∈ S ∪ {∞} is

defined as

(a, b)p :=

{
1 if z2 − ax2 − by2 = 0 has a non-trivial solution (x, y, z) in Q3

p,

−1 otherwise

for a, b ∈ Q∗p. For each odd prime number p, let δp denote one of non-square elements

of Z∗p. Note that {1, δp} is a complete system of representatives of Z∗p/(Z∗p)2 (see [7,

Theorem 3.48]).

Let L be a Z-lattice on the n-dimensional Q-quadratic space V ; say L :=⊕n
i=1 Zvi. For each p ∈ S ∪ {∞}, we define the localization Vp of V at p to

be the quadratic Qp-space V ⊗Qp. Moreover, we define the localization Lp of L at

p to be the Zp-lattice on Vp generated by L, that is,

Lp =

n⊕
i=1

Zpvi.

In addition, for an orthogonal basis (u1, . . . ,un) of V = (V,B, q), the Hasse symbol

of V and that of L at p are defined to be

Sp(V ) = Sp(L) :=
∏

1≤i<j≤n

(q(ui), q(uj))p ∈ {−1, 1}.

The signature of L (respectively V ), denoted by sign(L) (respectively sign(V )), is

defined by r−s, where r and s are non-negative integers such that L⊗R ∼= Ir⊕(−Is)
(respectively V ⊗ R ∼= Ir ⊕ (−Is)). In addition, L (respectively V ) is said to be

positive definite if sign(L) = n (respectively sign(V ) = n).

Let L be an R-lattice on quadratic F -space. Then the R-module sL := {B(v,u) |
v,u ∈ L} is called the scalar ideal of L, and the R-modular nL generated by

{q(v) | v ∈ L} is called the norm ideal of L. Note that 2(sL) ⊆ nL ⊆ sL and

nL = sL if 2 ∈ R∗.
A Z-lattice L is said to be integral if sL ⊆ Z. Moreover, an integral Z-lattice L is

said to be even if nL ⊆ 2Z, and otherwise it is odd. Note that every positive definite

integral Z-lattice is isometric to a positive definite integral Z-lattice in Rn equipped

with the canonical bilinear form for some positive integer n. For simplicity, we call a

positive definite integral Z-lattice equipped with the canonical bilinear form lattice.
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3. Quadratic Spaces

In this section we introduce fundamental results for quadratic Q-spaces and quadratic

Qp-spaces.

Theorem 4 ([7, Theorem 4.29]). Let p be a prime number. Two quadratic Qp-

spaces V and W are isometric if and only if

dim(V ) = dim(W ), det(V ) = det(W ) and Sp(V ) = Sp(W ).

Theorem 5 ([7, Theorem 4.32]). Let p be a prime number. Then there exists a

quadratic Qp-space V with dimension n, determinant d = det(V ) and Hasse symbol

s = Sp(V ) if and only if

(d, s) 6= (1,−1) or (n, d, s) 6= (2,−1,−1). (3.1)

For every a, b ∈ Q∗, (a, b)p = 1 for almost all p, that is, there is a finite set S′

such that (a, b)p = 1 for every p ∈ S \ S′. Moreover,∏
p∈S∪{∞}

(a, b)p = 1 (3.2)

holds (see [7, Theorem 5.2]). This immediately implies the following lemma.

Lemma 1 ([7, Corollary 5.3]). We have
∏
p∈S∪{∞} Sp(Vp) = 1 for every non-zero

quadratic Q-space V .

Theorem 6 ([7, Corollary 5.9]). Let V and W be two quadratic Q-spaces. Then

V 'W if and only if V∞ 'W∞ and Vp 'Wp for each prime number p.

Theorem 7 ([2, Chapter 6, Theorem 1.3]). Let n ≥ 2 and d ∈ Q∗. For each

p ∈ S ∪ {∞}, let V(p) be an n-dimensional quadratic Qp-space and suppose that

(1) det(V(p)) ∈ dQ∗2p ,

(2)
∏
p∈S∪{∞} Sp(V(p)) = 1, and Sp(V(p)) = 1 for almost all p.

Then there exists a quadratic Q-space V with det(V ) = d, sign(V ) = sign(V(∞))

and Vp ' V(p) for each p ∈ S.

4. Maximality and Existence of Zp-Lattices

Let A be a fractional R-ideal, that is, A ⊆ F is an R-module, and aA ⊆ R for some

a ∈ R. An R-lattice L on a quadratic F -space V is A(n)-maximal (respectively A(s)-

maximal) if nL ⊆ A (respectively sL ⊆ A) and for any R-lattice M on V containing
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L, nM ⊆ A (respectively sM ⊆ A) implies M = L. Note that for every odd prime

number p, a Zp-lattice is A(n)-maximal if and only if it is A(s)-maximal. The

following lemma shows that Z(s)-maximal Z-lattices and Z(s)
p -maximal Zp-lattices

are closely related.

Lemma 2 ([7, Lemma 9.8]). Let L be a Z-lattice on a quadratic Q-space V , and let

A be a fractional Z-ideal. Then L is A(s)-maximal (respectively A(n)-maximal) if

and only if Lp is A
(s)
p -maximal (respectively A

(n)
p -maximal) for each prime number

p.

4.1. The Isometry Classes of Z(s)
p -Maximal Zp-Lattices for an Odd Prime

Number p

The following theorem immediately gives the Z(s)
p -maximal Zp-lattices up to isom-

etry.

Theorem 8 ([7, Theorem 8.8]). Let F be a field with a complete discrete valuation

| · |, and let R be the associated valuation ring. Suppose V is a (regular) quadratic

F -space and A is a fractional R-ideal. Then there is only one isometry class of

A(n)-maximal R-lattices on V .

We set F := Qp, R := Zp and | · | := | · |p for each odd prime number p, and

then apply this theorem to Zp-lattices. Since the existence of quadratic Qp-spaces

is asserted in Theorem 5, we derive the following proposition.

Proposition 1 ([4, Theorem 4 for odd prime numbers]). Given an odd prime

number p, there exists a unique Z(s)
p -maximal Zp-lattice on a quadratic Qp-space V

if and only if condition (3.1) is satisfied.

Example 1. Let p be an odd prime number and n a positive integer. As asserted

in Proposition 1, we may find a Z(s)
p -maximal Zp-lattice on a quadratic Qp-space

V if condition (3.1) is satisfied. Actually, a complete system of representatives of

isometry classes of Z(s)
p -maximal Zp-lattices are enumerated by Zp-lattices Hp

n,d,ε

of rank n, determinant d and Hasse symbol ε defined as follows:

Hp
n,1,1

∼= In, Hp
n,δp,1

∼= In−1 ⊕ (δp),

Hp
n,p,1

∼= In−1 ⊕ (p), Hp
n,pδp,1

∼= In−1 ⊕ (pδp),

Hp
n,pδp,−1

∼= In−2 ⊕ (δp)⊕ (p) (n ≥ 2), Hp
n,p,−1

∼= In−2 ⊕ (δp)⊕ (pδp) (n ≥ 2),

Hp
n,−δp,−1

∼=

{
In−2 ⊕ (p)⊕ (pδp) if p ≡ 1 (mod 4),

In−2 ⊕ (p)⊕ (p) if p ≡ 3 (mod 4),
(n ≥ 2),

Hp
n,−1,−1

∼=

{
In−3 ⊕ (δp)⊕ (p)⊕ (pδp) if p ≡ 1 (mod 4),

In−3 ⊕ (δp)⊕ (p)⊕ (p) if p ≡ 3 (mod 4),
(n ≥ 3).
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4.2. Maximality and Existence of Z2-Lattices

In this subsection we introduce fundamental results for Z2-lattices. First, adopting

a similar method as in the proof of [3, Proposition 2], we obtain the following result.

Proposition 2 (cf. [3, Proposition 2]). If a Z2-lattice L is Z(s)
2 -maximal, then

ν2(det(L)) = 0 or 1.

Proposition 3. There exists a Z2-lattice whose norm ideal is Z2 on a quadratic

Qp-space V if and only if condition (3.1) is satisfied and (dim(V ),det(V ), S2(V )) 6=
(2, 3,−1).

Proof. We show the necessity by enumerating Z2-lattices Hn,d,ε of rank n, deter-

minant d and Hasse symbol ε as follows:

Hn,1,1
∼= In, Hn,−1,1 ∼= In−1 ⊕ (−1),

Hn,3,1
∼= In−1 ⊕ (3), Hn,−3,1 ∼= In−1 ⊕ (−3),

Hn,1,−1 ∼= In−2 ⊕ (−I2) (n ≥ 2), Hn,−1,−1 ∼= In−3 ⊕ (−I3) (n ≥ 3),

Hn,3,−1 ∼= In−3 ⊕ (3I3) (n ≥ 3), Hn,−3,−1 ∼= In−2 ⊕ (−1)⊕ (3) (n ≥ 2),

Hn,2,1
∼= In−1 ⊕ (2), Hn,−2,1 ∼= In−1 ⊕ (−2),

Hn,6,1
∼= In−1 ⊕ (6), Hn,−6,1 ∼= In−1 ⊕ (−6),

Hn,2,−1 ∼= In−2 ⊕ (−3)⊕ (−6) (n ≥ 2), Hn,−2,−1 ∼= In−2 ⊕ (−3)⊕ (6) (n ≥ 2),

Hn,6,−1 ∼= In−2 ⊕ (−3)⊕ (−2) (n ≥ 2), Hn,−6,−1 ∼= In−2 ⊕ (−3)⊕ (2) (n ≥ 2).

(In fact, they give a complete system of representatives of isometry classes of Z(s)
2 -

maximal Z2-lattices with nL = Z2.)

Next we show the sufficiency. Theorem 5 asserts that every quadratic Q2-space

satisfies condition (3.1). Thus it suffices to show that there is no Z2-lattice L with

nL = Z2 and (dim(V ),det(V ), S2(V )) = (2, 3,−1), where V = Q2 ⊗ L. By way of

contradiction, we suppose that there is such a Z2-lattice L. Since nL = Z2, we have

L ∼= (x)⊕ (y) for some x ∈ Z∗2 and y ∈ Z2. Then

−1 = S2(V ) = (x, y)2 = (x,−xy)2 = (x,−det(V ))2 = (x,−3)2 = 1.

This is a contradiction, and the desired result follows.

Note that a Z2-lattice L with the Gram matrix (2)⊕ (6) satisfies that det(L) = 3

and S2(L) = −1.

5. Embedding Theory

One useful way to investigate lattices is embedding a lattice into another well-

known lattice. In this section, we aim to prove Theorem 2 and Theorem 10 which
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give conditions for a given lattice to be embedded into a unimodular lattice and an

odd unimodular lattice, respectively.

5.1. Hasse Symbols of Unimodular Lattices and Unimodular Zp-Lattices

In this subsection we introduce the Hasse symbols of unimodular lattices and uni-

modular Zp-lattices.

Lemma 3. Let p be an odd prime number. Suppose that L is a unimodular Zp-

lattice on the n-dimensional quadratic Qp-space V . Then Sp(V ) = 1. In particular,

if det(L) = 1, then L ∼= In.

Proof. Let G be the Gram matrix of L with respect to some basis. Since p is an odd

prime, G is Zp-congruent to a diagonal matrix D in Mn(Zp) (see [5, p. 369]). Then

the diagonal entries of D are units in Zp as det(G) ∈ Z∗p. Note that (a, b)p = 1 for

any a, b ∈ Z∗p. This implies
∏
i<j(Dii, Djj)p = 1, and thus Sp(L) = 1. This is the

desired result.

Next, we suppose that det(L) = 1. By the previous argument, we have Sp(L) = 1.

Since L is a Z(s)
p -maximal Zp-lattice, Proposition 1 forces L ' Hp

n,1,1
∼= In.

We remark that this lemma can also be proved by a classification of Z(s)
p -maximal

Zp-lattices for each odd prime number p in Example 1.

Lemma 4. Suppose that there exists a unimodular lattice on the n-dimensional

quadratic Q-space V . Then det(Vp) = 1, Sp(Vp) = 1 for every prime number p.

Proof. Let L be a unimodular lattice on V . Since det(L) = 1, we find that Lp is

a unimodular Zp-lattice on Vp with det(Lp) = 1. This implies that det(Vp) = 1

for each p ∈ S. From Lemma 3, we find that Sp(Vp) = 1 if p is odd. Note that

S∞(V ⊗Q∞) = 1 as L is positive definite. Theorem 1 shows that S2(V2) = 1.

5.2. Embedding a Quadratic Space

In order to embed Z-lattices, it is essential to embed quadratic Q-spaces. In this

subsection we aim to prove Proposition 4, which will be used in the next subsection.

Lemma 5. Let p be a prime number, and m and n positive integers with m >

n. Suppose that V is an n-dimensional quadratic Qp-space. Then there exists a

quadratic Qp-space U which satisfies V ⊥ U ∼= Im, if and only if there exists a

quadratic Qp-space U with

(dim(U),det(U), Sp(U)) = (m− n,det(V ), Sp(V )(det(V ),det(V ))p).
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Proof. Let U be a quadratic Qp-space U . Then V ⊥ U ∼= Im if and only if dim(V )+

dim(U) = m, det(V ) det(U) = 1 and Sp(V )Sp(U)(det(V ),det(U))p = 1 by The-

orem 4. Since (det(V ),det(V ))p(det(V ),det(U))p = (det(V ),det(V ) det(U))p =

(det(V ), 1)p = 1 holds, the desired result follows.

Lemma 6. Let p be a prime number, and m and n positive integers with m ≥
n. Suppose that V is an n-dimensional quadratic Qp-space. Then there exists an

(m − n)-dimensional quadratic Qp-space U such that V ⊥ U ∼= Im if and only if

one of the following is satisfied:

(1) m = n, det(V ) = 1 and Sp(V ) = 1.

(2) m = n+ 1, and Sp(V )(det(V ),det(V ))p = 1.

(3) m = n+ 2, and Sp(V ) =

{
1 if p > 2 and det(V ) = −1,

−1 if p = 2 and det(V ) = −1.

(4) m ≥ n+ 3.

Proof. This follows from Theorem 5 and Lemma 5 immediately.

Lemma 7. Let m and n be positive integers with m ≥ n. Suppose that V is an

n-dimensional quadratic Q-space with sign(V ) = n. Then there exists an (m− n)-

dimensional quadratic Q-space U such that

V ⊥ U ∼= Im (5.1)

if and only if for each prime number p, there exists a quadratic Qp-space U(p) such

that

Vp ⊥ U(p)
∼= Im. (5.2)

Proof. If m = n, then Theorem 6 implies the desired result. Hence we assume

that m > n. Only the sufficiency needs to be proved. Suppose that there exists a

quadratic Qp-space U(p) such that (5.2) holds for each prime number p. Then by

Lemma 5, we find that det(U(p)) = det(Vp) ∈ det(V )Q∗2p and

Sp(U(p)) = Sp(V )(det(V ),det(V ))p.

Define U(∞)
∼= Im−n. Then det(U(∞)) = 1 ∈ det(V )Q∗2∞ as V is positive definite.

Now condition (1) of Theorem 7 is satisfied. By Lemma 1 and (3.2), condition (2)

of Theorem 7 is also satisfied and thus there exists a quadratic Q-space U with

sign(U) = m− n whose localization Up is isometric to U(p) for each prime number

p. This implies that

(V ⊥ U)p = Vp ⊥ Up ' Vp ⊥ U(p)
∼= Im for each prime number p.

Using Theorem 6, we obtain V ⊥ U ∼= Im.
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Combining Lemma 6 and Lemma 7, we have the following proposition.

Proposition 4. Let m be a positive integer greater than n. Suppose that V is an

n-dimensional quadratic Q-space with sign(V ) = n. Then there exists an (m− n)-

dimensional quadratic Q-space U such that V ⊥ U ∼= Im if and only if one of the

conditions (1)–(4) in Theorem 2 is satisfied.

5.3. Embedding a Positive Definite Integral Z-Lattice

In this subsection we combine results in the previous subsections with Sections 3

and 4, and prove Theorem 2 and Theorem 10. In addition, Corollary 1 shows that a

lattice can be embedded into a unimodular lattice if its determinant satisfies certain

conditions.

Lemma 8. Let n ≥ 2 be an integer. Suppose that V is an n-dimensional positive

definite quadratic Q-space. Then the following are equivalent.

(1) There exists a unimodular lattice on V .

(2) For each prime number p, the localization Vp of V satisfies det(Vp) = 1 and

Sp(Vp) = 1.

(3) Every Z(s)-maximal Z-lattice on V is unimodular.

(4) V ∼= In.

Proof. First we see that (1) implies (2) by Lemma 4. Next, (3) clearly implies (1).

Also, (2) and (4) are equivalent by Theorem 6. We prove that (2) implies (3). Let

L be a Z(s)-maximal Z-lattice on V . If p is an odd prime number, then we have

Vp ∼= In by Theorem 4. This together with Proposition 1 implies Lp ∼= In. Next

we consider the case of p = 2. By Proposition 2, ν2(det(L2)) ∈ {0, 1} follows. This

together with det(V2) = 1 implies that ν2(det(L2)) = 0. Therefore det(Lp) ∈ Z∗p
for every prime number p, and det(L) ∈

⋂
p∈S(det(Lp) ∩ Z) = {1,−1}. This shows

that L is unimodular.

Theorem 2 follows from Proposition 4 and Lemma 8. As a corollary of Theorem

2, we immediately derive the following corollary.

Corollary 1. Suppose that L is a lattice of rank n and det(L) = pα1
1 · · · p

αt
t d, where

p1 < p2 < · · · < pt are odd prime numbers, α1, . . . , αt are positive even numbers,

and d is an integer with gcd(d, p1 · · · pt) = 1. Then L is a sublattice of a unimodular

lattice of rank n+ 2, if the following conditions are satisfied:

(1) For each odd prime number p ∈ S−{p1, . . . , pt}∪{2}, νp(d) is odd if νp(d) > 0.

(2) For each odd prime number p ∈ {p1, . . . , pt}, the Legendre symbol
(
−d
p

)
equals

−1.
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(3) d/2ν2(d) 6≡ −1 (mod 8) if ν2(d) is even.

Proof. Let V = L ⊗ Q be the n-dimensional quadratic Q-space. Let S′ = {p ∈
S | νp(d) is odd}. If p ∈ S − S′ ∪ {2, p1, . . . , pt}, then Lp is unimodular, and hence

Sp(V ) = 1 by Lemma 3. Next we easily show that for each p ∈ S′ ∪ {2, p1, . . . , pt},
det(Vp) 6= 1. Following from condition (2) of Theorem 2, we have the result imme-

diately.

Theorem 9 ([7, Theorem 9.4]). Let L be a Z-lattice on the n-dimensional quadratic

Q-space V . Suppose T is a finite subset of S, and suppose that for each p ∈ T , a

Zp-lattice M(p) is given on Vp. Then there is a Z-lattice L′ on V such that

L′p =

{
M(p) if p ∈ T,
Lp if p ∈ S − T.

Theorem 10. Let m be a positive integer. Suppose that L is a lattice on the n-

dimensional quadratic Q-space V and one of the conditions (1)–(4) in Theorem 2

is satisfied. Then L is a sublattice of an odd unimodular lattice of rank m if one of

the following holds:

(1) L is odd,

(2) m = n+ 2 and (det(V2), S2(V2)) 6= (3, 1),

(3) m ≥ n+ 3.

Proof. While L is odd, the desired result holds immediately by Theorem 2. So

now we may assume m = n + 2, the condition (3) in Theorem 2 is satisfied,

and (det(V2), S2(V2)) 6= (3, 1). By Proposition 4, we find that there exists a 2-

dimensional quadratic Q-space U such that

V ⊥ U ∼= In+2.

LetN be an integral Z-lattice on U . Since (det(U2), S2(U2)) 6= (−1,−1) by Theorem

5 and

(det(U2), S2(U2)) = (det(V2), S2(V2)(det(V2),det(V2))2) 6= (3,−1),

Proposition 3 implies that there exists a Z2-lattice H with nH = Z2 on U2 so that

U2 ' Q2 ⊗H. Using Theorem 9, we find that there exists a Z-lattice N ′ such that

N ′p =

{
H if p = 2,

Np if p > 2.

Since (sN ′)p = sN ′p ⊆ Zp for every prime number p, we have that sN ′ ⊆
⋂
p∈S(Zp∩

Q) = Z, and hence N ′ is integral. Moreover, N ′ is odd as nN ′2 = nH = Z2. Let

M = L ⊥ N ′.
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Note that the integral Z-lattice M is odd and the quadratic Q-space M ⊗ Q is

isometric to In+2. A Z(s)-maximal Z-lattice on M ⊗ Q which contains M is a

desired odd unimodular Z-lattice by Lemma 8.

If m ≥ n+ 3, then the desired result holds in a similar way.

5.4. Applications

In this subsection, we prove Corollary 2 which gives a sufficient condition for a

lattice of rank 12 to be 2-integrable and Corollary 3 which explains how to find

candidates for non-2-integrable lattices of rank 12.

The unimodular lattices of rank up to 25 are completely classified (see [5, Chap-

ter 16–18]). Conway and Sloane [4] studied the s-integrability of unimodular lattices

among them. The following theorems are a part of their results.

Theorem 11 ([4, Proof of Theorem 12]). Every unimodular lattice of rank up to

14 is 2-integrable.

Theorem 12 ([4, Theorem 13]). The lattice A+
15 is a non-2-integrable unimodular

lattice of rank 15.

Note that a lattice is said to be irreducible if it is not the orthogonal sum of two

non-zero lattices. As A+
15 is the unique irreducible unimodular lattice of rank 15

(see [5, p. 49]), following from Theorems 11, 12 and 2, we have the following lemma.

Lemma 9. The lattice A+
15 is the unique unimodular lattice of rank 15 which is not

2-integrable. In particular, every non-2-integrable lattice of rank 12 is a sublattice

in A+
15.

We derive the following corollary from Corollary 1:

Corollary 2. Suppose that L is a non-2-integrable lattice of rank 12 and deter-

minant at most 27. Then the determinant of L is equal to one of 7, 15, 18, 23 or

25.

Proof. Let L be a lattice of rank 12. Suppose that det(L) is not equal to 7, 15, 18, 23

or 25. Then Corollary 1 implies that L is contained in a unimodular lattice of rank

14. This together with Theorem 11 implies that L is 2-integrable.

We will use Corollary 2 to obtain Corollary 3, which gives candidates for non-2-

integrable lattices. To prepare for the proof of it, we introduce some terminology and

a lemma. For a lattice L, its dual is the lattice {u ∈ L⊗Q | (u,v) ∈ Z for all v ∈ L},
and we denote it by L∗. Let L be a lattice, and M a sublattice of it. The lattice

M is said to be primitive if M = M∗ ∩ L.

Lemma 10 ([6, Proposition 1.2]). Let L be a unimodular lattice and M be its

primitive sublattice. Then, the determinant of M is equal to that of the sublattice

M⊥ orthogonal to M in L.
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Corollary 3. Let M be a sublattice in A+
15 which is generated by 3 linearly inde-

pendent elements of norm 3, and L be the sublattice orthogonal to M in A+
15. If L is

non-2-integrable, then it is isometric to one of the lattices of rank 12 in Theorem 1

and Theorem 3.

Proof. We enumerate the positive definite matrices of order 3 all of whose diagonal

entries are 3 and off-diagonal entries are in {−2,−1, 0, 1, 2}. Let G be the set of

these matrices. It is verified that G is Z-congruent to either the matrix (1.1) or

(1.2) for each G ∈ G with det(G) ∈ {7, 15}. Hence it suffices to show that, if

det(M) 6= 7, 15, then L is 2-integrable.

Suppose that det(M) 6= 7, 15. Note that the Gram matrix with respect to some

basis of M is contained in G. By calculating the determinants of all matrices in G,

we have

det(M) ∈ {3, 5, 8, 12, 13, 16, 20, 21, 24, 27}.

Set P := (M⊗Q)∩A+
15. Then P is primitive in A+

15 since P ∗∩A+
15 ⊂ (P⊗Q)∩A+

15 =

(M ⊗ Q) ∩ A+
15 = P . Lemma 10 implies det(L) = det(P ) since L = M⊥ = P⊥ in

A+
15. In addition, we have det(M) = det(P )[P : M ]2. Hence we see that

det(L) = det(P ) ∈ {1, 2, 3, 4, 5, 6, 8, 12, 13, 16, 20, 21, 24, 27}.

This together with Corollary 2 implies that L is 2-integrable.

Remark 1. It is a natural question to ask if we can obtain more candidates for

non-2-integrable lattices of rank 12 in A+
15. By using a computer, we derive a better

result than Corollary 3 as follows. As will be discussed in Lemma 13, it is possible

to enumerate the lattices in A+
15 each of which is orthogonal to a lattice of rank

3 generated by 3 linearly independent elements of norm at most 4. Since we can

judge whether a given lattice is 2-integrable by solving (with a computer) a corre-

sponding system of linear equations, it turns out that there is no non-2-integrable

lattice among them except the non-2-integrable lattices obtained in Theorem 1 and

Theorem 3. Now we may not immediately verify this result without a computer.

6. The s-Integrability and Eutactic Stars of Scale s

Since it is difficult to determine whether a lattice is s-integrable from its defini-

tion, Conway and Sloane [4] gave equivalent conditions for a given lattice to be

s-integrable in terms of eutactic stars. Here we introduce them. Hereafter, we let

ei denote the vector of which the i-th entry is 1 and the others are 0.

Definition 2. Let s be a positive integer. For positive integers m ≥ n, let ρ be the

orthogonal projection from Rm to an n-dimensional subspace. Then vectors ρ(
√
s ·
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e1), . . . , ρ(
√
s · em) (with repetitions allowed) are said to form an (n-dimensional)

eutactic star (of scale s).

Most proofs of non-s-integrability of a given lattice are reduced to arguments

using the following theorem and lemma.

Theorem 13 ([4, Theorem 3]). Let s be a positive integer. A lattice L of rank n

is s-integrable if and only if its dual L∗ contains an n-dimensional eutactic star of

scale s.

Lemma 11 ([4, pp. 215–216]). A necessary and sufficient condition for s1, . . . , sm ∈
Rn to be an n-dimensional eutactic star of scale s is that, for each w ∈ Rn,

m∑
i=1

(w, si)
2 = s(w,w). (6.1)

According to the following lemma, determining whether a lattice is s-integrable

is equivalent to judging the existence of a non-negative integer solution of a system

of linear equations. Hence, it can be determined by computer if the number of

variables is few.

Lemma 12. Let s be a positive integer, L a lattice with a basis w1, . . . ,wn, and

u1, . . . ,uN the pairwise distinct vectors in L∗ of norm at most s. Then L is s-

integrable if and only if the following system of equations has a non-negative integer

solution (x1, . . . , xN ):

N∑
k=1

(wi + wj ,uk)2xk = s(wi + wj ,wi + wj) (i, j = 1, . . . , n). (6.2)

Proof. Theorem 13 asserts that L is s-integrable if and only if L∗ contains an n-

dimensional eutactic star of scale s. Thus it is sufficient to show that the two

conditions, namely, that the dual lattice L∗ contains an n-dimensional eutactic star

of scale s and that Equation (6.2) has a non-negative integer solution, are equivalent.

Suppose that s1, . . . , sm in L∗ is a eutactic star of scale s. As (si, si) ≤ s for

each i, we have s1, . . . , sm ∈ {u1, . . . ,uN}. Now applying Lemma 11, we find that a

solution (x1, . . . , xN ) of Equation (6.2) can be given by setting xj = |{i | si = uj}|
for j = 1, . . . , N .

Now suppose (x1, . . . , xN ) is a non-negative integer solution for Equation (6.2).

Then the multiple set {u(x1)
1 , . . . ,u

(xN )
N }, where u

(xi)
i denotes xi copies of vector ui,

is a eutactic star of scale s in L∗ by using Lemma 11 again. This completes the

proof.
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7. The Lattice A+
15

The lattice A+
15 is given in Definition 1. For a positive integer n, let Sn denote the

symmetric group on {1, . . . , n}. The symmetric group S16 acts on A+
15 such that,

for x ∈ A+
15, σ ∈ S16 and i ∈ {1, . . . , 16}, the σ(i)-th entry of σ(x) is defined by

the i-th entry of x. In fact, Aut(A+
15) = 〈S16,−1〉 holds (see [5, Subsection 6.1 in

Chapter 4]).

In this section we discuss properties of the lattice A+
15 and its non-2-integrable

sublattices. As claimed in Lemma 9, every non-2-integrable lattice of rank 12 is

contained in A+
15. Lemma 13 is the first statement of Theorem 3, which asserts our

newly found lattices are 〈a,b, c〉⊥ and 〈a,b, c′〉⊥.

Lemma 13. There are precisely two sublattices in A+
15 up to Aut(A+

15) with Gram

matrix defined as in (1.2). Furthermore, they are 〈a,b, c〉 and 〈a,b, c′〉 in A+
15.

Proof. Let T be the set of elements of norm 3 in A+
15. For pairwise distinct integers

i1, i2, i3 and i4 ∈ {1, . . . , 16}, we let

ti1,i2,i3,i4 = t{i1,i2,i3,i4} := (1/4)e− ei1 − ei2 − ei3 − ei4 ∈ A+
15,

where e denotes the all one vector in Z16. For example the vector [4] defined in

Definition 1 is t13,14,15,16. First, we show that

T = {±tI | I ⊆ {1, . . . , 16} and |I| = 4}. (7.1)

As the representatives of cosets of A15 in A+
15 are 0, ±[4] and 2[4], and the norm

of every element in A15 and 2[4] + A15 is even, every element in T must belong to

±[4] + A15. Let y = (y1, . . . , y16) ∈ A15, and suppose [4] + y ∈ T . Then we obtain

the two conditions

12∑
i=1

(4yi + 1) +

16∑
j=13

(4yj − 3) = 0

and

12∑
i=1

(4yi + 1)2 +

16∑
j=13

(4yj − 3)2 = 3 · 42 = 48.

By the second condition, the odd integers 4yi + 1 and 4yj − 3 clearly belong to

{−3, 1, 5} for all i and j. For h ∈ {−3, 1, 5}, let

Nh := |{i ∈ {1, . . . , 12} | 4yi + 1 = h}|+ |{j ∈ {13, . . . , 16} | 4yj − 3 = h}|.

Then we see that N5 ∈ {0, 1}. In the case of N5 = 1, the second condition implies

that N−3 ≤ 2 and N1 ≥ 16− 3 = 13. This contradicts the first condition. Namely
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N5 = 0 holds. Thus there exists I ⊆ {1, . . . , 16} with |I| = 4 such that [4] + y = tI .

This implies (
[4] + A+

15

)
∩ T ⊆ {tI | I ⊆ {1, . . . , 16} and |I| = 4}.

As −[4] + A+
15 = −([4] + A+

15), it comes with(
−[4] + A+

15

)
∩ T ⊆ {−tI | I ⊆ {1, . . . , 16} and |I| = 4}

and Equation (7.1) holds. Next, we classify three elements x,y and z of norm 3

in A+
15 up to Aut(A+

15) such that the Gram matrix with respect to them is defined

as in (1.2). We can let x := t1,2,3,4 = a. For subsets I and J of cardinality 4 in

{1, . . . , 16}, we have (tI , tJ) = −1 + |I ∩ J |. Hence, we let y := t1,2,3,5 = b to

satisfy (x,y) = 2. Similarly, to satisfy (x, z) = (y, z) = 0, we let z := t1,6,7,8 = c or

z := t4,5,6,7 = c′. The desired conclusion holds.

8. Minimal Non-s-Integrable Lattices and the Proof of Theorem 3

8.1. Minimal Non-s-Integrable Lattices

In this subsection, we prove Proposition 5 which will be used to show the minimality

of the sublattices 〈a,b, c〉⊥ and 〈a,b, c′〉⊥ in A+
15. Let M be a lattice found by

Conway and Sloane in Theorem 1. Although some non-2-minimal non-2-integrable

lattices can be obtained as lattices contained in M ⊥ Zm/
√

2 for some positive

integer m, the minimality of 〈a,b, c〉⊥ and 〈a,b, c′〉⊥ indicates that these two non-

2-integrable lattices can not be obtained from Conway and Sloane’s lattices in this

way.

Plesken [13] studied minimal non-1-integrable lattices and additively indecompos-

able ones defined in the following. Note that he calls the bilinear form corresponding

to a minimal non-1-integrable lattice a block form. We state his claims in terms of

lattice theory.

Definition 3. A lattice L is said to be additively decomposable if there are two

lattices M and N such that L is isometric to a sublattice of M ⊥ N which is

contained in neither N nor M . Otherwise it is said to be additively indecomposable.

Lemma 14 ([13, (II.5) Corollary]). A lattice L is minimal non-1-integrable if and

only if the minimum norm of L∗ is greater than 1.

Moreover, Plesken gave a sufficient condition for a lattice to be additively inde-

composable (see [13, (III.1) Proposition]). With a slight change in his argument,

the following proposition is derived.
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Proposition 5. Let L be a minimal non-1-integrable lattice. Suppose that there is

an irreducible sublattice of rank at least rankL − 5 which is generated by elements

of norm at most 3. Then L is additively indecomposable.

Proof. Suppose that there exists such a sublattice L′. By way of contradiction, we

suppose that L is additively decomposable. Thus there are two lattices M and N

such that L ⊆M ⊥ N , L 6⊆M and L 6⊆ N . Let ρM and ρN denote the orthogonal

projections to M and N , respectively. Namely, ρM : L → M and ρN : L → N

are maps defined as ρM (u) := uM and ρN (u) := uN for u = uM + uN ∈ L with

uM ∈M and uN ∈ N .

First we show that either L′ ⊆M or L′ ⊆ N . It suffices to show that there is no

element u ∈ L′ of norm at most 3 such that ρM (u) 6= 0 and ρN (u) 6= 0. Suppose

that there exists such an element u. Since

{1, 2, 3} 3 (u,u) = (ρM (u), ρM (u)) + (ρN (u), ρN (u)),

ρM (u) 6= 0 and ρN (u) 6= 0, one of the norms of ρM (u) and ρN (u) equals 1. Hence,

without loss of generality we may assume the norm of ρN (u) is equal to 1. Then

N = N ′ ⊥ 〈ρN (u)〉 for a sublattice N ′ of N . Therefore

L ⊆M ⊥ N ⊆ (M ⊥ N ′) ⊥ 〈ρN (u)〉 ' (M ⊥ N ′) ⊥ Z.

Also 0 6= ρN (u) 6∈ M ⊥ N ′ implies L 6⊆ M ⊥ N ′. Thus L is non-1-minimal, which

contradicts the assumption that L is a minimal non-1-integrable lattice.

Now we may assume that L′ ⊆M . Set P := (L′⊗Q)∩L. Then P is a primitive

sublattice of L and L = P ⊕Q for some sublattice Q of L. Since P ⊆ M ⊗ Q, we

have

L ⊆M ⊥ ρN (L) = M ⊥ ρN (Q).

As

rank ρN (Q) ≤ rankQ = rankL− rankP = rankL− rankL′ ≤ 5,

this together with Theorem 10 implies that ρN (Q) is a sublattice of an odd uni-

modular lattice of rank at most 8. It is well-known that every odd unimodular

lattice of rank k ≤ 8 is isometric to a standard lattice Zk (see [5, Table 16.7]).

Thus ρN (Q) ⊆ Z8. Furthermore, L ⊆ M ⊥ Z8 and L 6⊆ M . This means that

L is non-1-minimal, which leads to a contradiction. Thus, the desired conclusion

holds.

8.2. Proof of Theorem 3

In this subsection, we complete the proof of Theorem 3.

Proof of Theorem 3. Set N := 〈a,b, c〉⊥ and N ′ := 〈a,b, c′〉⊥. As asserted in

Lemma 13, there are precisely two sublattices N and N ′ in A+
15 up to Aut(A+

15)
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with Gram matrix defined as in (1.2). Hence it suffices to show that they are

non-isometric and minimal non-2-integrable.

First we show that N and N ′ are non-isometric by calculating the kissing num-

bers. Let R be the set of elements in A+
15 of norm 2. Note that R ⊂ A15 holds. We

have

N ∩ R = {ei − ej | i 6= j and i, j ∈ Y for some Y ∈ τ}, (8.1)

where τ := {{1}, {2, 3}, {4}, {5}, {6, 7, 8}, {9, . . . , 16}}. Since the minimum norm

of N is 2, the kissing number of N is |N ∩ R|. Hence the kissing number of N is

2 · 1 + 3 · 2 + 8 · 7 = 64. Similarly,

N ′ ∩ R = {ei − ej | i 6= j and i, j ∈ Y for some Y ∈ τ ′}, (8.2)

where τ ′ := {{1, 2, 3}, {4}, {5}, {6, 7}, {8, . . . , 16}}, and the kissing number of N ′ is

3 · 2 + 2 · 1 + 9 · 8 = 80. Hence N and N ′ are non-isometric.

Next we verify that N and N ′ are non-2-integrable by using a computer together

with Lemma 12. We used Magma [1]. Indeed, we construct the lattice N in Magma,

enumerate vectors of norm at most 2 in N∗, and check that (6.2) has no non-negative

integer solutions. This together with Lemma 12 implies that N is non-2-integrable.

By the same method, we may confirm that N ′ is non-2-integrable.

Finally we prove the minimality of N and N ′. By using Magma again, we find

that the minimum norms of N∗ and (N ′)∗ are greater than 1. Thus, by Lemma 14,

they are minimal non-1-integrable lattices. By applying Proposition 5 with L := N

and L := N ′, we prove that N and N ′ are additively indecomposable. In particular,

they are minimal non-2-integrable. Namely, it suffices to show that each of N and

N ′ contains an irreducible sublattice of rank at least 7 = 12 − 5 generated by

elements of norm at most 3. By (8.1) and (8.2), both N and N ′ contain

〈e9 − e10, . . . , e15 − e16〉

as a sublattice of rank 7. Therefore the desired conclusion follows.

We remark that Plesken [13] has proved that 〈a,b, c′〉⊥ is additively indecompos-

able (see [13, (III.3) Example]), where 〈a,b, c′〉⊥ is written as 18, 23; 6. Although

18, 23; 6 was defined in a different way from 〈a,b, c′〉⊥, we can verify by using a

computer that 〈a,b, c′〉⊥ and 18, 23; 6 are isometric.
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