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Abstract

A second order polynomial sequence is of Fibonacci-type Fn (Lucas-type Ln) if its
Binet formula has a structure similar to that for Fibonacci (Lucas) numbers. Un-
der certain conditions these polynomials are irreducible if and only if n is a prime
number. For example, the Fibonacci polynomials, Pell polynomials, Fermat poly-
nomials, Lucas polynomials, Pell-Lucas polynomials, Fermat-Lucas polynomials are
irreducible when n is a prime number; and Chebyshev polynomials (second kind),
Morgan-Voyce polynomials (Fibonacci type), and Vieta polynomials are reducible
when n is a prime number. In this paper we give some theorems to determine
whether the Fibonacci type polynomials and Lucas type polynomials are irreducible
when n is prime.

1. Introduction

The Fibonacci polynomials Fn are defined as Fn(x) = xFn−1(x) + Fn−2(x), where

F0(x) = 0 and F1(x) = 1. Webb et al. [21] proved that Fp is irreducible if and only

if p is a prime number. Hogatt et al. [11] defined a bivariate generalized Fibonacci

polynomial un(x, y) and proved that up(x, y) is irreducible over Q if and only if p

is a prime number.

The Lucas polynomials Ln are defined as Ln(x) = xLn−1(x) + Ln−2(x), where

L0(x) = 2 and L1(x) = x. Bergum and Hoggatt [3] proved that Lp(x)/L1(x)

is irreducible if and only if p > 2 is a prime number. They also defined a bi-
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variate generalized Lucas polynomial vn(x, y) and proved that vp(x, y)/v1(x, y) is

irreducible over Q if and only if p > 2 is a prime number.

A second order polynomial sequence is of Fibonacci-type (Lucas-type) if its Binet

formula has a structure similar to that for Fibonacci (Lucas) numbers. Those are

known as generalized Fibonacci polynomials GFP (see [5–9]). Some known exam-

ples are: Pell polynomials, Fermat polynomials, Chebyshev polynomials, Morgan-

Voyce polynomials, Lucas polynomials, Pell-Lucas polynomials, Fermat-Lucas poly-

nomials, Chebyshev polynomials, Vieta polynomials, and Vieta-Lucas polynomials.

Other generalized Fibonacci polynomials are in [1, 3, 11].

From the discussion in the first two paragraphs above, we have two natural

questions: is it true that Fp(x) is irreducible if and only if p is a prime number?

And is it true that Lp(x)/L1(x) is irreducible if and only if p > 2 is a prime number?

In this paper we give precise conditions to determine whether some families of GFP

are irreducible when p is a prime number and give precise conditions to determine

whether some families of GFP are reducible when p is a prime number. As a

corollary of the theorems proved here, we obtain that the Fibonacci polynomials,

the Pell polynomials, and the Fermat polynomials are irreducible when p > 0 is a

prime number. A second corollary is that Chebyshev polynomials (second kind),

Morgan-Voyce polynomials (Fibonacci type), and Vieta polynomials are reducible

when p is a prime number. As a third corollary we have that Lp(x)/L1(x) is

irreducible, where p > 2 is a prime number and Lp(x) is one of these: Lucas

polynomials, Pell-Lucas polynomials, or Fermat-Lucas polynomials.

2. Second Order Polynomial Sequences

In this section we reproduce the definitions by Flórez et al. [5–9] for generalized

Fibonacci polynomials. The definitions here give rise to some known polynomial

sequences (see for example, Table 1 or [5–9, 11, 13, 16, 17]). Throughout the paper

we consider polynomials in Q[x] or in Z[x].

We now give the two second order polynomial recurrence relations in which we

divide the generalized Fibonacci polynomials (GFP):

F0(x) = 0, F1(x) = 1, and Fn(x) = d(x)Fn−1(x) + g(x)Fn−2(x), (1)

for n ≥ 2, where d(x) and g(x) are fixed non-zero polynomials in Z[x] satisfying

gcd(d(x), g(x)) = 1.

We say that a polynomial recurrence relation is of Fibonacci-type if it satisfies

the relation given in (1), and of Lucas-type if:

L0(x) = p0, L1(x) = p1(x), and Ln(x) = d(x)Ln−1(x) + g(x)Ln−2(x), (2)

for n ≥ 2, where |p0| = 1 or 2 and p1(x), d(x) = αp1(x), and g(x) are fixed

non-zero polynomials in Z[x] with α an integer of the form 2/p0. Some known
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examples of Fibonacci-type polynomials and Lucas-type polynomials are in Table

1 or in [5–9,11,13,16,17].

If Gn is either Fn or Ln for all n ≥ 0 and d2(x) + 4g(x) > 0, then the explicit

formula for the recurrence relations in (1) and (2) is given by

Gn(x) = t1a
n(x) + t2b

n(x),

where a(x) and b(x) are the solutions of the quadratic characteristic equation as-

sociated with the second-order recurrence relation Gn(x). That is, a(x) and b(x)

are the solutions of z2 − d(x)z − g(x) = 0. If α = 2/p0, then the Binet formula

for Fibonacci-type polynomials is stated in (3) and the Binet formula for Lucas-

type polynomials is stated in (4) (for details on the construction of the two Binet

formulas see [7])

Fn(x) =
an(x)− bn(x)

a(x)− b(x)
(3)

and

Ln(x) =
an(x) + bn(x)

α
. (4)

Since a(x) and b(x) are solutions of z2 − d(x)z − g(x) = 0, we have

a(x) + b(x) = d(x), a(x)b(x) = −g(x), and a(x)− b(x) =
√
d2(x) + 4g(x),

where d(x) and g(x) are the polynomials defined in (1) and (2). These give that

a(x) =
d(x) +

√
d2(x) + 4g(x)

2
and b(x) =

d(x)−
√
d2(x) + 4g(x)

2
. (5)

A sequence of Lucas-type (Fibonacci-type) is equivalent or conjugate to a se-

quence of Fibonacci-type (Lucas-type), if their recursive sequences are determined

by the same polynomials d(x) and g(x). Notice that two equivalent polynomials

have the same a(x) and b(x) in their Binet representations. In [7, 8, 17, 18] there

are examples of some known equivalent polynomials with their Binet formulas. The

polynomials in Tables 1 and 2 are organized by pairs of equivalent polynomials. For

instance, Fibonacci and Lucas, Pell and Pell-Lucas, and so on.

We use deg(P ) and lc(P ) to mean the degree and the leading coefficient of a

polynomial P , respectively. Most of the following conditions were required in the

papers that we are citing. Therefore, we require here that gcd(d(x), g(x)) = 1 and

deg(g(x)) < deg(d(x)) for both types of sequences and that the conditions in (6)

also hold for Lucas type polynomials;

gcd(p0, p1(x)) = gcd(p0, d(x)) = gcd(p0, g(x)) = 1, and that deg(L1) ≥ 1. (6)

Notice that in the definition of Pell-Lucas we have Q0(x) = 2 and Q1(x) = 2x.

Thus, the gcd(2, 2x) = 2 6= 1. Therefore, Pell-Lucas does not satisfy the extra



INTEGERS: 22 (2022) 4

Polynomial Initial value Initial value Recursive Formula
G0(x) = p0(x) G1(x) = p1(x) Gn(x) = d(x)Gn−1(x) + g(x)Gn−2(x)

Fibonacci 0 1 Fn(x) = xFn−1(x) + Fn−2(x)
Lucas 2 x Dn(x) = xDn−1(x) +Dn−2(x)
Pell 0 1 Pn(x) = 2xPn−1(x) + Pn−2(x)
Pell-Lucas 2 2x Qn(x) = 2xQn−1(x) +Qn−2(x)
Pell-Lucas-prime 1 x Q′n(x) = 2xQ′n−1(x) +Q′n−2(x)
Fermat 0 1 Φn(x) = 3xΦn−1(x)− 2Φn−2(x)
Fermat-Lucas 2 3x ϑn(x) = 3xϑn−1(x)− 2ϑn−2(x)
Chebyshev second kind 0 1 Un(x) = 2xUn−1(x)− Un−2(x)
Chebyshev first kind 1 x Tn(x) = 2xTn−1(x)− Tn−2(x)
Morgan-Voyce 0 1 Bn(x) = (x+ 2)Bn−1(x)−Bn−2(x)
Morgan-Voyce 2 x+ 2 Cn(x) = (x+ 2)Cn−1(x)− Cn−2(x)
Vieta 0 1 Vn(x) = xVn−1(x)− Vn−2(x)
Vieta-Lucas 2 x vn(x) = xvn−1(x)− vn−2(x)

Table 1: Recurrence relation of some GFP.

Polynomial Polynomial of a(x) b(x)
Lucas type Fibonacci type

Lucas Fibonacci (x+
√
x2 + 4)/2 (x−

√
x2 + 4)/2

Pell-Lucas-prime Pell x+
√
x2 + 1 x−

√
x2 + 1

Fermat-Lucas Fermat (3x+
√

9x2 − 8)/2 (3x−
√

9x2 − 8)/2

Chebyshev 1st kind Chebyshev 2nd kind x+
√
x2 − 1 x−

√
x2 − 1

Morgan-Voyce Morgan-Voyce (x+ 2 +
√
x2 + 4x)/2 (x+ 2−

√
x2 + 4x)/2

Vieta-Lucas Vieta (x+
√
x2 − 4)/2 (x−

√
x2 − 4)/2

Table 2: Ln(x) and its conjugate Fn(x).

conditions that we imposed in (6). So, to resolve this inconsistency we use Q′n(x) =

Qn(x)/2 instead of Qn(x).

For the rest of this paper we assume deg (d) > deg (g). For instance, the familiar

examples in Tables 1 and 2 satisfy this condition. Notice that Jacobsthal and

Jacobsthal-Lucas polynomials defined as jn(x) = jn−1(x) +2xjn−1(x) are GFP but

they do not satisfy the mentioned condition. So, we do not study those polynomials

here in this paper.

3. Fibonacci Type Polynomials’ Irreducibility

In this section we discuss the irreducibility and reducibility of GFP of Fibonacci

type. In particular, we give a complete classification (reducible and irreducible)

for the familiar polynomials of Fibonacci type given in Table 1. In the end of the

section we give a more general theorem to determine whether a GFP of Fibonacci

type is irreducible.

The following lemma generalizes [11, Lemma 5]. The proof can be done by
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induction, so we omit it.

Lemma 1. If Fn(x) is a GFP of Fibonacci type, with n > 0, then

Fn(x) =

bn−1
2 c∑
i=0

(
n− i− 1

i

)
d(x)n−2i−1g(x)i.

Hogatt et al. [11] defined the bivariate generalized Fibonacci polynomial

un(x, y) = xun−1(x, y) + yun(x, y), with u0(x, y) = 0 and un(x, y) = 1.

In their version of Lemma 1 for un(x, y) it holds that un(x, y2) is a homogeneous

polynomial. Webb et al. [21] proved that up(x, 1) is irreducible over Q if and only

if p is a prime number. These two results were used in [11] to prove that up(x, y)

is irreducible over Q if and only if p is a prime number. However, we need some

caution on the interpretation of these results. For example, in the result proved

by Webb we cannot substitute x by any polynomial. Thus, if instead of x we

take x3 we obtain that u3(x3, 1) = (x + 1)(x2 − x + 1), so this new polynomial is

reducible. Similarly, we can construct examples to show that up(x, y) is not always

irreducible for every prime and for every choice of y. For instance, if instead of y

we take −y2k, it holds that up(x,−y2k) is not always irreducible when p is a prime

number, with k ≥ 0. For example, u5(x,−y2) = (−x2 − xy + y2)(−x2 + xy + y2).

In general, this gives a factoring for Chebyshev polynomials of second kind Up(x).

Thus, if p = 2k + 1, then Up(x) = (Uk+1(x) − ykUk(x))(Uk+1(x) + ykUk(x)) (see

Proposition 3). Some other examples, in which up(x, y) is reducible, occur when

taking y = −1,−4,−5,−9,−20. In particular, u5(x,−5) = (x2−5x+5)(x2+5x+5)

and u5(x+ 2,−1) = (x2 + 3x+ 1)(x2 + 5x+ 5).

We now recall the first of our main questions in this paper. Is it true that Fp(x)

is irreducible if and only if p is prime? From the above discussion and Proposition

3, we can see some counterexamples to determine that the question is not true in

general. Since there are some families of the generalized Fibonacci polynomial that

are irreducible if and only if p is a prime number, the question is still valid. In this

section we explore the question for families of GFP of the Fibonacci type. (From

the definition (1), we know that families of GFP of Fibonacci type depend on their

initial conditions.) Thus, we reformulate the question as: under what conditions on

d(x) and g(x) are the families of GFP of the Fibonacci type irreducible when p is

a prime number.

Note that from [7, Proposition 6] we know that Fn(x) is reducible if n is a

composite number. For the remaining part of the paper we use Fn(x) to denote the

classic Fibonacci polynomial as defined in the introduction.

Lemma 2 ([21]). The Fibonacci polynomial Fp(x) is irreducible over Q if and only

if p is a prime number.
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Proposition 3. Let m(x) be a polynomial in Z[x] and let p be an odd number. If

g(x) = −m(x)2, then Fp(x) is reducible.

Proof. If p = 2k+ 1, from [7] or [9, Proposition 1] we have that Fp(x) = F2
k+1(x) +

g(x)F2
k (x). Since g(x) = −m(x)2 the conclusion follows.

The previous proposition shows that Chebyshev polynomials of the second kind,

Morgan-Voyce polynomials and Vieta polynomials are reducible over Q when p is

an odd prime number.

Proposition 4. If g(x) = 1 and d(x) = ax+b with a 6= 0, then Fp(x) is irreducible

over Q.

Proof. First of all, we observe that if g(x) = 1 and d(x) = ax + b, then Fp(x) =

(Fp ◦ d)(x). Since both Fp(x) and ax + b are irreducible, we have that Fp(x) is

irreducible.

Lemma 5. If g(x) = k ∈ Z>0 and d(x) = ax with a 6= 0 and k ∈ Z>0, then Fp(x)

is irreducible in Q[x].

Proof. Since both Fp(x) and ax are irreducible over Q, we have that F∗p (x) :=

(Fp ◦ d)(x) is irreducible.

To complete this proof we need the following lemma. This lemma is an adapta-

tion, to what we need here, of a result that is well-known in the literature (see for

example [2, 4]).

Lemma 6 ([2, 4]). Let f(x) be a polynomial of degree n with f(0) 6= 0. Then f(x)

is irreducible if and only if tnf(1/t) is irreducible.

This lemma implies that

F∗p (x) is irreducible ⇐⇒ s(t) := (k1/2t)p−1F∗p
(

1

k1/2t

)
is irreducible.

Therefore,

s(t) is irreducible ⇐⇒ h(r) := (r)p−1s

(
1

r

)
is irreducible.

Taking g(x) = k and d(x) = ax with a 6= 0 and k ∈ Z>0, we obtain Fp(x). This

and Lemma 1 imply that h(x) = Fp(x).

Propositions 3 and 4 show whether or not the familiar polynomials of Fibonacci

type are irreducible (see Table 1) when p is prime.

Lemma 7 ([12, 21]). Let i :=
√
−1 and let γj = 2i cos jπp for j = 1, 2, . . . , p − 1,

where p is a prime number. Then Γ = {γ1, . . . , γp−1} are the roots of the Fibonacci

polynomial Fp(x).
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The following lemma is a generalization of Capelli’s (see Lemma 10) to what we

need here in this paper.

Lemma 8. Let f(x), g(x), h(x) in K[x], with K a field, deg(h(x)) > deg(g(x)),

and f(x) = anx
n + an−1x

n−1 + . . . + a0, where a0 6= 0. Let γ be any root of f(x)

in an algebraic closure of K. The polynomial p(x) = anh(x)n + an−1g(x)h(x)n−1 +

an−2g(x)2h(x)n−2 + . . .+ a0g(x)n is irreducible over K if and only if f(x) is irre-

ducible over K and h(x)− g(x)γ is irreducible over K(γ).

Proof. Let θ be a root of h(x)−g(x)γ in the algebraic closure ofK. So, h(θ) = g(θ)γ.

If h(θ) = 0, then g(θ) = 0, since γ 6= 0. Therefore, p(θ) = 0. If h(θ) 6= 0, then we

have

p(θ) = g(θ)nf

(
h(θ)

g(θ)

)
= g(θ)nf(γ) = 0.

Notice that deg(p(x)) = n deg(h(x)). Also, we have

[K(θ) : K] = [K(θ) : K(γ)][K(γ) : K].

Since deg(h(x)) > deg(g(x)), we have deg(h(x)−g(x)γ) = deg(h(x)). Therefore,

this gives that [K(θ) : K(γ)] ≤ deg(h(x)) and [K(γ) : K] ≤ n. Thus, p(x) is

irreducible over K if and only if [K(θ) : K] = n deg(h(x)), which is the case if and

only if [K(θ) : K(γ)] = deg(h(x)) and [K(γ) : K] = n. This holds if and only if

f(x) is irreducible over K and h(x)− g(x)γ is irreducible over K(γ).

Theorem 9. Let p > 2 be a prime number and let Γ = {γ1, . . . , γp−1} be the set of

roots of Fp(x). A GFP Fp(x) is irreducible over Q if and only if d(x)2 − g(x)γ2 is

irreducible over Q
(
γ2
)

for some γ ∈ Γ.

Proof. For all z ∈ C such that g(z) 6= 0, we can deduce that

Fp(z) = g(z)
p−1
2 Fp

(
d(z)

g(z)1/2

)
.

From Lemma 1 we know that Fn(x) ∈ Z[x2]. So, we let Sp(x) be a polynomial in

Z[x] such that Sp(x
2) = Fp(x). Since Fp(x) is irreducible over Q, it follows that

Sp(x) is irreducible over Q. For all z ∈ C such that g(z) 6= 0, we deduce that

Fp(z) = g(z)
p−1
2 Sp

(
d(z)2

g(z)

)
.

The conclusion follows from Lemma 8.

Lemma 10 ([20]). Let f(x), r(x) in K[x], where K is a field. Let γ be any root of

f(x) in an algebraic closure of K. The composition f(r(x)) is irreducible over K if

and only if f(x) is irreducible over K and r(x)− γ is irreducible over K(γ).
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Corollary 11. Let Γ = {γ1, . . . , γp−1} be the set of roots of the Fibonacci polyno-

mial Fp(x), where p is a prime number. Let g(x) ∈ Z>0. The polynomial Fp(x) is

irreducible in Q if and only if d(x)− γ is irreducible over Q(γ) for some γ ∈ Γ.

Proof. We consider the generalized Fibonacci polynomial F∗p (x) defined when g∗(x)

is a constant and d∗(x) = x (we use ∗ to avoid any ambiguity with the upcoming

analysis, using similar notation). From Lemma 5 we have that F∗p (x) is irreducible.

Now consider the generalized Fibonacci polynomial Fp(x), where g(x) is a pos-

itive constant (integer) and d(x) is a polynomial that satisfies that d(x) − γ is

irreducible over Q(γ) for some γ ∈ Γ. Note that Fp(x) is the composition of F∗p (x)

with d(x), i.e., Fp(x) = (F∗p ◦ d)(x). This and Lemma 10 imply that Fp(x) is

irreducible if and only if F∗p (x) is irreducible.

As a corollary of the previous results we have that if Fn satisfies any of the

conditions given in Propositions 3, 4, Theorem 9, and Corollary 11, we have this.

Suppose that the prime-power factorization of n is given by n = pn1
1 pn2

2 · · · p
ns
k ,

where p1, p2, · · · , ps are distinct odd primes. Then Fpi is an irreducible factor

of Fn for i = 1, 2, . . . , s. The proof of this fact follows straightforwardly using

Propositions 3, 4, Theorem 9, Corollary 11, and [7, Proposition 6].

4. Lucas Type Polynomials’ Irreducibility

In this section we discuss the irreducibility of GFP of Lucas type. In particular, we

show that the familiar polynomials of Lucas type given in Table 1 are irreducible.

In the end of the section we give a more general theorem to determine whether a

GFP of Lucas type is irreducible.

Lemma 12 and Proposition 15 are generalizations of Bergum and Hoggatt’s re-

sults in [3]. The proof of both cases follows by a natural adaptation of their proof

to the GFP of Lucas type given in this paper.

Lemma 12. If Ln(x) is the conjugate of Fn(x), then

Ln(x) =
1

α

bn2 c∑
i=0

n

n− i

(
n− i
i

)
d(x)n−2ig(x)i.

Proof. From [9, Proposition 3, Part 2] we obtain that αLn(x) = g(x)Fn−1(x) +

Fn+1(x). This and Lemma 1 give that

αLn(x) = g(x)Fn−1(x) + Fn+1(x)

=

bn/2c∑
i=1

((
n− i− 1

i− 1

)
+

(
n− i
i

))
d(x)n−2ig(x)i + d(x)n.

This completes the proof.
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Bergum and Hoggatt [3] defined a bivariate generalized Lucas polynomial by

vn(x, y) = xvn−1(x, y) + yvn−2(x, y) with v0(x, y) = 2 and v1(x, y) = x. They

proved that the Lucas polynomials vn(x, 1) are irreducible over Q if and only if n

is a power of 2, and proved that the polynomials vp(x, 1)/x are irreducible over Q
if and only if p > 2 is a prime number. In their version of Lemma 12 for vn(x, y)

it holds that vn(x, y2) are homogeneous polynomials. This implies that vn(x, y) is

irreducible over Q if and only if n is a power of 2; and that vp(x, y)/x is irreducible

over Q if and only if p > 2 is a prime number. Again, we need some caution

on the interpretation of these results. Thus, if instead of x we take x2 + x, we

obtain that v3(x2 + x, 1)/(x2 + x) = (x2 − x + 1)(x2 + 3x + 3). Similarly, we can

construct examples to show that vn(x, y) is not always irreducible for n a power

of 2 and for every choice of y. For instance, if instead of y we take −y2k, with k

even, it holds that v2(x,−2y2k) = (x − 2yk)(x + 2yk). Similar results hold when

y is replaced by −(t/2)y2k, where t is an even perfect square. Another example

is v4(x, x − 2) = (x2 − 2)(x2 + 4x − 4). Examples, to show that vp(x, y)/x is not

always irreducible for every choice of y and for every prime, can be constructed

by replacing y by −py2 in vp(x, y) with p = 3 mod 4. For instance, v3/x = (x −
3y)(x+3y), v7/x = (x3+7x2y−49y3)(x3−7x2y+49y3), and v11/x = (x5+11x4y−
363x2y3 − 1331xy4 − 1331y5)(x5 − 11x4y + 363x2y3 − 1331xy4 + 1331y5). Taking

these examples, from the point of view of GFP of Lucas type, states as, for a fixed

prime q ≡ 3 (mod 4), and picking g(x) = −q, then Lq(x)/p1(x) is reducible over Q
(see Proposition 23).

All the above examples (in Section 3 and in Section 4) show that there is no

clarity on both the quantifiers and the initial conditions on the results in [3,11,21].

So, one of the motivations for this paper is to revisit some of the main results given

by Hoggatt, Bergum, Long, Parberry, and Webb in the mentioned papers, and then

use those results to give more general theorems.

We recall again our second main question in this paper. Is it true that Lp(x)/p1(x)

is irreducible if and only if p > 2 is a prime number? From the above discussion, we

can see some counterexamples to determine that the question is not true in general.

Again, since there are some families of the generalized Fibonacci polynomial that

are irreducible if and only if p is prime, the question is still valid.

In this section we explore the question for families of GFP of Lucas type Lp(x).

Thus, in this section we explore the conditions that we have to impose on p1(x), d(x)

and g(x) to obtain Lp(x)/p1(x) is irreducible when p is a prime number. Note that

from [7, Proposition 7] we know that Ln(x)/p1(x) is reducible if n is a composite

number with an odd divisor.

The Proposition 15 gives enough conditions to prove whether Lq(x)/p1(x), poly-

nomials of Lucas type of the form as shown in Table 1, are irreducible when q is

prime. The proof uses the Eisenstein criterion [14].

The following two propositions are known as the Schönemann and the Eisenstein
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criteria, respectively.

Proposition 13 ([2, 19]). Let q be a prime number. If f(x) ∈ Z[x] has the form

f(x) = g(x)n + qm(x) with g(x) an irreducible polynomial in Fq[x] and does not

divide m(x) mod q, then f(x) is irreducible.

Proposition 14 ([2,14]). Let q be a prime number and let f(x) = anx
n+ ...+a1x+

a0 be a polynomial in Z[x]. If an mod q 6= 0, a0 mod q2 6= 0, and ai mod q = 0 for

i = 0, 1, . . . , n− 1, then f(x) is irreducible over Q.

Proposition 15. Let q > 2 be a prime number, with gcd(q, g(x)) = 1.

1. If d(x) = axt, with gcd(q, a) = 1, then Lq(x)/p1(x) is irreducible over Q.

2. If d(x) = cx+ b, then Lq(x)/p1(x) is irreducible over Q.

Proof. Proof of Part 1. From Lemma 12 and the fact that d(x) = αp1(x) we have

that

Lq(x)/p1(x) =

q−1
2∑
i=0

q

q − i

(
q − i
i

)
d(x)q−2i−1g(x)i.

It is well known that
∑ q−1

2

k=i

(
q
2k

)(
k
i

)
2−q+2i+1 = q

q−i
(
q−i
i

)
(see for example, [3, 10,

15]). Since q
∣∣( q

2i

)
for i = 1, 2, . . . , (q − 1)/2, we have that q divides q

q−i
(
q−i
i

)
.

This implies that q divides q
q−i
(
q−i
i

)
aq−2i−1g(x)i for 1 ≤ i ≤ (q − 1)/2. Since

q
q−i
(
q−i
i

)
g(x)q−2i−1 = qg(x)q−2i−1 when i = (q − 1)/2 and gcd(q, g(x)) = 1, we

have that q2 does not divide the independent term of Lq(x)/p1(x). The fact

that gcd(q, a) = 1 gives that q does not divide aq−1, the leading coefficient of

Lq(x)/p1(x). These and the Eisenstein criterion (Proposition 14) complete the

proof of Part 1.

Proof of Part 2. Let Gq(x) be equal to Lq(x)/p1(x) as defined in Part 1 with

d(x) = x and let Hq(x) be equal to Lq(x)/p1(x) as defined in Part 2. Note that the

composition of Gq(x) with cx + b, gives Hq(x). Therefore, Hq(x) = Gq(ax + b) is

irreducible if and only if Gq(x) is irreducible. Since Gq(x) is irreducible for q > 2,

this completes the proof.

As a corollary of the previous proposition we obtain that the following polyno-

mials (from Table 1) are irreducible when p is an odd prime number: Lucas Dp(x);

Pell-Lucas Qp(x); Fermat-Lucas ϑp(x); Chebyshev first kind Tp(x); Morgan-Voyce

Cp(x); Vieta-Lucas vp(x).

Proposition 16. Let q > 2 be a prime number. If d(x) ∈ Z[x] is irreducible

mod q, then Lq(x)/p1(x) is irreducible over Q.
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Proof. Since q is a factor of q
q−i
(
q−i
i

)
for i = 1, . . . , (q − 1)/2, from Lemma 12 we

have that there is a polynomial h(x) ∈ Z[x] such that

qh(x) =

q−1
2∑
i=1

q

q − i

(
q − i
i

)
d(x)q−2i−1g(x)i.

This and Lemma 12 imply that

Lq(x)/p1(x) = d(x)q−1 + qh(x). (7)

This decomposition and the fact that deg(g(x)) < deg(d(x)), imply that

deg(h(x)) < deg(d(x)q−1) = deg(Lq(x)/p1(x)).

If we let

qt(x) :=

q−1
2 −1∑
i=1

q

q − i

(
q − i
i

)
d(x)q−2i−2g(x)i,

then h(x) can be written in the form h(x) = d(x)t(x) + g(x)
q−1
2 . This, the irre-

ducibility of d(x) mod q, the fact that gcd(d(x), g(x)) = 1, and that deg g(x) <

deg d(x), imply that gcd(d(x), h(x)) = gcd(d(x), g(x)) = 1 (mod q). The desired

conclusion follows by Proposition 13.

Proposition 17. Let q > 2 be a prime number and let d(x) be akx
k + ak−1x

k−1 +

· · · + a1x + a0, where ak mod q 6= 0, and ai mod q = 0 for i = 0, 1, . . . , k − 1. If

g(0) mod q 6= 0, then Lq(x)/p1(x) is irreducible over Q.

Proof. Since ai mod q = 0 for i = 0, 1, . . . , k − 1, we have that there is a polyno-

mial p(x) ∈ Z[x] such that d(x)q−1 = (akx
k + ak−1x

k−1 + · · · + a1x + a0)q−1 =

aq−1k xk(q−1) + qp(x). (Note that p(x) can be zero.) This and Lemma 12 imply that

Lq(x)/p1(x) =

q−1
2 −1∑
i=1

q

n− i

(
q − i
i

)
d(x)q−2i−1g(x)i+(aq−1k xk(q−1)+qp(x))+qg(x)

q−1
2

Since q is a factor of q
q−i
(
q−i
i

)
d(x)q−2i−1g(x)i for every for i = 1, . . . , (q − 1)/2− 1,

we have that there is a polynomial h(x) ∈ Z[x] such that

qh(x) =

q−1
2 −1∑
i=1

q

q − i

(
q − i
i

)
d(x)q−2i−1g(x)i.

(Note that q | h(0) and q | p(0) because q | a0.) Therefore,

Lq(x)/p1(x) = qh(x) + aq−1k xk(q−1) + qp(x) + qg(x)
q−1
2 . (8)



INTEGERS: 22 (2022) 12

This decomposition of Lq(x)/p1(x) and the fact that deg(g(x)) < deg(d(x)) imply

that lc(Lq(x)/p1(x)) = aq−1k . This and (8) prove that q divides all coefficients of

Lq(x)/p1(x) except its leading coefficient.

To complete the proof using the Eisenstein criterion (Proposition 14), we prove

that q2 does not divide the independent term of Lq(x)/p1(x). From (8) we can

see that the independent coefficient of Lq(x)/p1(x) has the form q
(
h(0) + p(0) +

g(0)
q−1
2

)
. This and the fact that q does not divide g(0) imply that q2 does not

divide q
(
h(0) + p(0) + g(0)

q−1
2

)
. This completes the proof.

The statement of the previous proposition can be generalized to this with the

same proof. Let q > 2 be a prime number and let bkx
k + bk−1x

k−1 + · · ·+ b1x+ b0
be the coefficients of d(x)q−1 + qg(x)

q−1
2 , where bk mod q 6= 0, b0 mod q2 6= 0, and

bi mod q = 0 for i = 0, 1, . . . , k − 1. Then Lq(x)/p1(x) is irreducible over Q.

In this corollary we give a partial irreducible decomposition of Ln when n a

composite number.

Corollary 18. Let n = pn1
1 pn2

2 · · · p
nk
k be the prime-power factorization of n, where

p1, p2,· · · , pk are distinct odd prime numbers.

1. If d(x) = axt, with gcd(pi, a) = gcd (pi, g(x)) = 1, then Lpi/d(x) is an irre-

ducible factor of Ln.

2. If d(x) = cx+ b, with gcd (pi, g(x)) = 1, then Lpi/d(x) is an irreducible factor

of Ln.

3. If d(x) ∈ Z[x] is irreducible mod pi, then Lpi/d(x) is an irreducible factor of

Ln.

4. If g(0) mod pi 6= 0 and d(x) = akx
k + ak−1x

k−1 + · · · + a1x + a0, where

ak mod pi 6= 0, and ai mod pi = 0, for i = 0, 1, . . . , k− 1, then Lpi/d(x) is an

irreducible factor of Ln.

Proof. It follows straightforwardly using [7, Corollary 2] and Propositions 15, 16,

and 17.

The proof of Parts 1 and 2 of the following proposition follows, again, by the

Eisenstein criterion and Lemma 12, where p = 2. The proof of Part 3 is similar to

the proof of Proposition 16. So, we omit details.

Proposition 19. Let n = 2k for k ≥ 1.

1. If d(x) = axt, with a and g(x) 6≡ 0 mod 2 odd integers, then L2t(x) is irre-

ducible over Q, for t ≥ 1.

2. If d(x) = cx+ b, with c and g(x) odd integers, then L2t(x) is irreducible over

Q, for t ≥ 1.
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3. If d(x) ∈ Z[x] is irreducible mod 2, then L2t(x) is irreducible over Q, for

t ≥ 1.

4. If g(0) is an odd integer and d(x) = akx
k+ak−1x

k−1+ · · ·+a1x+a0, where ak
is an odd integer and ai is a even integer, for i = 0, 1, . . . , k − 1, then L2t(x)

is irreducible over Q for t ≥ 1.

Lemma 20 ([12]). Let p = 2k + 1 be a prime number, let i :=
√
−1, and let τj =

±2i sin jπ
p for j = 1, 2, . . . , k. Then T = {τ1, . . . , τp−1} are the roots of Lp(x)/x.

Theorem 21. Let p > 2 be a prime number and let T = {τ1, . . . , τp−1} be the

set of roots of Lp(x)/x, where Lp(x) is the Lucas polynomial. The polynomial

αLp(x)/d(x) = Lp(x)/p1(x) is irreducible over Q if and only if d(x)2 − g(x)τ2 is

irreducible over Q
(
τ2
)

for some τ ∈ T .

Proof. This proof is similar to the proof of Theorem 9 (see also the proof of Theorem

24), using Lemma 12 instead of Lemma 1. Then setting Jp(x) := Lp(x)/x and then

replacing Fp(x) in the proof of Theorem 9 by Jp(x), we obtain the desired result.

Corollary 22. Let g(x) = 1 and let T = {τ1, . . . , τp−1} be the set of roots of

Lp(x)/x, where Lp(x) is the Lucas polynomial. The polynomial αLp(x)/d(x) =

Lp(x)/p1(x) is irreducible over Q if and only if d(x)− τ is irreducible over Q(τ) for

some τ ∈ T .

Proof. Consider Lp(x)/d(x) with g(x) = 1 and d(x) a polynomial such that d(x)−τ
is irreducible over Q(τ) for some τ ∈ T . Note that Lp(x)/d(x) is the composition

of Lp(x)/x with d(x), i.e., Lp(x) = (Lp ◦ d)(x). This and Lemma 10 imply that

Lp(x)/d(x) is irreducible if and only if Lp(x)/x is irreducible.

Proposition 23. If g(x) = −qh(x)2, where h(x) ∈ Z[x] and q ≡ 3 (mod 4), then

Lq(x)/p1(x) is reducible over Q.

Proof. By Theorem 21, we only need to show that d(x)2 + qh(x)2τ2j is reducible

over Q
(
τ2j
)

for some τj ∈ T (see Lemma 20). Since

d(x)2 + qτ2j h(x)2 =
(
d(x)−√qiτjh(x)

)(
d(x) +

√
qiτjh(x)

)
,

it suffices to show that
√
qiτj ∈ Q

(
τ2j
)
. From Lemma 20, we conclude that

√
qiτj =

±2
√
q sin jπ

q . So, τ2j = −4 sin2 jπ
q . The fact that cos 2jπ

q = 1−2 sin2 jπ
q implies that

Q
(
τ2j
)

= Q
(

cos 2jπ
q

)
.

Since gcd(2j, q) = 1, we have
[
Q
(

cos 2jπ
q

)
: Q
]

= q−1
2 . So, we only need to

show that
√
q sin jπ

q ∈ Q
(

cos 2jπ
q

)
. Thus, we know that cos 2jπ

q ∈ Q
(√
q sin jπ

q

)
,

and therefore, we just need to show that
[
Q
(√
q sin jπ

q

)
: Q
]
≤ q−1

2 .
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Since q ≡ 3 mod 4, we have the quadratic Gauss sum

q−1∑
n=0

e
2πin2

q = i
√
q.

So,

√
q sin

jπ

q
=

(
e
ijπ
q − e−

ijπ
q
)

2

q−1∑
n=0

e
2πin2

q =
1

2

q−1∑
n=0

(
ζn

2+j/2 − ζn
2−j/2),

where ζ = e
2iπ
q . Since sin jπ

q = sin (q−j)π
q , we may assume that j is even. Then,

since the conjugates of ζ over Q are ζ2, ζ3, . . . , ζq−1, it therefore follows that the

conjugates of
√
q sin jπ

q over Q are

1

2

q−1∑
n=0

(
ζm(n2+j/2) − ζm(n2−j/2)

)
, m = 1, 2, . . . , q − 1.

Also notice, however, that

1

2

q−1∑
n=0

(
ζm(n2+j/2) − ζm(n2−j/2)

)
=

1

2

q−1∑
n=0

(
ζm(q−1)(n2+j/2) − ζm(q−1)(n2−j/2)

)
for all m ∈ Z, since ζ and ζq−1 are complex conjugates. Hence, the number of

conjugates of
√
q sin 2jπ

q over Q is at most q−1
2 , and so

[
Q
(√
q sin 2jπ

q

)
: Q
]
≤ q−1

2 .

This completes the proof.

This previous proposition in combination with Proposition 17 give rise to infinite

families of GFP of Lucas type that have special behavior. For example, the Lucas

polynomials, with α = 1, d(x) = x and g(x) = −3, give that L3(x)/d(x) = x2−9 =

(x− 3)(x+ 3) and that Lp(x)/d(x) is irreducible for every prime p 6= 3; the Lucas

polynomials, with d(x) = x and g(x) = −7, give that L7(x)/d(x) = x6 − 49x4 +

686x2 − 2401 = (x3 − 7x2 + 49)(x3 + 7x2 − 49) and that Lp(x)/d(x) is irreducible

for every prime p 6= 7; the Lucas polynomials, with d(x) = x and g(x) = −11,

give that L11(x)/d(x) = x10 − 121x8 + 5324x6 − 102487x4 + 805255x2 − 1771561 =

(x5 − 11x4 + 363x2 − 1331x + 1331)(x5 + 11x4 − 363x2 − 1331x − 1331) and that

Lp(x)/d(x) is irreducible for every prime p 6= 11.

Since d(x) = αp1(x), we have Lp(x)/d(x) = Lp(x)/p1(x) in Theorem 21 and

Corollary 22 when α = 1.

Theorem 24. Let m ∈ Z>0 and R = {ρ1, . . . , ρ2m} be the set of roots of L2m(x).

The polynomial L2m(x) is irreducible over Q if and only if d(x)2 − g(x)ρ2 is irre-

ducible over Q
(
ρ2
)

for some ρ ∈ R.
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Proof. For all z ∈ C such that g(z) 6= 0, we can deduce that

αL2m(z) = g(z)2
m−1

L2m

(
d(z)

g(z)1/2

)
.

From Lemma 12 we know that L2m(x) ∈ Z[x2]. Let S2m(x) ∈ Z[x] such that

S2m(x2) = L2m(x). Since L2m(x) is irreducible over Q, it follows that S2m(x) is

irreducible over Q. For all z ∈ C such that g(z) 6= 0, we deduce

αL2m(z) = g(z)2
m−1

S2m

(
d(z)2

g(z)

)
.

The conclusion follows from Lemma 8.

Computer experimentation shows that there are many other polynomials d(x)

and g(x) such that Lq(x)/p1(x) and Fq(x) are irreducible for primes greater than

2 and L2k(x) is irreducible over Q.
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[9] R. Flórez, N. McAnally, and A. Mukherjee, Identities for the generalized Fibonacci polynomial,
Integers 18B (2018), #A2.

[10] H. W. Gould, Combinatorial Identities. A Standardized Set of Tables Listing 500 Binomial
Coefficient Summations, Henry W. Gould, Morgantown, W.Va. 1972.

[11] V. E. Hoggatt, Jr., and C. T. Long, Divisibility properties of generalized Fibonacci polyno-
mials, Fibonacci Quart. 12 (1974), 113–120.



INTEGERS: 22 (2022) 16

[12] V. E. Hoggatt, Jr. and M. Bicknell, Roots of Fibonacci polynomials, Fibonacci Quart. 11
(1973), 271–274.

[13] A. F. Horadam and J. M. Mahon, Pell and Pell-Lucas polynomials, Fibonacci Quart. 23
(1985), 7–20.

[14] S. Lang, Algebra, third edition, Addison-Wesley, 1993.

[15] J. Riordan, Combinatorial Identities, John Wiley, New York-London-Sydney, 1968.

[16] A. F. Horadam, Chebyshev and Fermat polynomials for diagonal functions, Fibonacci Quart.
17 (1979), 328–333.

[17] T. Koshy, Fibonacci and Lucas Numbers with Applications, John Wiley, Hoboken, NJ, 2001.

[18] T. Koshy, Fibonacci and Lucas Numbers with Applications. Vol 2, John Wiley, Hoboken, NJ,
2019.

[19] L. Schönemann, Von denjenigen Moduln, welche Potenzen von Primzahlen sind, J. Reine
Angew. Math. 32 (1846), 93–105.
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