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Abstract

In 1915, Theisinger proved that all harmonic numbers are not integers except for the
first one. In 1862, Wolstenholme proved that the numerator of the reduced form of
the harmonic number Hp−1 is divisible by p2 and the numerator of the reduced form

of the generalized harmonic number H
(2)
p−1 is divisible by p for all primes p ≥ 5. In

this note, we define harmonic type matrices and our goal is to extend Theisinger’s
and Wolstenholme’s results to harmonic type matrices.

1. Introduction

The n-th harmonic number, denoted by Hn, is defined as the partial sum of the

harmonic series

Hn = 1 +
1

2
+

1

3
+ · · ·+ 1

n
.

The integrality and divisibility properties of these numbers have been studied widely.

For instance, in 1915 Theisinger [9] proved that all harmonic numbers Hn except

for H1 are not integers. In 1918, Kürschák [5] showed that the difference Hn −Hm

between two distinct harmonic numbers is never an integer. In 1819, Babbage [1]

proved that if p is an odd prime, then the numerator of the reduced form of Hp−1
is divisible by p. Furthermore, in 1862, Wolstenholme [10] showed that if p ≥ 5,

then p2 divides the numerator of the reduced form of Hp−1. The n-th generalized

harmonic number of order r, denoted by H
(r)
n , is defined by

H(r)
n = 1 +

1

2r
+

1

3r
+ · · ·+ 1

nr
.

Note that H
(1)
n = Hn for all n ∈ Z+. For r > 1, the generalized harmonic number

H
(r)
n is indeed the partial sum of a convergent series. For that reason, it is not in-

teresting whether the generalized harmonic numbers are integers or not. However,

their divisibility properties are still quite striking. For instance, in 1862, Wolsten-

holme [10] showed that if p ≥ 5, then the numerator of the reduced form of H
(2)
p−1
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is divisible by p. Furthermore, if p ≥ 5 with p − 1 - r, then the numerator of the

reduced form of H
(r)
p−1 is divisible by p; see [4].

In this note, we define harmonic type matrices and generalize the integrality

and divisibility results of harmonic numbers and generalized harmonic numbers to

harmonic type matrices. First, we give the definition of harmonic type matrices.

Unless otherwise stated, if A is a matrix with non-zero entries, then 1
A denotes the

matrix whose entries are the multiplicative inverses of the entries of the matrix A.

Definition 1. The n-th harmonic matrix of size m, denoted by h
(m×m)
n , is defined

as

h(m×m)
n =

∑
A

1

A
,

where A runs over all m×m matrices whose entries are integers between 1 and n.

Recall that a complex square matrix A is called non-singular if det(A) is non-

zero.

Definition 2. The n-th non-singular harmonic matrix of size m, denoted byH
(m×m)
n ,

is defined by

H(m×m)
n =

∑
A

1

A
,

where the sum ranges over all m×m non-singular matrices whose entries are integers

between 1 and n.

Observe that if m = 1, then we have that h
(1×1)
n = H

(1×1)
n = Hn.

2. Divisibility Properties of Harmonic Type Matrices

In this section, we analyze the divisibility properties of the harmonic type matrices

h
(m×m)
n and H

(m×m)
n . We will show that if p is a prime number greater than or

equal to 5, then the numerators of all entries of the (p − 1)-th harmonic matrix

h
(n×n)
p−1 of size n is divisible by p2 for all positive integers n. This result generalizes

Wolstenholme’s theorem [10]. Unlike this, we will give a counterexample that (see

Example 4) the numerators of all entries of the fourth non-singular harmonic ma-

trix H
(2×2)
4 of size 2 are not divisible by 5. In addition, we prove an analogue of

Wolstenholme’s theorem for the special subsets Gp,n, Tp,n and Gp,n,r of the matrix

ring Mn(Z) defined as follows:

Gp,n = {A = (aij) ∈Mn(Z) | 1 ≤ aij ≤ p− 1, p - det(A)},

Tp,n = {A = (aij) ∈Mn(Z) | 1 ≤ aij ≤ p− 1, p - Tr(A)},

Gp,n,r = {A = (aij) ∈Mn(Z) | aij ∈ {1, 2r, . . . , (p− 1)r}, p - det(A)},
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where n and r are positive integers and p is a prime number. Since we have that∑
A∈Gp,1

1

A
= Hp−1,

∑
A∈Tp,1

1

A
= Hp−1,

∑
A∈Gp,1,r

1

A
= H

(r)
p−1,

the numerators of all entries of the first two 1 × 1 matrices above are divisible by

p2 for all p ≥ 5, while the numerators of all entries of the last 1 × 1 matrix are

divisible by p for all p ≥ 5 with p − 1 - r. From now on, for any r ∈ {1, ..., p − 1},
let Grp,n denote the subset of Gp,n such that the determinants of matrices in Grp,n
are congruent to r modulo p, that is,

Grp,n = {A ∈ Gp,n | det(A) ≡ r (mod p)}.

Notice that we may identify the matrices in Gp,n with the elements of the general

linear group GLn(Fp) with non-zero entries. In fact, if r = 1, then the matrices in

G1
p,n can be considered as the elements of the special linear group SLn(Fp) with

non-zero entries. In this section, we prove the following results which generalize

Wolstenholme’s theorem. Also, our theorems extend Babbage’s result from F×p to

the multi-dimensional structures GLn(F×p ) and SLn(F×p ). Here is our first result.

Theorem 1. If n > 1 and p ≥ 5, then the numerators of all entries of the matrix∑
A∈Grp,n

1

A

are divisible by p2.

Proof. Note that for any r ∈ {1, ..., p− 1}, we have Grp,1 = {r}. Hence, we deduce

that ∑
A∈Grp,1

1

A
=

1

r

and p2 does not divide the numerator of 1/r. Now, assume that n > 1 and p ≥
5. Let P ijk denote the subset of Grp,n consisting of matrices whose ij-th entry is

k, where k = 1, 2, . . . p − 1, that is, P ijk = {(aij) ∈ Grp,n | aij = k}. Note that

{P ijk | k = 1, 2, . . . , p− 1} is a partition of Grp,n, namely, we have that

Grp,n =

p−1⊔
k=1

P ijk .
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First, we show that the sets in the partition have the same cardinality. For a matrix

A = (aij) ∈Mn(Z), we denote by (A)p the matrix whose entries are the remainders

of the entries of A divided by p and (aij)p denotes the ij-th entry of the matrix

(A)p. We define a function φ : P ij1 −→ P ijk as φ(A) = (BA)p, where B = (bij) is

a diagonal matrix such that if i is not 1, then bii = k, b11 = k′ and if i = 1 then

bii = k, bnn = k′, where k′ denotes the multiplicative inverse of k modulo p, and

the other entries equal 1:

B =



k′

1
. . .

1
k

1
. . .

1


or B =


k

1
. . .

1
k′

 .

When A ∈ P ij1 , we have that the entries of (BA)p are integers between 1 and p− 1

and ((BA)ij)p = k. Recall from linear algebra that, we have

det(BA) = det(B)det(A),

det((BA)p) ≡ det(BA) (mod p).

From these fundamental observations, we obtain that

det((BA)p) ≡ r (mod p)

which implies that φ(A) ∈ P ijk when A ∈ P ij1 . In order to show that φ is an

injection, suppose that A = (aij) ∈ P ij1 , C = (cij) ∈ P ij1 and φ(A) = φ(C). We

will show that A = C. Since the rows of the matrices A and C, except for the first

and i-th rows, remain stable under the map φ, it suffices to show that their entries

in the first and i-th rows are equal. The entries of the images φ(A) and φ(C) in

the first row are of the form (k′a1β)p and (k′c1β)p, where β = 1, . . . , n. Since all

the entries of the matrices A and C are integers between 1 and p− 1, we have that

(k′a1β)p = (k′c1β)p implies (a1β)p = (c1β)p, which in turn yields a1β = c1β where

β = 1, . . . , n. Similarly, we also have aiβ = ciβ , where β = 1, . . . , n. Thus, we obtain

A = C, that is, φ is an injection. Conversely, we define an injection, ψ : P ijk −→ P ij1 ,

in a similar way by ψ(M) = (NM)p, where N = (nij) is a diagonal matrix such

that if i is not 1, then n11 = k, nii = k′ and if i = 1, then nii = k′ and nnn = k

and the other entries equal 1:

N =



k
1

. . .

1
k′

1
. . .

1


or N =


k′

1
. . .

1
k

 .
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One can similarly check that ψ is an injection. Thus, we deduce that P ij1 and P ijk
have the same cardinality. Therefore, all sets in the partition

{P ijk | k = 1, 2, . . . , p− 1}

have the same cardinality. As we have that

∑
A∈Grp,n

1

A
=

p−1∑
k=1

 ∑
A∈P ijk

1

A

 ,

we will show that the numerators of all entries on the right-hand side are divisible

by p2. Now,

p−1∑
k=1

 ∑
A∈P ijk

1

A

 =



∗ · · · ∗ ∗ · · · ∗
...

...
...

...
...

...

∗ · · · |P ij1 |1 ∗ · · · ∗
∗ · · · ∗ ∗ · · · ∗
...

...
...

...
...

...
∗ · · · ∗ ∗ · · · ∗


+



∗ · · · ∗ ∗ · · · ∗
...

...
...

...
...

...

∗ · · · |P ij2 | 12 ∗ · · · ∗
∗ · · · ∗ ∗ · · · ∗
...

...
...

...
...

...
∗ · · · ∗ ∗ · · · ∗



+ · · ·+



∗ . . . ∗ ∗ · · · ∗
...

...
...

...
...

...

∗ · · · |P ijp−1| 1
p−1 ∗ · · · ∗

∗ . . . ∗ ∗ · · · ∗
...

...
...

...
...

...
∗ . . . ∗ ∗ · · · ∗


.

However, P ijk and P ij` have the same cardinality for any integers k, ` = 1, 2, . . . , p−1.

Therefore, we obtain that

∑
A∈Grp,n

1

A
=



∗ . . . ∗ ∗ · · · ∗
...

...
...

...
...

...

∗ · · · |P ij1 |Hp−1 ∗ · · · ∗
∗ . . . ∗ ∗ · · · ∗
...

...
...

...
...

...
∗ . . . ∗ ∗ · · · ∗


.

By Wolstenholme’s theorem [10], we know that the numerator of the reduced form

of Hp−1 is divisible by p2. Thus, the numerator of the i-th row and the j-th column

of the matrix ∑
A∈Grp,n

1

A

is divisible by p2. Since i and j are arbitrary, we conclude that the numerators of

all entries of the matrix ∑
A∈Grp,n

1

A

are divisible by p2. The proof is now completed.
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Corollary 1. If p ≥ 5, then the numerators of all entries of the matrix∑
A∈Gp,n

1

A

are divisible by p2.

Proof. We have already observed that∑
A∈Gp,1

1

A
= Hp−1.

By Wolstenholme’s theorem [10], the assertion is true for the case n = 1. Now,

suppose that n > 1. Then, we have that

∑
A∈Gp,n

1

A
=

p−1∑
r=1

 ∑
A∈Grp,n

1

A

 .

By Theorem 1, the numerators of all entries of the inner sum are divisible by p2.

This completes the proof.

Corollary 2. If p ≥ 5, then the numerators of all entries of the (p−1)-th harmonic

matrix h
(n×n)
p−1 of size n are divisible by p2.

Proof. Suppose that m ≥ 2 and n > 2. Note that for any k, ` ∈ {1, 2, . . . , n}, the

number of m × m matrices whose entries are integers between 1 and n and the

ij-th entry is k equals to the number of m×m matrices whose entries are integers

between 1 and n and the ij-th entry is `. Thus, we have that

h(m×m)
n =

∑
A

1

A
= nm

2−1

Hn · · · Hn

...
...

Hn · · · Hn

 , (1)

where A runs over all m×m matrices whose entries are integers between 1 and n.

Now, the result easily follows.

Theorem 2. If p ≥ 5, then the numerators of all entries of the matrix∑
A∈Tp,n

1

A

are divisible by p2.
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Proof. Assume that P ijk denotes the subset of Tp,n consisting of matrices such that

the ij-th entry is k, where k = 1, 2, . . . p− 1, that is, P ijk = {(aij) ∈ Tp,n | aij = k}.
As in Theorem 1, {P ijk | k = 1, 2, . . . , p − 1} is a partition of Tp,n and the sets in

the partition have the same cardinality. The function φ : P ij1 −→ P ijk defined as

φ(A) = (BA)p, where B = (bij) is a diagonal matrix such that bii = k for all i, that

is,

B =

k . . .

k

 ,

is an injection. When A ∈ P ij1 , the entries of (BA)p are integers between 1 and

p− 1 and ((BA)ij)p = k. We recall that

Tr(BA) = kTr(A),

Tr((BA)p) ≡ Tr(BA) (mod p).

Thus, from these basic results, we have p - Tr((BA)p), which implies that φ(A) ∈ P ijk
when A ∈ P ij1 . If A = (aij) ∈ P ij1 , C = (cij) ∈ P ij1 and φ(A) = φ(C), then

we have (kaij)p = (kcij)p. Since aij and cij are between 1 and p − 1, we obtain

aij = cij and so A = C. Hence, φ is an injection. Conversely, we define an injection,

ψ : P ijk −→ P ij1 , in a similar way by ψ(M) = (NM)p, where N = (nij) is a diagonal

matrix such that nii = k′, where k′ denotes the multiplicative inverse of k modulo

p, that is,

N =

k
′

. . .

k′

 .

One can similarly check that ψ is an injection. Hence, we obtain that P ij1 and P ijk
have the same cardinality. Therefore, the sets in the partition

{P ijk | k = 1, 2, . . . , p− 1}

have the same cardinality. Now,

p−1∑
k=1

 ∑
A∈P ijk

1

A

 =



∗ · · · ∗ ∗ · · · ∗
...

...
...

...
...

...

∗ · · · |P ij1 |1 ∗ · · · ∗
∗ · · · ∗ ∗ · · · ∗
...

...
...

...
...

...
∗ · · · ∗ ∗ · · · ∗


+



∗ · · · ∗ ∗ · · · ∗
...

...
...

...
...

...

∗ · · · |P ij2 | 12 ∗ · · · ∗
∗ · · · ∗ ∗ · · · ∗
...

...
...

...
...

...
∗ · · · ∗ ∗ · · · ∗



+ · · ·+



∗ . . . ∗ ∗ · · · ∗
...

...
...

...
...

...

∗ · · · |P ijp−1| 1
p−1 ∗ · · · ∗

∗ . . . ∗ ∗ · · · ∗
...

...
...

...
...

...
∗ . . . ∗ ∗ · · · ∗


.
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Thus, we obtain that

∑
A∈Tp,n

1

A
=



∗ . . . ∗ ∗ · · · ∗
...

...
...

...
...

...

∗ · · · |P ij1 |Hp−1 ∗ · · · ∗
∗ . . . ∗ ∗ · · · ∗
...

...
...

...
...

...
∗ . . . ∗ ∗ · · · ∗


.

The rest of the proof follows immediately as in Theorem 1.

Theorem 3. If p ≥ 5 and p−1 - r, then the numerators of all entries of the matrix∑
A∈Gp,n,r

1

A

are divisible by p.

Proof. We apply the same technique as in the previous theorem. Suppose that

P ijk denotes the subset of Gp,n,r consisting of matrices such that the ij-th entry

is kr, where k = 1, 2, . . . p − 1, that is, P ijk = {(aij) ∈ Gp,n,r | aij = kr}. Then,

{P ijk | k = 1, 2, . . . , p− 1} is a partition of Gp,n,r and the elements of the partition

have the same cardinality. Thus, we have the representation

∑
A∈Gp,n,r

1

A
=

p−1∑
k=1

 ∑
A∈P ijk

1

A

 .

This yields that

∑
A∈Gp,n,r

1

A
=



∗ . . . ∗ ∗ · · · ∗
...

...
...

...
...

...

∗ · · · |P ij1 |H
(r)
p−1 ∗ · · · ∗

∗ . . . ∗ ∗ · · · ∗
...

...
...

...
...

...
∗ . . . ∗ ∗ · · · ∗


.

Since p− 1 - r, by [4] the numerator of the reduced form of H
(r)
p−1 is divisible by p.

Thus, the result follows.

The following example indicates that the analogue of Wolstenholme’s theorem

does not hold for the fourth non-singular harmonic matrix H
(2×2)
4 of size 2.

Example 4. We have

H
(2×2)
4 =

∑
A

1

A
=

233/2 233/2

233/2 233/2

 ,
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where A runs over allm×m non-singular matrices whose entries are integers between

1 and 4. However, the numerator of 233/2 is not divisible by 5.

3. Integrality Properties of Harmonic Type Matrices

In this section, we generalize Theisinger’s theorem [9] for the harmonic type matrices

h
(m×m)
n and H

(m×m)
n . For a given non-zero integer a, the p-adic valuation of a,

denoted by νp(a) = m, indicates that pm divides a but pm+1 does not divide a.

By convention, we set νp(0) = ∞. For a non-zero rational number q = m/n where

m,n ∈ Z, we define νp(q) = νp(m)− νp(n). One can immediately see that

νp(ab) = νp(a) + νp(b),

νp(a+ b) ≥ min{νp(a), νp(b)}

for all rational numbers a, b.

Our first theorem in this section generalizes Theisinger’s result [9] to non-singular

type harmonic matrices of size 2.

Theorem 5. All entries of the non-singular harmonic matrix H
(2×2)
n of size 2 are

not integers for any n > 1.

Proof. Note that the set of 2×2 non-singular matrices whose entries are 1 is empty.

Therefore, the first non-singular harmonic matrix H
(2×2)
1 of size 2 is equal to 0.

Now, let n > 1. For any k = 1, 2, . . . , n, the number mkn denotes the number of

2 × 2 non-singular matrices whose entries are integers between 1 and n with the

(1, 1)-th entry is k. We claim that for any i, j = 1, 2, the number of 2 × 2 non-

singular matrices whose entries are integers between 1 and n with the ij-th entry is

k equals to mkn as well. Recall the fundamental result from linear algebra that if

we interchange two rows (columns) of a matrix, then the determinant will change

its sign so that being non-singular will be preserved. Using this fact, our claim is

observable. Hence, we obtain that

H(2×2)
n =

∑
A

1

A
=

∑n
k=1

mkn
k

∑n
k=1

mkn
k∑n

k=1
mkn
k

∑n
k=1

mkn
k

 ,

where A runs over all 2×2 non-singular matrices whose entries are integers between

1 and n. Now, we choose a prime number p with n/2 < p ≤ n and evaluate mpn

which equals to the number of 2 × 2 non-singular matrices of the form

(
p c
a d

)
,

where a, c, d = 1, 2, . . . , n. For that reason, we need to count Q-linearly independent

vectors of the form

v1 =

(
p
a

)
, v2 =

(
c
d

)
.
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We claim that the number of such linearly independent vectors is n3−2n+1, which

is independent from the choice of p. If a = p, then the vectors of the form v2 =

(
x
x

)
,

where x = 1, 2, . . . n, are all linearly dependent with the vector v1 =

(
p
p

)
. Thus, we

have n many possibilities for this case. If a 6= p, then since p is a prime between n/2

and n, the only linearly dependent vector with v1 =

(
p
a

)
is just itself v2 =

(
p
a

)
.

Since there are n− 1 choices for a, in this case we obtain n− 1 linearly dependent

such vector tuples. Hence, we obtain totally 2n− 1 linearly dependent such vector

tuples. This yields that mpn = n3 − (2n− 1) = n3 − 2n+ 1.

Suppose the entries of the non-singular harmonic matrix H
(2×2)
n of size 2 are

integers. Then, we have that

νp

(
n∑
k=1

mkn

k

)
≥ 0,

which in turn implies that p | mpn. Hence, we deduce that∏
n
2<p≤n

p
∣∣ n3 − 2n+ 1.

There are at least four prime numbers between n
2 and n for all n ≥ 29, as R4 = 29 is

the fourth Ramanujan’s prime; see [6]. Therefore, we obtain the following inequality(n
2

)4
<

∏
n
2<p≤n

p ≤ n3 − 2n+ 1

for all n ≥ 29. This implies that

n4 − 16n3 + 32n− 16 < 0

for all n ≥ 29. However,

n4 − 16n3 + 32n− 16 = n((n− 16)n2 + 32)− 16 > 0

for all n ≥ 29. Hence, the entries of H
(2×2)
n can not be integers for all n ≥ 29. We

also computed all non-singular harmonic matrices H
(2×2)
n for every 1 < n ≤ 28,

using SageMath [7]. Their entries are not integers, as well. Thus, the proof is

done.

The next result is another generalization of [9] when the polynomial f(X) = 1 is

the constant polynomial.

Theorem 6. For every non-zero polynomial f(X) ∈ Z[X], the product f(n)Hn is

not an integer for all but finitely many n.
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Proof. Indeed, what we want to prove is that there exists a constant N = N(f)

such that f(n)Hn /∈ Z for all n > N . Let f(X) ∈ Z[X] be a non-zero polynomial

of degree k and suppose that f(X) = a0 + a1X + · · · + akX
k, where ak 6= 0. By

Bertrand’s postulate we know that if n > 2, then π(n) − π(n2 ) ≥ 1. Furthermore,

using the prime number theorem, one sees that

π(n)− π
(n

2

)
∼ n/2

log(n/2)
,

as n→∞. Thus, we deduce that

lim
n→∞

π(n)− π
(n

2

)
=∞.

So, we guarantee that for large N1 there exist at least k+1 many prime numbers

p1, . . . , pk+1 with n
2 < p1, . . . , pk+1 ≤ n for all n > N1. There exists also N2 such

that f(n) 6= 0 for all n > N2. Note also that νpi(Hn) = −1 for every prime number

pi from (n2 , n]. Since νpi(f(n)Hn) = νpi(f(n)) + νpi(Hn), if f(n)Hn ∈ Z, then

pi | f(n) which in turn implies that

k+1∏
i=1

pi | f(n).

Therefore, we obtain the following inequality

(n
2

)k+1

≤
k+1∏
i=1

pi ≤
k∑
j=0

|aj |nj .

The left-hand side is a polynomial of degree k+ 1, whereas the right-hand side is a

polynomial of degree k. Hence, there exists a number N3 such that this inequality

does not hold for every n > N3. If N = max{N1, N2, N3}, then f(n)Hn is not an

integer for every n > N .

Remark 1. For a polynomial p(X) of degree n given by

p(X) = a0 + a1X + a2X
2 + · · ·+ anX

n,

the height of p(X), denoted as H(p), is defined to be the maximum of the absolute

values of its coefficients: H(p) = max
i
|ai|.

Now, for given positive n and k, consider the set of polynomials with integers

coefficients whose degrees and heights are up to n and k, respectively:

An,k = {p ∈ Z[X] : deg(p) ≤ n,H(p) ≤ k}.

This is a finite set, and furthermore we have that |An,k| = (2k+1)n+1. By Theorem

6, we have a constant N = N(p) for every non-zero polynomial p ∈ An,k such that
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p(n)Hn /∈ Z for every n > N . Since An,k is finite, we choose a constant N to be

the largest among the numbers N(p), where p ∈ An,k \ {0}. Therefore, there exists

N such that p(n)Hn /∈ Z for any p ∈ An,k \ {0} and n > N .

Remark 2. Note that the number N(f) in Theorem 6 can be very large with

respect to the choice of f(X). For instance, if f(X) = k! for some positive integer

k, then f(n)Hn ∈ Z for all 1 ≤ n ≤ k.

The next result is also a generalization of the corresponding result of [9].

Proposition 1. Let m ≥ 2. All entries of the harmonic matrix h
(m×m)
n are not

integers if and only if n 6= 1, 2.

Proof. First, suppose that n > 2. Recall from Equation (1) that

h(m×m)
n =

∑
A

1

A
= nm

2−1

Hn · · · Hn

...
...

Hn · · · Hn

 .

By Bertrand’s postulate we know that if n > 2, then there always exists at least

one prime number p between n/2 and n. Choose a prime number p with n
2 < p < n

and consider νp(n
m2−1Hn). Since νp(Hn) = −1, we have that

νp(n
m2−1Hn) = (m2 − 1)νp(n) + νp(Hn) = 0− 1 = −1.

Hence, nm
2−1Hn is not an integer which means that all entries of the harmonic

matrix h
(m×m)
n are not integers.

Conversely, suppose that n = 1. Then, it is easy to see that

h
(m×m)
1 = 1m

2−1

H1 · · · H1

...
...

H1 · · · H1

 ∈Mm(Z).

Now, suppose that n = 2. Since m ≥ 2, we have m2 − 1 ≥ 3 which implies that

2m
2−1 ·H2 = 2m

2−1 · 3

2
∈ Z.

As a consequence, this yields that

h
(m×m)
2 = 2m

2−1

H2 · · · H2

...
...

H2 · · · H2

 ∈Mm(Z),

and we are done.
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4. Further Results on the p-Adic Valuation of Harmonic Matrices

For each prime number p, define

Jp = {n ≥ 1 | Hn ≡ 0 (mod p)}.

Theisinger [9] showed that J2 = ∅ and Eswarathasan and Levine [3] conjectured

that Jp is finite for all primes p. Recently, Sanna [8] proved that for x ≥ 1 the

number of integers in Jp ∩ [1, x] is less than 129p2/3x0.765 and this was extended in

[11]. Later on, the denominators of harmonic numbers were also studied, and we

direct the reader to [2, 12, 13] for this.

Now, we define J
(m×m)
p to be the set containing positive integers n such that the

numerators of all entries of the harmonic matrix h
(m×m)
n of size m are divisible by

p. Observe that J
(1×1)
p = Jp. We have shown that

h(m×m)
n =

∑
A

1

A
= nm

2−1

Hn · · · Hn

...
...

Hn · · · Hn

 ,

where A runs over all m × m matrices whose entries are between 1 and n. So,

n ∈ J (m×m)
p means that the numerator of nm

2−1Hn is divisible by p, that is,

J (m×m)
p = {n ≥ 1 | nm

2−1Hn ≡ 0 (mod p)}.

Recall that the numerator of the reduced form of Hp−1 is divisible by p for all

p ≥ 3. Thus, p− 1 ∈ Jp for all p ≥ 3. Note that Jp ⊆ J
(m×m)
p for any m ≥ 1, and

hence p − 1 ∈ J (m×m)
p . In general, we can show that J

(m×m)
p ⊆ J

(`×`)
p whenever

m ≤ `. If m ≤ ` and n ∈ J (m×m)
p , then 1 ≤ νp(n

m2−1Hn) ≤ νp(n
`2−1Hn) which

yields that n ∈ J (`×`)
p . Thus, we conclude that J

(m×m)
p ⊆ J (`×`)

p .

Proposition 2. If p - n, then n ∈ Jp if and only if n ∈ J (m×m)
p .

Proof. Suppose that p - n and n ∈ J (m×m)
p . Then, we have nm

2−1Hn ≡ 0 (mod p).

Since n is not divisible by p, one sees that p must divide Hn. This indicates that

n ∈ Jp. The converse is obvious.

For all prime numbers p, we have that p /∈ Jp, because νp(Hp) = −1 which

means that p does not divide the numerator of the harmonic number Hp. However,

p ∈ J (m×m)
p for all m ≥ 2, as we have

νp(p
m2−1Hp) = νp(p

m2−1) + νp(Hp) ≥ 22 − 1 + (−1) = 2.

Furthermore, we claim that pk ∈ J (m×m)
p for all k ∈ N. Since νp(Hpk) = −k and

νp(p
km2−k) ≥ 3k, we have νp(p

km2−kHpk) ≥ 2k for all k ∈ N. This implies that
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pk ∈ J (m×m)
p . Hence, for m ≥ 2 the set J

(m×m)
p is infinite contrary to the conjecture

of the finiteness of Jp. Now, we will discuss when the multiples of a prime number

p are also in J
(m×m)
p for sufficiently large m.

Theorem 7. Let p be a prime and n be a positive integer divisible by p. If α =

[logp n] and m ≥
√

α+1
νp(n)

+ 1, then n ∈ J
(m×m)
p . Moreover, if [ npα ] /∈ Jp, then

n ∈ J (m×m)
p if and only if m ≥

√
α+1
νp(n)

+ 1.

Proof. Suppose that p | n, α = [logp n] and m ≥
√

α+1
νp(n)

+ 1. Then, νp(n) ≥ 1,

m2 − 1 ≥ α+1
νp(n)

and pα ≤ n < pα+1. We want to show n ∈ J
(m×m)
p , that is

νp(n
m2−1Hn) ≥ 1. One can immediately see that νp(Hn) ≥ −α, because pα ≤ n <

pα+1. Then, we see the desired inequality by

νp(n
m2−1Hn) = (m2 − 1)νp(n) + νp(Hn) ≥ (m2 − 1)νp(n)− α ≥ 1.

Now, suppose that [ npα ] /∈ Jp and n ∈ J (m×m)
p . Our aim is to obtain the inequality

m ≥
√

α+1
νp(n)

+ 1. By the division algorithm, write n = qpα + r, where 1 ≤ q < p

and 0 ≤ r < pα. Then, [ npα ] = q. We also have that

νp

(
1 +

1

2
+ · · ·+ 1

pα − 1

)
≥ 1− α,

νp

(
1

pα + 1
+ · · ·+ 1

2pα − 1

)
≥ 1− α,

...

νp

(
1

(q − 1)pα + 1
+ · · ·+ 1

qpα − 1

)
≥ 1− α,

νp

(
1

qpα + 1
+ · · ·+ 1

qpα + r

)
≥ 1− α.

Write the harmonic number Hn as follows:

Hn = 1 +
1

2
+ · · ·+ 1

pα
+ · · ·+ 1

2pα
+ · · ·+ 1

qpα
+

1

qpα + 1
+ · · ·+ 1

qpα + r

=
1

pα
Hq +

(
1 +

1

2
+ · · ·+ 1

pα − 1

)
+

(
1

pα + 1
+ · · ·+ 1

2pα − 1

)
+ · · ·

+

(
1

qpα + 1
+ · · ·+ 1

qpα + r

)
.

Since q < p and q /∈ Jp, we obtain νp(Hq) ≥ 0 and νp(Hq) ≤ 0, and these imply

that νp(Hq) = 0. Therefore, νp(Hn) = −α. Since n ∈ J (m×m)
p , we have

1 ≤ νp(nm
2−1Hn) = (m2 − 1)νp(n) + νp(Hn) = (m2 − 1)νp(n)− α.
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Thus, we deduce that m ≥
√

α+1
νp(n)

+ 1, as desired.

Using Proposition 2 and Theorem 7, we can easily see the following result: for a

given positive integer n and sufficiently large m, one has pn ∈ J (m×m)
p . So, we have

pZ+ ⊂
⋃∞
m=1 J

(m×m)
p . If n /∈ pZ+, then n ∈ Jp if and only if n ∈ J (m×m)

p . Thus,

we conclude that
∞⋃
m=1

J (m×m)
p = pZ+ ∪ Jp.

Proposition 3. Let m ≥ 2. If n ∈ J (m×m)
p , then pn ∈ J (m×m)

p .

Proof. Suppose that m ≥ 2 and n ∈ J (m×m)
p . Then, νp(n

m2−1Hn) ≥ 1. That is,

(m2−1)νp(n)+νp(Hn) ≥ 1. We want to show the inequality νp((pn)m
2−1Hpn) ≥ 1.

Write Hpn as follows:

Hpn = 1 +
1

2
+ · · ·+ 1

p− 1
+

1

p
+

1

p+ 1
+ · · ·+ 1

2p− 1
+

1

2p
+ · · ·+ 1

pn
.

From this, we see that Hpn = Hn
p +A, where νp(A) ≥ 0. Then, we have

νp((pn)m
2−1Hpn) = (m2 − 1) + (m2 − 1)νp(n) + νp

(
Hn

p
+A

)
.

Now, we have two possible cases: first, if n ∈ Jp, then νp

(
Hn
p +A

)
≥ 0. It is

clear that

(m2 − 1) + (m2 − 1)νp(n) + νp

(
Hn

p
+A

)
≥ 3.

Second, if n /∈ Jp, then νp

(
Hn
p +A

)
< 0. Then, νp

(
Hn
p +A

)
= νp(Hn) − 1 and

since (m2 − 1)νp(n) + νp(Hn) ≥ 1 and m ≥ 2, we obtain that

(m2 − 1) + (m2 − 1)νp(n) + νp

(
Hn

p
+A

)
≥ 3.

Thus, in either case, we see that νp((pn)m
2−1Hpn) ≥ 1, which means pn ∈ J (m×m)

p .

We have observed that p ∈ J
(m×m)
p for all m ≥ 2. Then, Theorem 3 also

immediately implies that all powers pk of p are contained in J
(m×m)
p .

Remark 3. By Theorem 7, if p | n and [ npα ] /∈ Jp, then n ∈ J (m×m)
p if and only if

m ≥
√

α+1
νp(n)

+ 1. Suppose that [ npα ] = n
pα ∈ Jp. Then, n

pα ∈ J
(2×2)
p . By Proposition

3, we obtain that n ∈ J (2×2)
p . Hence, if n

pα ∈ Jp, then n ∈ J (m×m)
p for all m ≥ 2

and we do not need the bound given in Theorem 7.
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