THE ORDER OF THE FUNDAMENTAL SOLUTION OF $X^{2}-D Y^{2}=1$ IN $\mathbb{Z}[\sqrt{D}] /\langle D\rangle$

Stephen Choi
Department of Mathematics, Simon Fraser University, Burnaby, British
Columbia, Canada
schoia@sfu.ca
Daniel Tarnu
Department of Mathematics, Simon Fraser University, Burnaby, British
Columbia, Canada
daniel_tarnu@sfu.ca

Received: 7/1/22, Accepted: 8/17/22, Published: 8/24/22

Abstract

Let D be a positive integer that is not a perfect square and $x_{0}+y_{0} \sqrt{D}$ be the fundamental solution of Pell's equation $x^{2}-D y^{2}=1$. In this article, we study the multiplicative order of the fundamental solution in $\mathbb{Z}[\sqrt{D}] /\langle D\rangle$, which we denote by $g(D)$. Ultimately, we describe the fundamental solution of $x^{2}-D^{2 \ell+1} y^{2}=1$ in terms of x_{0} and y_{0} for $\ell \geq 0$, and use this to conclude that $$
g\left(D^{2 \ell+1}\right)= \begin{cases}D^{2 \ell+1} & \text { if } \operatorname{order}\left(x_{0}, D\right)=1 \text { and } D \text { is odd } \\ 2 D^{2 \ell+1} & \text { if order }\left(x_{0}, D\right)=2 \text { and } D \text { is odd } \\ D^{2 \ell+1} & \text { if } D \text { is even }\end{cases}
$$

for sufficiently large ℓ.

1. Introduction

Consider Pell's equation

$$
\begin{equation*}
x^{2}-D y^{2}=1 \tag{1.1}
\end{equation*}
$$

where D is a positive integer that is not a perfect square. We consider the ring

$$
\mathbb{Z}[\sqrt{D}]:=\{x+y \sqrt{D}: x, y \in \mathbb{Z}\}
$$

We say that $s+t \sqrt{D} \in \mathbb{Z}[\sqrt{D}]$ or $(s, t) \in \mathbb{Z}^{2}$ is an integer solution (or simply solution) of Equation (1.1) if $s^{2}-D t^{2}=1$. Let $x_{0}+y_{0} \sqrt{D}$ be the fundamental solution of Pell's Equation (1.1), i.e., $x_{0}+y_{0} \sqrt{D}$ is the smallest positive solution of

Equation (1.1). It is well-known that all the solutions of Equation (1.1) are given by

$$
\left\{ \pm\left(x_{0} \pm y_{0} \sqrt{D}\right)^{\ell}: \ell \in \mathbb{Z}\right\}
$$

Let $m \geq 2$ and Φ_{m} be the reduction map from $\mathbb{Z}[\sqrt{D}]$ to $\mathbb{Z}[\sqrt{D}] /\langle m\rangle$ such that

$$
\Phi_{m}(x+y \sqrt{D})=\bar{x}+\bar{y} \sqrt{D}
$$

where $\bar{x} \equiv x(\bmod m)$ and $\bar{x} \in\{0,1, \ldots, m-1\}$ and similarly with \bar{y}. Since

$$
\left(x_{0}+y_{0} \sqrt{D}\right)\left(x_{0}-y_{0} \sqrt{D}\right)=x_{0}^{2}-D y_{0}^{2}=1
$$

we have $\left(\overline{x_{0}}+\overline{y_{0}} \sqrt{D}\right)\left(\overline{x_{0}}-\overline{y_{0}} \sqrt{D}\right)=\overline{1}$ in $\mathbb{Z}[\sqrt{D}] /\langle m\rangle$. Hence $\Phi_{m}\left(x_{0}+y_{0} \sqrt{D}\right)$ is a unit in the finite ring $\mathbb{Z}[\sqrt{D}] /\langle m\rangle$. We call $g_{D}(m)$ the multiplicative order of $\Phi_{m}\left(x_{0}+y_{0} \sqrt{D}\right)$ in the unit ring of $\mathbb{Z}[\sqrt{D}] /\langle m\rangle$. In this article, we are interested in studying $g_{m}(D)$ in the case that $m=D$ and denote $g_{D}(D)$ by $g(D)$. We will study and obtain an explicit formula for $g(D)$.

The authors believe there is little literature on this notion of order besides [6]. In [6], Chahal and Priddis study the order of $\Phi_{m}(G)$ in $\mathrm{GL}_{2}(\mathbb{Z} / m \mathbb{Z})$ where G is the solution set for $x^{2}-D y^{2}=1$ realized as a group of 2×2 matrices with integer entries. Their order is more general than ours. We only consider the special case that $m=D$.

The order $g_{m}(D)$ has some applications. In [8], we use $g_{k}(2 A)$ to find infinitely many solutions $(s, t) \in \mathbb{N}^{2}$ of $x^{2}-k y^{2}=1$ with $s+t \equiv 1(\bmod 2 A)$ and $s+k t \equiv$ $1(\bmod 2 A)$ where $A \in \mathbb{N}$. This step is essential in the proof of the main theorem in [8]. The order $g(D)$ is also useful in finding all solutions (x, y) of the generalized Pell equation

$$
\begin{equation*}
x^{2}-D y^{2}=k \tag{1.2}
\end{equation*}
$$

satisfying the congruence conditions

$$
\begin{equation*}
x \equiv a(\bmod D) \quad \text { and } \quad y \equiv b(\bmod D) \tag{1.3}
\end{equation*}
$$

where $\operatorname{gcd}(D, k)=1$. If $u:=x_{0}+y_{0} \sqrt{D}$ is the fundamental solution of $x^{2}-D y^{2}=1$, then it is well-known that every solution (x, y) of Equation (1.2) is in the form of

$$
x+y \sqrt{D}= \pm\left(x^{\prime} \pm y^{\prime} \sqrt{D}\right)\left(x_{0} \pm y_{0} \sqrt{D}\right)^{\ell}
$$

for $\ell \in \mathbb{Z}$ and some solution $\left(x^{\prime}, y^{\prime}\right)$ of Equation (1.2) satisfying

$$
\begin{equation*}
\left|x^{\prime}\right| \leq \frac{\sqrt{|k|}(\sqrt{u}+1)}{2}, \quad\left|y^{\prime}\right| \leq \frac{\sqrt{|k|}(\sqrt{u}+1)}{2 \sqrt{D}} \tag{1.4}
\end{equation*}
$$

We then find all of the finitely many solutions $\left(x_{i}, y_{i}\right), 1 \leq i \leq q$, of Equation (1.2) satisfying Equation (1.3) and Equation (1.4). If no such (x_{i}, y_{i}) exist, then Equation (1.2) has no solution satisfying the congruence conditions Equation (1.3) as we show below.

Proposition 1. Let $x_{i}+y_{i} \sqrt{D}, 1 \leq i \leq q$, be the solutions of Equation (1.2) satisfying Equation (1.3) and Equation (1.4). The solutions of of the generalized Pell Equation (1.2) satisfying Equation (1.3) are

$$
\pm\left(x_{i} \pm y_{i} \sqrt{D}\right)\left(x_{0} \pm y_{0} \sqrt{D}\right)^{n g(D)}, n \in \mathbb{Z}, 1 \leq i \leq q
$$

Proof. If (x, y) is a solution of Equation (1.2), we have $\operatorname{gcd}(x, D)=1$ because $\operatorname{gcd}(k, D)=1$. Note that if

$$
\begin{equation*}
x+y \sqrt{D}=\left(x^{\prime}+y^{\prime} \sqrt{D}\right)(s+t \sqrt{D})=\left(x^{\prime} s+y^{\prime} t D\right)+\left(y^{\prime} s+x^{\prime} t\right) \sqrt{D} \tag{1.5}
\end{equation*}
$$

then

$$
\left\{\begin{array} { l }
{ x \equiv x ^ { \prime } (\operatorname { m o d } D) , } \\
{ y \equiv y ^ { \prime } (\operatorname { m o d } D) , }
\end{array} \quad \text { if and only if } \quad \left\{\begin{array}{l}
s \equiv 1(\bmod D) \\
t \equiv 0(\bmod D)
\end{array}\right.\right.
$$

Indeed, if $s \equiv 1(\bmod D)$ and $t \equiv 0(\bmod D)$, then from Equation (1.5), we have $x \equiv x^{\prime} s \equiv x^{\prime}(\bmod D)$ and $y \equiv y^{\prime} s \equiv y^{\prime}(\bmod D)$. Conversely, if $x \equiv x^{\prime}(\bmod D)$ and $y \equiv y^{\prime}(\bmod D)$, then from Equation (1.5) again, we have $x \equiv x s+y t D \equiv$ $x s(\bmod D)$. Thus $s \equiv 1(\bmod D)$ because $\operatorname{gcd}(x, D)=1$. Since $y=y^{\prime} s+x^{\prime} t \equiv$ $y+x t(\bmod D)$, we have $x t \equiv 0(\bmod D)$ and so $t \equiv 0(\bmod D)$. Therefore, the solutions of Equation (1.2) satisfying Equation (1.3) are precisely

$$
\left(x_{i}+y_{i} \sqrt{D}\right)\left(x_{0}+y_{0} \sqrt{D}\right)^{n g(D)}, n \in \mathbb{Z}
$$

We begin by obtaining a formula for $g(D)$. We later discuss the Ankeny-ArtinChowla and Mordell conjectures, which consider y_{0} modulo D when D is prime. Afterwards, we establish some technical lemmas which allow us to prove Theorems 5 and 6 . Theorems 5 and 6 are our main results, which, together with Theorem 4, tell us how the fundamental solutions of $x^{2}-D^{2 \ell+1} y^{2}=1$ can be constructed from the fundamental solutions of $x^{2}-D y^{2}=1$ and furthermore that

$$
g\left(D^{2 \ell+1}\right)= \begin{cases}D^{2 \ell+1} & \text { if order }\left(x_{0}, D\right)=1 \text { and } D \text { is odd } \\ 2 D^{2 \ell+1} & \text { if order }\left(x_{0}, D\right)=2 \text { and } D \text { is odd } \\ D^{2 \ell+1} & \text { if } D \text { is even }\end{cases}
$$

for sufficiently large ℓ.

2. Formula for $g(D)$

In this section, we derive a formula for $g(D)$ in terms of the fundamental solution $x_{0}+y_{0} \sqrt{D}$.

Theorem 1. Suppose D is a positive integer that is not a perfect square and $x_{0}+$ $y_{0} \sqrt{D}$ is the fundamental solution of $x^{2}-D y^{2}=1$. Then

$$
\begin{equation*}
g(D)=\operatorname{lcm}\left(\operatorname{order}\left(x_{0}, D\right), \frac{D}{\operatorname{gcd}\left(y_{0}, D\right)}\right) \tag{2.1}
\end{equation*}
$$

where order $\left(x_{0}, D\right)$ is the multiplicative order of x_{0} in $\mathbb{Z} / D \mathbb{Z}$. In particular, order $\left(x_{0}\right.$, $D)=1$ if $x_{0} \equiv 1(\bmod D)$ and $\operatorname{order}\left(x_{0}, D\right)=2$ if $x_{0} \not \equiv 1(\bmod D)$.

Proof. We first note that

$$
\begin{aligned}
\left(x_{0}+y_{0} \sqrt{D}\right)^{\ell} & =\sum_{k=0}^{\ell}\binom{\ell}{k} x_{0}^{\ell-k} y_{0}^{k} D^{k / 2} \\
& =\sum_{0 \leq 2 k \leq \ell}\binom{\ell}{2 k} x_{0}^{\ell-2 k} y_{0}^{2 k} D^{k}+\sqrt{D} \sum_{0 \leq 2 k+1 \leq \ell}\binom{\ell}{2 k+1} x_{0}^{\ell-2 k-1} y_{0}^{2 k+1} D^{k} \\
& \equiv\binom{\ell}{2(0)} x_{0}^{\ell}+\sqrt{D}\binom{\ell}{2(0)+1} x_{0}^{\ell-1} y_{0}(\bmod D) \\
& =x_{0}^{\ell}+\ell x_{0}^{\ell-1} y_{0} \sqrt{D} .
\end{aligned}
$$

So if $\left(x_{0}+y_{0} \sqrt{D}\right)^{\ell}=1$ in $(\mathbb{Z} / D \mathbb{Z})[\sqrt{D}]$, then $x_{0}^{\ell} \equiv 1(\bmod D)$ and $\ell x_{0}^{\ell-1} y_{0} \equiv$ $0(\bmod D)$. This implies that $\ell y_{0} \equiv 0(\bmod D)$ and hence $\left.\frac{D}{\operatorname{gcd}\left(y_{0}, D\right)} \right\rvert\, \ell$. So

$$
\left.\operatorname{lcm}\left(\operatorname{order}\left(x_{0}, D\right), \frac{D}{\operatorname{gcd}\left(y_{0}, D\right)}\right) \right\rvert\, \ell
$$

Therefore,

$$
g(D)=\operatorname{lcm}\left(\operatorname{order}\left(x_{0}, D\right), \frac{D}{\operatorname{gcd}\left(y_{0}, D\right)}\right)
$$

This proves Equation (2.1). The theorem now follows immediately from the fact that $x_{0}^{2} \equiv 1(\bmod D)$.

The usual way to find the fundamental solution $x_{0}+y_{0} \sqrt{D}$ of $x^{2}-D y^{2}=1$ is using the continued fraction expansion of \sqrt{D}. We state some well-known properties of continued fractions and the fundamental solutions of \sqrt{D} in next lemma.

Lemma 1. Let D be a positive integer that is not a perfect square. Suppose the continued fraction of \sqrt{D} is $\left[a_{0}, \overline{a_{1}, \ldots, a_{\ell}}\right]$. Then we have
(a) $a_{0}=\lfloor\sqrt{D}\rfloor$ and $a_{\ell}=2 a_{0}$;
(b) $a_{1}, \ldots, a_{\ell-1}$ is a palindrome, i.e., $a_{j}=a_{\ell-j}$ for $1 \leq j \leq \ell-1$;
(c) Pell's equation $x^{2}-D y^{2}=1$ has its fundamental solution $x_{0}+y_{0} \sqrt{D}$ satisfying

$$
\frac{x_{0}}{y_{0}}= \begin{cases}{\left[a_{0}, a_{1}, \ldots, a_{\ell-1}\right]} & \text { if } \ell \text { is even }, \\ {\left[a_{0}, a_{1}, \ldots, a_{2 \ell-1}\right]} & \text { if } \ell \text { is odd. }\end{cases}
$$

(d) The negative Pell equation $x^{2}-D y^{2}=-1$ has a solution if and only if ℓ is odd; in this case, the fundamental solution $x_{1}+y_{1} \sqrt{D}$ satisfies

$$
\frac{x_{1}}{y_{1}}=\left[a_{0}, a_{1}, \ldots, a_{\ell-1}\right]
$$

Proof. See Theorem 5.15 of [12].
In view of Theorem 1 , to compute $g(D)$, we need to determine if $x_{0} \equiv 1(\bmod D)$ and evaluate $\operatorname{gcd}\left(y_{0}, D\right)$. Mollin and Srinivasan $[13,14]$ showed that the values of $x_{0}(\bmod D)$ are closely related to the solvability of the following three generalized Pell equations:

$$
\begin{equation*}
x^{2}-D y^{2}=-1, \quad x^{2}-D y^{2}=2, \quad x^{2}-D y^{2}=-2 . \tag{2.2}
\end{equation*}
$$

We first mention a classical result of Perron.
Theorem 2 ([17]).
(i) If $D>2$ is a positive integer that is not a perfect square, then at most one of the equations in Equation (2.2) is solvable.
(ii) If $D=p^{\ell}$ or $D=2 p^{\ell}$ for odd prime p and $\ell \geq 1$, then one and only one equation in Equation (2.2) is solvable.
Proof. Part (i) is Satz 21 of $\S 26$ in [17] and part (ii) is Satz 23 of $\S 26$ in [17].
For $D=2$, all three equations of Equation (2.2) are clearly solvable.
The following result by Mollin and Srinivasan describes the relation between $x_{0}(\bmod D)$ and the solvability of the equations in Equation (2.2).

Theorem 3 ([13], [14]). Let $D>2$ be a positive integer that is not a perfect square. Let $x_{0}+y_{0} \sqrt{D}$ be the fundamental solution of Pell's equation

$$
\begin{equation*}
x^{2}-D y^{2}=1 \tag{2.3}
\end{equation*}
$$

Then, we have the following.
(i) The negative Pell equation $x^{2}-D y^{2}=-1$ is solvable if and only if $x_{0} \equiv$ $-1(\bmod 2 D)$.
(ii) The equation

$$
\begin{equation*}
x^{2}-D y^{2}=2 \tag{2.4}
\end{equation*}
$$

is solvable if and only if $x_{0} \equiv 1(\bmod D)$.
(iii) The equation $x^{2}-D y^{2}=-2$ is solvable if and only if $x_{0} \equiv-1(\bmod D)$ and $x_{0} \not \equiv-1(\bmod 2 D)$.

Proof. In view of Lemma 1(d), the negative Pell equation is solvable if and only if ℓ is odd. Theorem 3 follows readily from Theorem 2 (i), Theorem 4.3 of [13] and Theorem 1.1 of [14].

Although Theorem 3 gives a necessary and sufficient condition for $x_{0} \equiv 1(\bmod D)$, there is no simple condition on D for the solvability of Equation (2.4). The next few results give simple necessary conditions for the solvability of Equation (2.4).
Lemma 2. Suppose $x^{2}-D y^{2}=2$ is solvable. If p is an odd prime factor of D, then $p \equiv \pm 1(\bmod 8)$. Moreover, if D is odd, then $D \equiv 7(\bmod 8)$ and if D is even, then $D=2 d$ with odd d and $D \equiv \pm 2(\bmod 8)$.

Proof. If p is an odd prime divisor of D, then $x^{2} \equiv 2(\bmod p)$ is solvable. This implies that $p \equiv \pm 1(\bmod 8)$.

Suppose D is odd and $(x, y) \in \mathbb{N}^{2}$ is a solution of Equation (2.4), then either $x \equiv y \equiv 0(\bmod 2)$ or $x \equiv y \equiv 1(\bmod 2)$. If $x \equiv y \equiv 0(\bmod 2)$, then $x^{2} \equiv y^{2} \equiv$ $0(\bmod 4)$. By Equation (2.4), this implies that $4 \equiv 2(\bmod 4)$. This is impossible. Hence we must have $x \equiv y \equiv 1(\bmod 2)$. Then $x^{2} \equiv y^{2} \equiv 1(\bmod 8)$. Hence $D \equiv 7(\bmod 8)$.

If D is even and $(x, y) \in \mathbb{N}^{2}$ is a solution of Equation (2.4), we write $D=2 d$. From Equation (2.4), we deduce that x is even. Hence $x^{2} \equiv 0(\bmod 4)$ and $D y^{2} \equiv$ $2(\bmod 4)$. This implies that $D \equiv 2(\bmod 4)$ and hence d and y are odd. Since x is even, we write $x=2 x^{\prime}$. Then we have $2\left(x^{\prime}\right)^{2}-d y^{2}=1$. Since y is odd, we have that $y^{2} \equiv 1(\bmod 4)$. If x^{\prime} is even, then $d \equiv-1(\bmod 4)$ and so $D \equiv-2(\bmod 8)$. If x^{\prime} is odd, then $d \equiv 1(\bmod 4)$ and so $D \equiv 2(\bmod 8)$.

Corollary 1. If $D \equiv 0,1(\bmod 4)$, then $x^{2}-D y^{2}=2$ is insolvable and hence $x_{0} \not \equiv 1(\bmod D)$ and $\operatorname{order}\left(x_{0}, D\right)=2$.

Corollary 2. Let p be an odd prime and $\ell \geq 0$. Suppose $x_{0}+y_{0} \sqrt{p^{2 \ell+1}}$ is the fundamental solution of $x^{2}-p^{2 \ell+1} y^{2}=1$. Then $x_{0} \equiv 1\left(\bmod p^{2 \ell+1}\right)$ if and only if $p \equiv 7(\bmod 8)$.

Proof. We have that $x_{0} \equiv 1\left(\bmod p^{2 \ell+1}\right)$ if and only if $x^{2}-p^{2 \ell+1} y^{2}=2$ is solvable by Theorem 3. So, if $x_{0} \equiv 1\left(\bmod p^{2 \ell+1}\right)$, then $p^{2 \ell+1} \equiv 7(\bmod 8)$ and $p \equiv \pm 1(\bmod 8)$ by Lemma 2 with $D=p^{2 \ell+1}$. Hence $p \equiv 7(\bmod 8)$. Conversely, if $p \equiv 7(\bmod 8)$, then -1 and -2 are quadratic non-residues module p. Hence both $x^{2}-p^{2 \ell+1} y^{2}=-1$ and $x^{2}-p^{2 \ell+1} y^{2}=-2$ are insolvable. By Theorem 2 (ii), $x^{2}-p^{2 \ell+1} y^{2}=2$ is solvable and hence $x_{0} \equiv 1\left(\bmod p^{2 \ell+1}\right)$.

If the continued fraction of \sqrt{D} is very simple, we can find out the fundamental solutions explicitly and compute $g(D)$. For example, if $\sqrt{D}=[m, \overline{2 m}]$, then

$$
g(D)= \begin{cases}2\left(1+m^{2}\right) & \text { for even } m \\ 1+m^{2} & \text { for odd } m\end{cases}
$$

and if $\sqrt{D}=[m n, \overline{n, 2 m n}], \quad m, n \in \mathbb{N}, m \geq 2$, then

$$
g(D)=\operatorname{lcm}\left(2, \frac{m^{2} n^{2}+m}{\operatorname{gcd}\left(2 n, m^{2} n^{2}+m\right)}\right)
$$

The next theorem evaluates $g\left(2^{2 \ell+1}\right)$.
Theorem 4. For $\ell \geq 1$, we have

$$
\begin{equation*}
(3+2 \sqrt{2})^{2^{\ell-1}}=x_{0}+y_{0} \sqrt{2^{2 \ell+1}} \tag{2.5}
\end{equation*}
$$

where $x_{0}+y_{0} \sqrt{2^{2 \ell+1}}$ is the fundamental solution of $x^{2}-2^{2 \ell+1} y^{2}=1$ and $3+2 \sqrt{2}$ is the fundamental solution of $x^{2}-2 y^{2}=1$. Furthermore, we have that $g\left(2^{2 \ell+1}\right)=$ $2^{2 \ell+1}$.

Proof. We prove Equation (2.5) by induction on $\ell \geq 1$. For $\ell=1$, we have

$$
(3+2 \sqrt{2})^{2^{0}}=3+2 \sqrt{2}=3+\sqrt{2^{2(1)+1}}
$$

so $x_{0}=3$ and $y_{0}=1$. Thus Equation (2.5) is true for $\ell=1$.
Suppose

$$
(3+2 \sqrt{2})^{2^{\ell-1}}=s+t \sqrt{2^{2 \ell+1}}=s+t 2^{\ell} \sqrt{2}
$$

for some odd integers $s, t \in \mathbb{N}$. Then

$$
(3+2 \sqrt{2})^{2^{\ell}}=\left(s+t 2^{\ell} \sqrt{2}\right)^{2}=\left(s^{2}+2^{2 \ell+1} t^{2}\right)+s t \sqrt{2^{2(\ell+1)+1}}
$$

So $x_{0}=s_{1}^{2}+2^{2 \ell+1} t^{2}$ and $y_{0}=s t$. Clearly, x_{0} and y_{0} are odd because s and t are odd. This proves Equation (2.5).

Clearly $\left(x_{0}, y_{0}\right)$ in Equation (2.5) is a solution of $x^{2}-2^{2 \ell+1} y^{2}=1$. If $\left(x_{1}, y_{1}\right) \in \mathbb{N}^{2}$ is the fundamental solution of $x^{2}-2^{2 \ell+1} y^{2}=1$, then

$$
x_{0}+y_{0} \sqrt{2^{2 \ell+1}}=\left(x_{1}+y_{1} \sqrt{2^{2 \ell+1}}\right)^{j}
$$

for some $j \in \mathbb{N}$. On the other hand, $\left(x_{1}, y_{1} 2^{\ell}\right)$ is also a solution of $x^{2}-2 y^{2}=1$. Hence

$$
x_{1}+y_{1} 2^{\ell} \sqrt{2}=(3+2 \sqrt{2})^{i}
$$

for some $i \in \mathbb{N}$. Therefore, from Equation (2.5), we have

$$
(3+2 \sqrt{2})^{2^{\ell-1}}=x_{0}+y_{0} \sqrt{2^{2 \ell+1}}=\left(x_{1}+y_{1} \sqrt{2^{2 \ell+1}}\right)^{j}=(3+2 \sqrt{2})^{i j}
$$

So $i j=2^{\ell-1}$ and $i=2^{m}$ for some $m \geq 0$. In view of Equation (2.5), we have

$$
x_{1}+y_{1} \sqrt{2^{2 \ell+1}}=(3+2 \sqrt{2})^{i}=(3+2 \sqrt{2})^{2^{m}}=x_{0}^{\prime}+y_{0}^{\prime} \sqrt{2^{2(m+1)+1}}
$$

with odd $x_{0}^{\prime}, y_{0}^{\prime} \in \mathbb{N}$. Since both y_{1} and y_{0}^{\prime} are odd, we have that $\ell=m+1$. Therefore, $j=1$ and we conclude that $x_{0}+y_{0} \sqrt{2^{2 \ell+1}}=x_{1}+y_{1} \sqrt{2^{2 \ell+1}}$ is the fundamental solution of $x^{2}-2^{2 \ell+1} y^{2}=1$.

In view of Lemma 2, the equation $x^{2}-2^{2 \ell+1} y^{2}=2$ is insolvable for $\ell \geq 1$. Hence $x_{0} \not \equiv 1\left(\bmod 2^{2 \ell+1}\right)$ and order $\left(x_{0}, 2^{2 \ell+1}\right)=1$. Therefore, we have

$$
g\left(2^{2 \ell+1}\right)=\operatorname{lcm}\left(1, \frac{2^{2 \ell+1}}{\operatorname{gcd}\left(y_{0}, 2^{2 \ell+1}\right)}\right)=2^{2 \ell+1}
$$

for $\ell \geq 1$. This completes the proof.

3. Ankeny, Artin and Chowla's Conjecture and Mordell's Conjecture

In this section, we study $g(p)$ for odd primes p. In view of Theorem 1 , it is important to determine if $p \mid y_{0}$, where $x_{0}+y_{0} \sqrt{p}$ is the fundamental solution of $x^{2}-p y^{2}=1$. Based on numerical checking for the first 1000 primes p, we find that p does not divide y_{0}. We are led to conjecture the following.

Conjecture 1. Let p be an odd prime and $x_{0}+y_{0} \sqrt{p}$ be the fundamental solution of $x^{2}-p y^{2}=1$. Then $p \nmid y_{0}$. Hence

$$
g(p)= \begin{cases}p & \text { if } p \equiv 7(\bmod 8) \\ 2 p & \text { if } p \not \equiv 7(\bmod 8)\end{cases}
$$

There is a famous conjecture of Ankeny, Artin and Chowla (AAC conjecture) (Conjecture 2 below) in [3] concerning the fundamental unit of the real quadratic field $\mathbb{Q}(\sqrt{p})$ where p is a prime congruent to 1 modulo 4 . Mordell also made a conjecture (Conjecture 3 below) in [16] similar in nature to the AAC conjecture for a prime p congruent to 3 modulo 4 . Both conjectures are still unsolved but are widely believed to be true. The AAC conjecture was first verified for all primes not exceeding 10^{11} by Van Der Poorten et al. in [18] and then for all primes not exceeding $2\left(10^{11}\right)$ in [19]. In [15], Mordell proved the AAC conjecture for any regular prime p, i.e., when p does not divide the class number of the number field $\mathbb{Q}\left(e^{\frac{2 \pi i}{p}}\right)$. The conjecture of Mordell has also been verified for all primes not exceeding 10^{7} in [5]. Both the AAC conjecture and Mordell's conjecture are widely studied. For more discussion on these conjectures, we refer readers to [1], [7], and [9].

Conjecture $2([3])$. Let p be a prime congruent to 1 modulo 4 and $\frac{1}{2}(a+b \sqrt{p})$ be the fundamental unit for $\mathbb{Q}(\sqrt{p})$ where $a, b \in \mathbb{N}$ and $a \equiv b(\bmod 2)$. Then $p \nmid b$.

Conjecture 3 ([16]). Let p be a prime congruent to 3 modulo 4. Let $x_{0}+y_{0} \sqrt{p}$ be the fundamental solution of $x^{2}-p y^{2}=1$. Then $p \nmid y_{0}$.

Conjecture 1 is exactly the same as Mordell's conjecture for $p \equiv 3(\bmod 4)$. By using the relation between the fundamental unit for $\mathbb{Q}(\sqrt{p})$ and the fundamental solutions of $x^{2}-p y^{2}=1$, it can be shown that Conjecture 1 is the same as the AAC Conjecture for $p \equiv 1(\bmod 4)$.

Corollary 3. If Ankeny, Artin and Chowla's conjecture and Mordell's conjecture are true, then for any odd prime p and $\ell \geq 0$, we have

$$
g\left(p^{2 \ell+1}\right)= \begin{cases}p^{2 \ell+1} & \text { if } p \equiv 7(\bmod 8), \\ 2 p^{2 \ell+1} & \text { if } p \not \equiv 7(\bmod 8)\end{cases}
$$

Proof. This follows readily from Corollary 4 and $\operatorname{gcd}\left(y_{0}, p^{2 \ell+1}\right)=1$.
From our gathered data, we observe that for $D=2 p$ we have $\operatorname{gcd}\left(y_{0}, 2 p\right)=2$ for all odd primes p except for $p=23$. We present an analogue of the AAC and Mordell's conjecture in which p is replaced by $2 p$.

Conjecture 4. Let p be an odd prime and $x_{0}+y_{0} \sqrt{2 p}$ be the fundamental solution of $x^{2}-2 p y^{2}=1$. Then $\operatorname{gcd}\left(y_{0}, 2 p\right)=2$ except when $p=23$. For $p=23$, $\operatorname{gcd}\left(y_{0}, 2(23)\right)=46$. Hence for $p \neq 23$

$$
g(2 p)= \begin{cases}p & \text { if order }\left(x_{0}, 2 p\right)=1 \\ 2 p & \text { if order }\left(x_{0}, 2 p\right)=2\end{cases}
$$

4. The Order $g\left(D^{2 \ell+1}\right)$

In this section, we study the order $g\left(D^{2 \ell+1}\right)$. In view of Theorem 1 , we need to find the relation between the fundamental solutions $x_{0}+y_{0} \sqrt{D}$ and $x_{1}+y_{1} \sqrt{D^{2 \ell+1}}$ of $x^{2}-D y^{2}=1$ and $x^{2}-D^{2 \ell+1} y^{2}=1$, respectively. Since

$$
1=x_{1}^{2}-D^{2 \ell+1} y_{1}^{2}=x_{1}^{2}-D\left(D^{\ell} y_{1}\right)^{2}
$$

we have that $x_{1}+y_{1} \sqrt{D^{2 \ell+1}}$ is a power of $x_{0}+\sqrt{D} y_{0}$. Theorem 5 below gives us the exact power of $x_{0}+\sqrt{D} y_{0}$. The prime number 3 is special among all other prime numbers in this aspect. Although the values of $g(p)$ are still undetermined (c.f. Ankeny, Artin and Chowla's and Mordell's conjectures), Theorem 6 below gives the values of $g\left(D^{2 \ell+1}\right)$ for sufficiently large ℓ.

For any prime number p and $m \in \mathbb{N}$, we define the exact power of p dividing m by $n_{p}(m)$, that is, $p^{n_{p}(m)} \| m$. Here $d^{n} \| m$ if $d^{n} \mid m$ but $d^{n+1} \nmid m$.

Lemma 3. Let D be a positive integer that is not a perfect square. Suppose $\left(x_{0}, y_{0}\right)$ is a solution of $x^{2}-D y^{2}=1$ such that $3 \nmid y_{0}$ and

$$
\left(x_{0}+y_{0} \sqrt{D}\right)^{3}=x_{0}^{\prime}+y_{0}^{\prime} \sqrt{D}
$$

with $\ell_{1}:=n_{3}\left(y_{0}^{\prime}\right) \geq 1$ and $y_{0}^{\prime}=3^{\ell_{1}} y_{0} z_{0}$ for some $z_{0} \in \mathbb{N}$ with $3 \nmid z_{0}$ and $\operatorname{gcd}\left(z_{0}, D\right)=$ 1. Then for any $\ell \geq 1$, we have

$$
\left(x_{0}+y_{0} \sqrt{D}\right)^{3^{\ell}}=x_{1}+y_{1} \sqrt{D}
$$

with $n_{3}\left(y_{1}\right)=\ell+\ell_{1}-1$ and $y_{1}=3^{\ell+\ell_{1}-1} y_{0} z_{1}$ for some $z_{1} \in \mathbb{N}$ with $3 \nmid z_{1}$ and $\operatorname{gcd}\left(z_{1}, D\right)=1$.

Proof. We prove the lemma by induction on $\ell \geq 1$. The case $\ell=1$ is true by assumption. Suppose

$$
\left(x_{0}+y_{0} \sqrt{D}\right)^{3^{\ell}}=x_{1}+y_{1} \sqrt{D}
$$

with $n_{3}\left(y_{1}\right)=\ell+\ell_{1}-1$ and $y_{1}=3^{\ell+\ell_{1}-1} y_{0} z_{1}$ for some $z_{1} \in \mathbb{N}$ with $3 \nmid z_{1}$ and $\operatorname{gcd}\left(z_{1}, D\right)=1$. We see that

$$
\left(x_{0}+y_{0} \sqrt{D}\right)^{3^{\ell+1}}=\left(x_{1}+y_{1} \sqrt{D}\right)^{3}=\left(x_{1}^{3}+3 x_{1} y_{1}^{2} D\right)+\left(3 x_{1}^{2} y_{1}+y_{1}^{3} D\right) \sqrt{D}
$$

Since $x_{1}^{2}-D y_{1}^{2}=1$ and $3 \mid y_{1}$, we must have that $3 \nmid x_{1}$. We conclude that

$$
n_{3}\left(x_{1}^{3}+3 x_{1} y_{1}^{2} D\right)=0
$$

and

$$
n_{3}\left(3 x_{1}^{2} y_{1}+y_{1}^{3} D\right)=n_{3}\left(3 y_{1}\left(x_{1}^{2}+\frac{y_{1}^{2} D}{3}\right)\right)=n_{3}\left(3 y_{1}\right)=\ell+\ell_{1}
$$

Moreover,

$$
\begin{aligned}
3 x_{1}^{2} y_{1}+y_{1}^{3} D & =y_{1}\left(3 x_{1}^{2}+y_{1}^{2} D\right) \\
& =3^{\ell+\ell_{1}} y_{0} z_{1}\left(x_{1}^{2}+3^{2 \ell+2 \ell_{1}-3} y_{0}^{2} z_{1}^{2} D\right)=3^{\ell+\ell_{1}} y_{0} z_{1}^{\prime}
\end{aligned}
$$

for some $z_{1}^{\prime} \in \mathbb{N}$ and $3 \nmid z_{1}^{\prime}$ and $\operatorname{gcd}\left(z_{1}^{\prime}, D\right)=1$ because $\operatorname{gcd}\left(x_{1}, D\right)=1$. This proves the lemma.

Lemma 4. Let $D \in \mathbb{N}$ and let $M \in \mathbb{N}$ be such that $p \mid D$ if $p \mid M$. Then we have

$$
D M \left\lvert\,\binom{ M}{2 j+1} D^{j}\right.
$$

for any $2 \leq j \leq(M-1) / 2$.
Proof. We first note that we can write

$$
\begin{equation*}
\binom{M}{2 j+1} D^{j}=(D M)\left(\frac{(M-1) \cdots(M-2 j) D^{j-1}}{(2 j+1)!}\right) \tag{4.1}
\end{equation*}
$$

It suffices to show that

$$
\begin{equation*}
n_{p}(D M) \leq n_{p}\left(\binom{M}{2 j+1} D^{j}\right) \tag{4.2}
\end{equation*}
$$

for all primes $p \mid D$. It is well-known that for any prime p and $m \in \mathbb{N}$, we have

$$
\begin{align*}
n_{p}(m!) & =\left\lfloor\frac{m}{p}\right\rfloor+\left\lfloor\frac{m}{p^{2}}\right\rfloor+\cdots \leq \frac{m}{p}+\frac{m}{p^{2}}+\cdots \\
& =m \sum_{n=1}^{\infty} \frac{1}{p^{n}}=m \frac{1}{p} \frac{1}{1-\frac{1}{p}}=\frac{m}{p-1} \tag{4.3}
\end{align*}
$$

where $\lfloor\xi\rfloor$ is the greatest integer $\leq \xi$.
Let p be a prime dividing D. Consider first the case that $p \geq 5$. In view of Equation (4.3), we have $n_{p}((2 j+1)!) \leq \frac{2 j+1}{p-1} \leq \frac{2 j+1}{4}$ and hence $n_{p}((2 j+1)!) \leq$ $\left\lfloor\frac{2 j+1}{4}\right\rfloor$. This implies that for all $2 \leq j \leq(M-1) / 2$ and $p \geq 5$, we have

$$
n_{p}((2 j+1)!) \leq\left\lfloor\frac{2 j+1}{4}\right\rfloor \leq \frac{j}{2} \leq j-1 \leq n_{p}(D)(j-1)=n_{p}\left(D^{j-1}\right)
$$

In view of Equation (4.1), this shows Equation (4.2) for $p_{k} \geq 5$.
Now, suppose $p=2$. Note that $5!=2^{3}(15)$ and $7!=2^{4}(315)$, so $n_{2}(5!)=3$ and $n_{2}(7!)=4$. Since $2^{3} \mid(M-1)(M-2)(M-3)(M-4)$ and $2^{4} \mid(M-1)(M-2)(M-$ $3)(M-4)(M-5)(M-6)$, we use Equation (4.1) to conclude that

$$
n_{2}(D M) \leq n_{2}\left(\binom{M}{2 j+1} D^{j}\right)
$$

for $j=2,3$. For $j \geq 4$, among $M-1, M-2, \ldots, M-2 j$, there are j even numbers and at least two of them are divisible by 4 because there are more than 8 consecutive integers. Thus, $2^{j+2} \mid(M-1) \cdots(M-2 j)$. Note also that, by Equation (4.3), $n_{2}((2 j+1)!) \leq \frac{2 j+1}{2-1}=2 j+1$. It then follows that

$$
\begin{aligned}
n_{2}\left((M-1) \cdots(M-2 j) D^{j-1}\right) & \geq n_{2}(D)(j-1)+(j+2) \\
& \geq j-1+j+2=2 j+1 \geq n_{2}((2 j+1)!)
\end{aligned}
$$

and hence $n_{2}(D M) \leq n_{2}\left(\binom{M}{2 j+1} D^{j}\right)$ for $j \geq 4$. This proves Equation (4.2) for $p=2$.

Finally, suppose $p=3$. Then, by Equation (4.3), $n_{3}((2 j+1)!) \leq \frac{2 j+1}{3-1}=\frac{2 j+1}{2} \leq$ $j+\frac{1}{2}$ and so $n_{3}((2 j+1)!) \leq j$. For $j \geq 2$, among $M-1, M-2, \ldots, M-2 j$, there are more than 4 consecutive integers. Thus, $3 \mid(M-1) \cdots(M-2 j)$. It then follows that
$n_{3}\left((M-1) \cdots(M-2 j) D^{j-1}\right) \geq n_{3}(D)(j-1)+1 \geq(j-1)+1=j \geq n_{3}((2 j+1)!)$
and hence $n_{3}(D M) \leq n_{3}\left(\binom{M}{2 j+1} D^{j}\right)$. This proves Equation (4.2) for $p=3$.
Therefore, we have proved Equation (4.2) for all $p \mid D$ and thus we have proved the lemma.

Lemma 5. Let D be a positive integer that is not a perfect square and $M \in \mathbb{N}$ be such that $p \mid D$ if $p \mid M$. If $\left(x_{0}, y_{0}\right) \in \mathbb{N}^{2}$ is a solution of $x^{2}-D y^{2}=1$ and

$$
\left(x_{0}+y_{0} \sqrt{D}\right)^{M}=x_{1}+y_{1} \sqrt{D}
$$

for some $x_{1}, y_{1} \in \mathbb{N}$, then $\operatorname{gcd}\left(x_{1}, D\right)=1$ and $y_{1}=M y_{0} y_{2}$ with

$$
\operatorname{gcd}\left(y_{2}, D\right)=\left\{\begin{array}{l}
3 \quad \text { if } 3 \nmid y_{0}, 3 \| D, \frac{D}{3} \equiv-1(\bmod 3), \text { and } 3 \mid M \\
1 \quad \text { otherwise }
\end{array}\right.
$$

Proof. Suppose $M \in \mathbb{N}$ such that $p \mid D$ if $p \mid M$. Then we have

$$
\begin{aligned}
& \left(x_{0}+y_{0} \sqrt{D}\right)^{M} \\
& =\sum_{j=0}^{M}\binom{M}{j} x_{0}^{M-j}\left(y_{0} \sqrt{D}\right)^{j} \\
& =\sum_{0 \leq j \leq M / 2}\binom{M}{2 j} x_{0}^{M-2 j} y_{0}^{2 j} D^{j}+\sum_{0 \leq j \leq(M-1) / 2}\binom{M}{2 j+1} x_{0}^{M-2 j-1}\left(y_{0} \sqrt{D}\right)^{2 j+1} \\
& =\sum_{0 \leq j \leq M / 2}\binom{M}{2 j} x_{0}^{M-2 j} y_{0}^{2 j} D^{j}+\sqrt{D} \sum_{0 \leq j \leq(M-1) / 2}\binom{M}{2 j+1} x_{0}^{M-2 j-1} y_{0}^{2 j+1} D^{j} \\
& :=x_{1}+y_{1} \sqrt{D} .
\end{aligned}
$$

It is known that $\left(x_{1}, y_{1}\right)$ is also a solution of $x^{2}-D y^{2}=1$. Thus, $\operatorname{gcd}\left(x_{1}, D\right)=1$. We now consider y_{1}. In view of Lemma 4, we can write

$$
\sum_{2 \leq j \leq(M-1) / 2}\binom{M}{2 j+1} x_{0}^{M-2 j-1} y_{0}^{2 j+1} D^{j}=D M y_{0} z
$$

for some $z \in \mathbb{N}$. Hence we have

$$
\begin{aligned}
y_{1} & =\sum_{0 \leq j \leq(M-1) / 2}\binom{M}{2 j+1} x_{0}^{M-2 j-1} y_{0}^{2 j+1} D^{j} \\
& =M x_{0}^{M-1} y_{0}+\binom{M}{3} x_{0}^{M-3} y_{0}^{3} D+D M y_{0} z \\
& =M y_{0}\left(x_{0}^{M-1}+\frac{(M-1)(M-2)}{6} y_{0}^{2} D x_{0}^{M-3}+D z\right)=M y_{0} y_{2}
\end{aligned}
$$

where

$$
y_{2}:=x_{0}^{M-1}+\frac{(M-1)(M-2)}{6} y_{0}^{2} D x_{0}^{M-3}+D z
$$

It remains to evaluate

$$
\begin{equation*}
\operatorname{gcd}\left(y_{2}, D\right)=\operatorname{gcd}\left(x_{0}^{M-1}+\frac{(M-1)(M-2)}{6} y_{0}^{2} D x_{0}^{M-3}, D\right) \tag{4.4}
\end{equation*}
$$

If $3 \nmid D$, then $3 \nmid M$ and $6 \mid(M-1)(M-2)$. Hence from Equation (4.4), we have $\operatorname{gcd}\left(y_{2}, D\right)=\operatorname{gcd}\left(x_{0}^{M-1}, D\right)=1$.

We now suppose $3 \mid D$.
If $3 \mid y_{0}$, then $6 \mid(M-1)(M-2) y_{0}^{2}$. Hence from Equation (4.4), we have $\operatorname{gcd}\left(y_{2}, D\right)=\operatorname{gcd}\left(x_{0}^{M-1}, D\right)=1$.

If $3 \nmid y_{0}$, then

$$
\begin{aligned}
\operatorname{gcd}\left(y_{2}, D\right) & =\operatorname{gcd}\left(x_{0}^{M-1}+\frac{(M-1)(M-2)}{2} y_{0}^{2}\left(\frac{D}{3}\right) x_{0}^{M-3}, D\right) \\
& =\operatorname{gcd}\left(1+\frac{(M-1)(M-2)}{2} y_{0}^{2}\left(\frac{D}{3}\right), D\right)
\end{aligned}
$$

because $\operatorname{gcd}\left(x_{0}, D\right)=1$ and $x_{0}^{2}-D y_{0}^{2}=1$. Let p be a prime such that $p \mid D$ and $p \neq 3$. Then, $p \left\lvert\, \frac{D}{3}\right.$ and so

$$
p \nmid 1+\frac{(M-1)(M-2)}{2} y_{0}^{2}\left(\frac{D}{3}\right) .
$$

Hence the only possible prime divisor of $\operatorname{gcd}\left(1+\frac{(M-1)(M-2)}{2} y_{0}^{2}\left(\frac{D}{3}\right), D\right)$ is 3 .
If $3^{2} \mid D$, then $3 \left\lvert\, \frac{D}{3}\right.$ and hence $3 \nmid 1+\frac{(M-1)(M-2)}{2} y_{0}^{2}\left(\frac{D}{3}\right)$. It follows that

$$
\operatorname{gcd}\left(y_{2}, D\right)=\operatorname{gcd}\left(1+\frac{(M-1)(M-2)}{2} y_{0}^{2}\left(\frac{D}{3}\right), D\right)=1
$$

If $3 \| D$, then $\operatorname{gcd}\left(1+\frac{(M-1)(M-2)}{2} y_{0}^{2}\left(\frac{D}{3}\right), D\right)=1$ or 3 . Also we have

$$
\operatorname{gcd}\left(1+\frac{(M-1)(M-2)}{2} y_{0}^{2}\left(\frac{D}{3}\right), D\right)=3
$$

if and only if

$$
1+\frac{(M-1)(M-2)}{2} y_{0}^{2}\left(\frac{D}{3}\right) \equiv 0(\bmod 3)
$$

if and only if

$$
\frac{(M-1)(M-2)}{2}\left(\frac{D}{3}\right) \equiv 2(\bmod 3)
$$

because $3 \nmid y_{0}$ and hence $y_{0}^{2} \equiv 1(\bmod 3)$. Since $3 \nmid \frac{D}{3}$, we have that $\frac{D}{3} \equiv \pm 1(\bmod 3)$. If $\frac{D}{3} \equiv 1(\bmod 3)$, then

$$
\frac{(M-1)(M-2)}{2}\left(\frac{D}{3}\right) \equiv 2(\bmod 3)
$$

if and only if $(M-1)(M-2) \equiv 1(\bmod 3)$. However, $(M-1)(M-2) \not \equiv 1(\bmod 3)$ for any $M \in \mathbb{Z}$. So if $\frac{D}{3} \equiv 1(\bmod 3)$, then $\operatorname{gcd}\left(y_{2}, D\right)=1$ by Equation (4.3).

If $\frac{D}{3} \equiv-1(\bmod 3)$, then $\operatorname{gcd}\left(1+\frac{(M-1)(M-2)}{2} y_{0}^{2}\left(\frac{D}{3}\right), D\right)=3$ if and only if $\frac{(M-1)(M-2)}{2} \equiv 1(\bmod 3)$ if and only if $3 \mid M$. We conclude that

$$
\operatorname{gcd}\left(y_{2}, D\right)= \begin{cases}3 & \text { if } 3 \nmid y_{0}, 3 \| D, \frac{D}{3} \equiv-1(\bmod 3), \text { and } 3 \mid M \\ 1 & \text { otherwise }\end{cases}
$$

Theorem 5. Let D be a positive integer that is not a perfect square and let $x_{0}+$ $y_{0} \sqrt{D}$ be the fundamental solution of $x^{2}-D y^{2}=1$. Suppose $D^{\ell_{0}} \| y_{0}$ for some $\ell_{0} \geq 0$ and $\ell_{1}:=n_{3}\left(3 x_{0}^{2} y_{0}+D y_{0}^{3}\right)$. We have three cases:
(i) In the case that $0 \leq \ell \leq \ell_{0}$, we have that $\left(x_{0}, y_{0} D^{-\ell}\right)$ is the fundamental solution of $x^{2}-D^{2 \ell+1} y=1$.
(ii) In the case that $\ell_{0}<\ell$ and

$$
\begin{equation*}
3 \nmid y_{0}, 3 \| D, \text { and } \frac{D}{3} \equiv-1(\bmod 3) \tag{4.5}
\end{equation*}
$$

we have that if

$$
\left(x_{0}+y_{0} \sqrt{D}\right)^{\frac{D^{\ell}}{3^{\min \left\{\ell, \ell_{1}\right\}-1} \operatorname{gcd}\left(D^{\ell}, y_{0}\right)}}=x_{1}+y_{1} \sqrt{D}
$$

then $n_{3}\left(y_{1}\right)=\max \left\{\ell, \ell_{1}\right\}, D^{\ell} \| y_{1}$, and $\left(x_{1}, y_{1} D^{-\ell}\right)$ is the fundamental solution of $x^{2}-D^{2 \ell+1} y^{2}=1$.
(iii) In the case that $\ell_{0}<\ell$ and Equation (4.5) does not hold, we have that if

$$
\left(x_{0}+y_{0} \sqrt{D}\right)^{\frac{D^{\ell}}{\operatorname{gcd}\left(D^{\ell}, y_{0}\right)}}=x_{1}+y_{1} \sqrt{D}
$$

then $D^{\ell} \| y_{1}$ and $\left(x_{1}, y_{1} D^{-\ell}\right)$ is the fundamental solution of $x^{2}-D^{2 \ell+1} y^{2}=1$.
Proof. Suppose $x_{0}+y_{0} \sqrt{D}$ is the fundamental solution of $x^{2}-D y^{2}=1$ and $D^{\ell_{0}} \| y_{0}$. We write $y_{0}=D^{\ell_{0}} a b$ for some $a, b \in \mathbb{N}$ with $\operatorname{gcd}(b, D)=1$ and $p \mid D$ for any $p \mid a$.
(i) For $0 \leq \ell \leq \ell_{0}$, since

$$
1=x_{0}^{2}-D y_{0}^{2}=x_{0}^{2}-D^{2 \ell+1}\left(D^{\ell_{0}-\ell} a b\right)^{2}
$$

so $\left(x_{0}, D^{\ell_{0}-\ell} a b\right)=\left(x_{0}, y_{0} D^{-\ell}\right) \in \mathbb{N}^{2}$ is a solution of $x^{2}-D^{2 \ell+1} y^{2}=1$. We claim that $\left(x_{0}, y_{0} D^{-\ell}\right)$ is the smallest such solution. Indeed, if $(s, t) \in \mathbb{N}^{2}$ is any solution of $x^{2}-D^{2 \ell+1} y^{2}=1$, then $\left(s, D^{\ell} t\right)$ is a solution of $x^{2}-D y^{2}=1$ and hence $s \geq x_{0}$
and $D^{\ell} t \geq y_{0}$ by the minimality of the fundamental solution. This implies that $t \geq y_{0} D^{-\ell}$. Thus, $\left(x_{0}, y_{0} D^{-\ell}\right)$ is the minimal solution and hence the fundamental solution of $x^{2}-D^{2 \ell+1} y^{2}=1$. This proves part (i).
(ii) Now, we consider the case in which $\ell>\ell_{0}$ and Equation (4.5) holds. We write

$$
\left(x_{0}+y_{0} \sqrt{D}\right)^{\frac{D^{\ell}}{3^{\min \left\{\ell, \ell_{1}\right\}-1} \operatorname{gcd}\left(D^{\ell}, y_{0}\right)}}=x_{1}+y_{1} \sqrt{D}
$$

Note that $\left(x_{1}, y_{1}\right)$ is a solution of $x^{2}-D y^{2}=1$. By Lemma 3, we can write

$$
\left(x_{0}+y_{0} \sqrt{D}\right)^{3^{\ell-\min \left\{\ell, \ell_{1}\right\}+1}}=x_{0}^{\prime}+y_{0}^{\prime} \sqrt{D}
$$

with $n_{3}\left(y_{0}^{\prime}\right)=\ell-\min \left\{\ell, \ell_{1}\right\}+\ell_{1}=\max \left\{\ell, \ell_{1}\right\}$ and $y_{0}^{\prime}=3^{\max \left\{\ell, \ell_{1}\right\}} y_{0} z_{0}$ for some $z_{0} \in \mathbb{N}$ with $3 \nmid z_{0}$. It follows from this and Lemma 5 that

$$
\begin{align*}
& \left(x_{0}+y_{0} \sqrt{D}\right)^{\frac{D^{\ell}}{3^{\min \left\{\ell, \ell_{1}\right\}-1} \operatorname{gcd}\left(D^{\ell}, y_{0}\right)}} \\
= & \left(\left(x_{0}+y_{0} \sqrt{D}\right)^{3^{\ell-\min \left\{\ell, \ell_{1}\right\}+1}}\right)^{\frac{(D / 3)^{\ell}}{\operatorname{gcd}\left(D^{\ell}, y_{0}\right)}} \\
= & \left(x_{0}^{\prime}+y_{0}^{\prime} \sqrt{D}\right)^{\frac{(D / 3)^{\ell}}{\operatorname{gcd}\left(D^{\ell}, y_{0}\right)}}=x_{1}+y_{1} \sqrt{D} \tag{4.6}
\end{align*}
$$

with

$$
y_{1}=\frac{(D / 3)^{\ell}}{\operatorname{gcd}\left(D^{\ell}, y_{0}\right)} y_{0}^{\prime} y_{2}=\left(\frac{D}{3}\right)^{\ell} 3^{\max \left\{\ell, \ell_{1}\right\}}\left(\frac{y_{0}}{\operatorname{gcd}\left(D^{\ell}, y_{0}\right)}\right) z_{0} y_{2}
$$

so that $D^{\ell} \mid y_{1}$ and $n_{3}\left(y_{1}\right)=n_{3}\left(y_{0}^{\prime}\right)=\max \left\{\ell, \ell_{1}\right\}$. So, we have that $\left(x_{1}, y_{1} D^{-\ell}\right)$ is a solution of $x^{2}-D^{2 \ell+1} y^{2}=1$. We claim that $\left(x_{1}, y_{1} D^{-\ell}\right)$ is the fundamental solution of $x^{2}-D^{2 \ell+1} y^{2}=1$. Suppose (s, t) is the fundamental solution of $x^{2}-D^{2 \ell+1} y^{2}=1$. Then,

$$
x_{1}+y_{1} \sqrt{D}=\left(s+t D^{\ell} \sqrt{D}\right)^{N}
$$

for some $N \in \mathbb{N}$. On the other hand, $\left(s, t D^{\ell}\right) \in \mathbb{N}^{2}$ is a solution of $x^{2}-D y^{2}=1$, so

$$
\begin{equation*}
s+t D^{\ell} \sqrt{D}=\left(x_{0}+y_{0} \sqrt{D}\right)^{M} \tag{4.7}
\end{equation*}
$$

for some $M \in \mathbb{N}$. Therefore, we have

$$
\left(x_{0}+y_{0} \sqrt{D}\right)^{\frac{D^{\ell}}{3^{\min \left\{\ell, \ell_{1}\right\}-1} \operatorname{gcd}\left(D^{\ell}, y_{0}\right)}}=x_{1}+y_{1} \sqrt{D}=\left(s+t D^{\ell} \sqrt{D}\right)^{N}=\left(x_{0}+y_{0} \sqrt{D}\right)^{N M}
$$

We will show that $N=1$. Note that

$$
\begin{equation*}
M \left\lvert\, \frac{D^{\ell}}{3^{\min \left\{\ell, \ell_{1}\right\}-1} \operatorname{gcd}\left(D^{\ell}, y_{0}\right)} .\right. \tag{4.8}
\end{equation*}
$$

Using Equation (4.7) and Lemma 5, we have that $M y_{0} y_{2}=t D^{\ell}$. Again using Lemma 5 , if $3 \nmid M$, then $3 \nmid y_{0} y_{2}$ which contradicts $3 \mid t D^{\ell}$. So, we have that $3 \mid M$. Let M_{1} be such that $M=3^{n_{3}(M)} M_{1}$ and $3 \nmid M_{1}$. By Lemmas 3 and 5 , we have

$$
s+t D^{\ell} \sqrt{D}=\left(x_{0}+y_{0} \sqrt{D}\right)^{3^{n_{3}(M)} M_{1}}=(a+b \sqrt{D})^{M_{1}}
$$

with $t D^{\ell}=M_{1} a y_{2}^{\prime}$, where $n_{3}(a)=n_{3}(M)+\ell_{1}-1$ and $3 \nmid y_{2}^{\prime}$. Hence

$$
\begin{equation*}
n_{3}\left(M_{1} a y_{2}^{\prime}\right)=n_{3}(a)=n_{3}(M)+\ell_{1}-1 \geq n_{3}(D) \ell=\ell \tag{4.9}
\end{equation*}
$$

and furthermore

$$
n_{3}\left(\frac{D^{\ell}}{3^{\min \left\{\ell, \ell_{1}\right\}-1} \operatorname{gcd}\left(D^{\ell}, y_{0}\right)}\right)=\ell-\min \left\{\ell, \ell_{1}\right\}+1 \leq n_{3}(M)
$$

by Equation (4.9).
For primes $p \mid D$ with $p \neq 3$, we use $M y_{0} y_{2}=t D^{\ell}$ with $\operatorname{gcd}\left(y_{2}, D\right)=3$ from Equation (4.7) to get

$$
\begin{equation*}
n_{p}(M)+n_{p}\left(y_{0}\right) \geq n_{p}(D) \ell \tag{4.10}
\end{equation*}
$$

and furthermore

$$
\begin{aligned}
n_{p}\left(\frac{D^{\ell}}{3^{\min \left\{\ell, \ell_{1}\right\}-1} \operatorname{gcd}\left(D^{\ell}, y_{0}\right)}\right) & =n_{p}\left(\frac{D^{\ell}}{\operatorname{gcd}\left(D^{\ell}, y_{0}\right)}\right) \\
& =n_{p}(D) \ell-\min \left\{n_{p}(D) \ell, n_{p}\left(y_{0}\right)\right\} \\
& \leq n_{p}(M)
\end{aligned}
$$

by Equation (4.10). Therefore, we have shown that any prime power that divides $\frac{D^{\ell}}{3^{\min \left\{\ell, \ell_{1}\right\}-1} \operatorname{gcd}\left(D^{\ell}, y_{0}\right)}$ divides M. Together with Equation (4.8), we conclude that

$$
M=\frac{D^{\ell}}{3^{\min \left\{\ell, \ell_{1}\right\}-1} \operatorname{gcd}\left(D^{\ell}, y_{0}\right)}
$$

and hence $N=1$. Thus $\left(x_{1}, y_{1} D^{-\ell}\right)$ is the fundamental solution of $x^{2}-D^{2 \ell+1} y^{2}=1$.
(iii) Now, we consider the case in which $\ell>\ell_{0}$ and Equation (4.5) does not hold. We write

$$
\left(x_{0}+y_{0} \sqrt{D}\right)^{\frac{D^{\ell}}{\operatorname{gcd}\left(D^{\ell}, y_{0}\right)}}=x_{1}+y_{1} \sqrt{D}
$$

Note that $\left(x_{1}, y_{1}\right)$ is a solution of $x^{2}-D y^{2}=1$ and, by Lemma $5, D^{\ell} \mid y_{1}$. So, we have that $\left(x_{1}, y_{1} D^{-\ell}\right)$ is a solution of $x^{2}-D^{2 \ell+1} y^{2}=1$. We claim that $\left(x_{1}, y_{1} D^{-\ell}\right)$ is the fundamental solution of $x^{2}-D^{2 \ell+1} y^{2}=1$. Suppose (s, t) is the fundamental solution of $x^{2}-D^{2 \ell+1} y^{2}=1$. Then, as in case (ii), we have

$$
\left(x_{0}+y_{0} \sqrt{D}\right)^{\frac{D^{\ell}}{\operatorname{gcd}\left(D^{\ell}, y_{0}\right)}}=x_{1}+y_{1} \sqrt{D}=\left(s+t D^{\ell} \sqrt{D}\right)^{N}=\left(x_{0}+y_{0} \sqrt{D}\right)^{N M}
$$

for some $N, M \in \mathbb{N}$. Hence $\frac{D^{\ell}}{\operatorname{gcd}\left(D^{\ell}, y_{0}\right)}=N M$ and so $M \left\lvert\, \frac{D^{\ell}}{\operatorname{gcd}\left(D^{\ell}, y_{0}\right)}\right.$. Using Lemma 5, we may write $M y_{0} y_{2}=t D^{\ell}$ where $y_{2} \in \mathbb{N}$ with $\operatorname{gcd}\left(y_{2}, D\right)=1$. So, $M=\left(\frac{t}{y_{0} y_{2}}\right) D^{\ell}$. Since $\operatorname{gcd}\left(y_{2}, D\right)=1$, we must have that $\left.\frac{D^{\ell}}{\operatorname{gcd}\left(D^{\ell}, y_{0}\right)} \right\rvert\, M$. We conclude that $M=$ $\frac{D^{\ell}}{\operatorname{gcd}\left(D^{\ell}, y_{0}\right)}$, so $N=1$ and $\left(x_{1}, y_{1} D^{-\ell}\right)$ is the fundamental solution of $x^{2}-D^{2 \ell+1} y^{2}=$ 1. Additionally, we use Lemma 5 to get that $y_{1}=\frac{D^{\ell}}{\operatorname{gcd}\left(D^{\ell}, y_{0}\right)} y_{0} y_{2}=D^{\ell} \frac{y_{0}}{\operatorname{gcd}\left(D^{\ell}, y_{0}\right)} y_{2}$ with $\operatorname{gcd}\left(y_{2}, D\right)=1$, so $D \nmid \frac{y_{0}}{\operatorname{gcd}\left(D^{\ell}, y_{0}\right)} y_{2}$ and thus $D^{\ell} \| y_{1}$. This proves part (iii).

In view of Theorem 5, we are now able to evaluate $g\left(D^{2 \ell+1}\right)$ for sufficiently large ℓ.

Theorem 6. Let $D>2$ be a positive integer which is not a perfect square and $x_{0}+y_{0} \sqrt{D}$ is the fundamental solution of $x^{2}-D y^{2}=1$. If Equation (4.5) does not hold and $\ell \geq \max \left\{\ell_{0}+1, n_{p}\left(y_{0}\right) / n_{p}(D): p \mid D\right\}$, or Equation (4.5) holds and $\ell \geq \max \left\{\ell_{0}+1, \ell_{1}, n_{p}\left(y_{0}\right) / n_{p}(D): p \mid D, p \neq 3\right\}$ where ℓ_{0} and ℓ_{1} are defined as in Theorem 5, then we have

$$
g\left(D^{2 \ell+1}\right)= \begin{cases}D^{2 \ell+1} & \text { if order }\left(x_{0}, D\right)=1 \text { and } D \text { is odd } \\ 2 D^{2 \ell+1} & \text { if order }\left(x_{0}, D\right)=2 \text { and } D \text { is odd } \\ D^{2 \ell+1} & \text { if } D \text { is even } .\end{cases}
$$

Proof. Suppose Equation (4.5) does not hold and $\ell>\ell_{0}$. By Theorem 5,

$$
\left(x_{0}+y_{0} \sqrt{D}\right)^{\frac{D^{\ell}}{\operatorname{gcd}\left(D^{\ell}, y_{0}\right)}}
$$

is the fundamental solution of $x^{2}-D^{2 \ell+1} y^{2}=1$. In view of Lemma 5 , we have

$$
\left(x_{0}+y_{0} \sqrt{D}\right)^{\frac{D^{\ell}}{\operatorname{gcd}\left(D^{\ell}, y_{0}\right)}}=x_{1}+\frac{D^{\ell}}{\operatorname{gcd}\left(D^{\ell}, y_{0}\right)} y_{0} y_{2} \sqrt{D}=x_{1}+y_{1} \sqrt{D^{2 \ell+1}}
$$

with $y_{1}=\frac{y_{0} y_{2}}{\operatorname{gcd}\left(D^{\ell}, y_{0}\right)}$ and $\operatorname{gcd}\left(y_{2}, D\right)=1$. In view of Theorem 1 , we need to evaluate $\operatorname{order}\left(x_{1}, D^{2 \ell+1}\right)$ and $\frac{D^{2 \ell+1}}{\operatorname{gcd}\left(D^{2 \ell+1}, y_{1}\right)}$. So if $\ell \geq \frac{n_{p}\left(y_{0}\right)}{n_{p}(D)}$ for all $p \mid D$, then $\operatorname{gcd}\left(D^{\ell}, y_{0}\right)=$ y_{0} and $y_{1}=y_{2}$. Hence $\operatorname{gcd}\left(y_{1}, D\right)=1$. So $\frac{D^{2 \ell+1}}{\operatorname{gcd}\left(D^{2 \ell+1}, y_{1}\right)}=D^{2 \ell+1}$.

Suppose Equation (4.5) holds and $\ell>\ell_{0}$. By Theorem 5,

$$
\left(x_{0}+y_{0} \sqrt{D}\right)^{\frac{D^{\ell}}{3^{\min \left\{\ell, \ell_{1}\right\}-1} \operatorname{gcd}\left(D^{\ell}, y_{0}\right)}}
$$

is the fundamental solution of $x^{2}-D^{2 \ell+1} y^{2}=1$. In the proof of (ii) of Theorem 5 and Equation (4.6), we have

$$
\left(x_{0}+y_{0} \sqrt{D}\right)^{\frac{D^{\ell}}{3^{\min \left\{\ell, \ell_{1}\right\}-1} \operatorname{gcd}\left(D^{\ell}, y_{0}\right)}}=x_{1}+y_{1} \sqrt{D^{2 \ell+1}}
$$

with

$$
y_{1}=3^{\max \left\{\ell, \ell_{1}\right\}-\ell}\left(\frac{y_{0}}{\operatorname{gcd}\left(D^{\ell}, y_{0}\right)}\right) z_{0} y_{2}
$$

and $\operatorname{gcd}\left(D, z_{0} y_{2}\right)=1$. So, if $\ell \geq \max \left\{\ell_{1}, n_{p}\left(y_{0}\right) / n_{p}(D): p \mid D, p \neq 3\right\}$, then $\max \left\{\ell, \ell_{1}\right\}-\ell=0$ and $\operatorname{gcd}\left(D^{\ell}, y_{0}\right)=y_{0}$. Hence $y_{1}=z_{0} y_{2}$ and $\operatorname{gcd}\left(D^{2 \ell+1}, y_{1}\right)=1$. It follows that $\frac{D^{2 \ell+1}}{\operatorname{gcd}\left(D^{2 \ell+1}, y_{1}\right)}=D^{2 \ell+1}$.

We now consider $\operatorname{order}\left(x_{1}, D^{2 \ell+1}\right)$. If D is odd, then we claim that $\operatorname{order}\left(x_{1}\right.$, $\left.D^{2 \ell+1}\right)=\operatorname{order}\left(x_{0}, D\right)$, equivalently, $x_{1} \equiv 1\left(\bmod D^{2 \ell+1}\right)$ if and only if $x_{0} \equiv$ $1(\bmod D)$. Indeed, if $x_{1} \equiv 1\left(\bmod D^{2 \ell+1}\right)$, then by Theorem 3 (ii) we have $x^{2}-D^{2 \ell+1} y^{2}=2$ is solvable. Thus $x^{2}-D y^{2}=2$ is also solvable and hence $x_{0} \equiv 1(\bmod D)$. Conversely, suppose $x_{0} \equiv 1(\bmod D)$. Since from the proof of Lemma 5, we have

$$
x_{1}=\sum_{0 \leq j \leq M / 2}\binom{M}{2 j} x_{0}^{M-2 j} y_{0}^{2 j} D^{j} \equiv x_{0}^{M}(\bmod D)
$$

with $M=\frac{D^{\ell}}{\operatorname{gcd}\left(D^{\ell}, y_{0}\right)}$ or $M=\frac{D^{\ell}}{3^{\min \left\{\ell, \ell_{1}\right\}-1} \operatorname{gcd}\left(D^{\ell}, y_{0}\right)}$, so $x_{1} \equiv 1(\bmod D)$. Note that x_{1} is a solution of the congruence equation $x^{2} \equiv 1\left(\bmod D^{2 \ell+1}\right)$. For any odd prime p such that $p^{r} \| D, x_{1}$ is a solution of the congruence equation $x^{2} \equiv 1\left(\bmod p^{r(2 \ell+1)}\right)$ and $x \equiv 1\left(\bmod p^{r}\right)$. In view of Theorem 5.30 of [4], we can uniquely lift x_{1} from a solution of $x^{2} \equiv 1\left(\bmod p^{r}\right)$ to a solution a of

$$
\left\{\begin{array}{l}
x^{2} \equiv 1\left(\bmod p^{r+1}\right) \tag{4.11}\\
x \equiv 1\left(\bmod p^{r}\right)
\end{array}\right.
$$

Thus, $a \equiv 1\left(\bmod p^{r+1}\right)$. Since x_{1} is also a solution of the equations in Equation (4.11), we must also have that $x_{1} \equiv 1\left(\bmod p^{r+1}\right)$. Inductively, $x_{1} \equiv 1\left(\bmod p^{r(2 \ell+1)}\right)$. By the Chinese remainder theorem, $x_{1} \equiv 1\left(\bmod D^{2 \ell+1}\right)$. This proves the claim.

Suppose D is even. Since $\ell \geq 1$, we have that $x^{2}-D^{2 \ell+1} y^{2}=2$ is not solvable by Lemma 2 because $D \neq 2 d$ with odd d. Hence $x_{1} \not \equiv 1\left(\bmod D^{2 \ell+1}\right)$ and so $\operatorname{order}\left(x_{1}, D^{2 \ell+1}\right)=2$.

Therefore

$$
\begin{aligned}
g\left(D^{2 \ell+1}\right) & =\operatorname{lcm}\left(\operatorname{order}\left(x_{1}, D^{2 \ell+1}\right), \frac{D^{2 \ell+1}}{\operatorname{gcd}\left(D^{2 \ell+1}, y_{1}\right)}\right) \\
& = \begin{cases}\operatorname{lcm}\left(\operatorname{order}\left(x_{0}, D\right), D^{2 \ell+1}\right) & \text { if } D \text { is odd } \\
\operatorname{lcm}\left(2, D^{2 \ell+1}\right) & \text { if } D \text { is even }\end{cases} \\
& = \begin{cases}D^{2 \ell+1} & \text { if } \operatorname{order}\left(x_{0}, D\right)=1 \text { and } D \text { is odd } \\
2 D^{2 \ell+1} & \text { if } \operatorname{order}\left(x_{0}, D\right)=2 \text { and } D \text { is odd } \\
D^{2 \ell+1} & \text { if } D \text { is even. }\end{cases}
\end{aligned}
$$

This completes the proof of the theorem.

Corollary 4. Let p be an odd prime. If $p^{\ell_{0}} \| y_{0}$, then

$$
g\left(p^{2 \ell+1}\right)= \begin{cases}p^{2 \ell+1-\min \left\{\ell_{0}-\ell, 2 \ell+1\right\}} & \text { if } p \equiv 7(\bmod 8) \\ 2 p^{2 \ell+1-\min \left\{\ell_{0}-\ell, 2 \ell+1\right\}} & \text { if } p \not \equiv 7(\bmod 8)\end{cases}
$$

for $0 \leq \ell \leq \ell_{0}$. For $\ell>\ell_{0}$, we have

$$
g\left(p^{2 \ell+1}\right)= \begin{cases}p^{2 \ell+1} & \text { if } p \equiv 7(\bmod 8) \\ 2 p^{2 \ell+1} & \text { if } p \not \equiv 7(\bmod 8)\end{cases}
$$

In many of the proofs found in this section, we considered the binomial expansion of

$$
\left(x_{0}+y_{0} \sqrt{D}\right)^{n}=x_{n}+y_{n} \sqrt{D}
$$

for various $n \geq 1$ in order to establish congruence properties for x_{n} and y_{n} modulo D. We now touch upon a potential alternative method to obtain the same results. We define

$$
x_{-1}=2, \quad y_{-1}=0, \quad u_{n}=\frac{y_{n}}{y_{0}}, \quad v_{n}=2 x_{n}
$$

It is known that x_{n}, y_{n}, u_{n}, and v_{n} are Lucas sequences, satisfying

$$
\sigma_{n}=2 x_{1} \sigma_{n-1}-\sigma_{n-2}
$$

for all $n>0$, where σ is any of x, y, u, v. There are many divisibility properties known about Lucas sequences. For some of the many identities known for $x_{n}, y_{n}, u_{n}, v_{n}$, see [10].

For certain D, perhaps it is possible to determine $\operatorname{gcd}\left(y_{0}, D\right)$, thus simplifying the formula for $g(D)$ given in Theorem 1. Of course, a proof of the AAC and Mordell conjectures would resolve the case for prime D. A related notion is the rank of apparition of k in $\left\{y_{n}\right\}$, which is to say the smallest n such that $k \mid y_{n}$, around which there is much literature. In the same vein, we have the following result due to Lehmer (Theorem 7 in [10] and Theorem 2.2 in [11]):

$$
\text { Let } p \mid D \text { be prime. Then } p \nmid y_{0} \text { if and only if } \prod_{i=0}^{p-2} y_{i} \equiv-\left(\frac{x_{0}}{p}\right)(\bmod p) .
$$

This is a potentially useful result for proving more explicit versions of Theorem 1 for certain D.

References

[1] T. Agoh, Congruences related to the Ankeny-Artin-Chowla Conjecture, Integers 16 (2016), \#A12.
[2] S. Alaca and K. Williams, Introductory Algebraic Number Theory, 1st edition, Cambridge University Press, Cambridge, 2003.
[3] N. Ankeny, E. Artin and S. Chowla, The Class-Number of Real Quadratic Fields, Ann. of Math. 56 (1952), 479-493.
[4] T. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, New York, 1976.
[5] B. Beach, H.Williams and C. Zarnke, Some Computer Results on Units in Quadratic and Cubic Fields, Proc. 25th Summer Meeting Can. Math. Congress (1971), 609-648.
[6] J. Chahal and N. Priddis, Some Congruence Properties of Pell's Equations, Ann. Sci. Math. Québec 35 (2011), no. 2, 175-184.
[7] D. Chakraborty and A. Saikia, On a conjecture of Mordell, Rocky Mountain J. Math. 49 (2019), no. 8, 2545-2556.
[8] S. Choi, P. Lam and D. Tarnu, Gap Principle of Divisibility of Sequences of Polynomials, J. Number Theory 223 (2021), 153-167.
[9] J. Harrington and L. Jones, A New Condition equivalent to the Ankeny-Artin-Chowla Conjecture, J. Number Theory 192 (2018), 240-250.
[10] D.H. Lehmer, On the multiple solutions of the Pell equation, Ann. of Math. 30 (1928), 66-72.
[11] D.H. Lehmer, An extended theory of Lucas' functions, Ann. of Math. 31 (1930), 419-448.
[12] R. Mollin, Fundamental Number Theory with Applications, Chapman and Hall/CRC, 2nd edition, 2008.
[13] R. Mollin and A. Srinivasan, Pell Equations: Non-Principal Lagrange Criteria and Central Norms, Canad. Math. Bull. 55 (4) (2012), 774-782.
[14] R. Mollin and A. Srinivasan, A Note on the Negative Pell Equation, International Journal of Algebra 4, (2010), no. 19, 919-922.
[15] L. Mordell, On a Pellian equation conjecture, Acta Arith. 6 (1960), 137-144.
[16] L. Mordell, On a Pellian equation conjecture II, Journal of London Math. Soc. 36 (1961), 282-288.
[17] O. Perron, Die Lehre von den Kettenbrüchen, 3rd edition, B.G. Teubner, Leipzig, 1913.
[18] A. Van Der Poorten, H. te Riele and H. Williams, Computer Verification of the Ankeny-ArtinChowla Conjecture for all Primes less than 100000000000, Math. Comp. 70 (2001), 1311-1328.
[19] A. Van Der Poorten, H. te Riele and H. Williams, Corrigenda and Addition to "Computer Verification of the Ankeny-Artin-Chowla Conjecture For All Primes Less Than 100000000000", Math. Comp. 72 (2003), 521-523.
[20] H. Yokoi, Solvability of the Diopjantine Equation $x^{2}-D y^{2}= \pm 2$ and New Invariants for Real Quadratic Fields, Nagoya Math. J. 134 (1994), 137-149.

D	Fundamental Solution Order	$\operatorname{order}\left(x_{0}, D\right)$	$g(D)$
3	$2+\sqrt{3}$	2	6
5	$9+4 \sqrt{5}$	2	10
11	$10+3 \sqrt{11}$	2	22
13	$649+180 \sqrt{13}$	2	26
15	$4+\sqrt{4.6}$	2	30
17	$33+8 \sqrt{17}$	2	34
19	$170+39 \sqrt{4.7}$	2	38
27	$26+5 \sqrt{27}$	2	54
29	$9801+1820 \sqrt{29}$	2	58
33	$23+4 \sqrt{33}$	2	66
35	$6+\sqrt{35}$	2	70
37	$73+12 \sqrt{37}$	2	74
39	$25+4 \sqrt{39}$	2	78
41	$2049+320 \sqrt{41}$	2	82
43	$3482+531 \sqrt{43}$	2	86
51	$50+7 \sqrt{51}$	2	102
53	$66249+9100 \sqrt{53}$	2	106
55	$89+12 \sqrt{55}$	2	110
57	$151+20 \sqrt{57}$	2	114
59	$530+69 \sqrt{59}$	2	118
61	$1766319049+226153980 \sqrt{61}$	2	122
63	$8+\sqrt{63}$	2	126
65	$129+16 \sqrt{65}$	2	130
67	$8842+5967 \sqrt{67}$	2	134
73	$2281249+267000 \sqrt{73}$	2	146
77	$351+40 \sqrt{77}$	2	154
83	$82+9 \sqrt{83}$	2	166
85	$285769+30996 \sqrt{85}$	2	170
89	$500001+53000 \sqrt{89}$	2	178
91	$1574+165 \sqrt{91}$	2	182
95	$39+4 \sqrt{95}$	2	190
97	$62809633+6377352 \sqrt{ } 97$	2	194
99	$10+\sqrt{99}$	2	198

Table 1: $3 \leq D \leq 100$, and D is not a perfect square and $g(D)=2 D$

D	Fundamental Solution Order	order $\left(x_{0}, D\right)$	$g(D)$
6	$5+2 \sqrt{6}$	2	6
7	$8+3 \sqrt{7}$	1	7
8	$3+\sqrt{8}$	2	8
10	$19+6 \sqrt{10}$	2	10
18	$17+4 \sqrt{4.6}$	2	18
22	$197+42 \sqrt{22}$	2	22
23	$24+5 \sqrt{23}$	1	23
24	$5+\sqrt{24}$	2	24
26	$51+10 \sqrt{26}$	2	26
30	$11+2 \sqrt{4.9}$	2	30
31	$1520+273 \sqrt{31}$	1	31
32	$17+3 \sqrt{32}$	2	32
38	$37+6 \sqrt{38}$	2	38
40	$19+3 \sqrt{40}$	2	40
42	$13+2 \sqrt{42}$	2	42
47	$48+7 \sqrt{47}$	1	47
48	$7+\sqrt{48}$	2	48
50	$99+14 \sqrt{50}$	2	50
58	$19603+2574 \sqrt{58}$	2	58
66	$65+8 \sqrt{66}$	2	66
71	$3480+413 \sqrt{71}$	1	71
74	$3699+430 \sqrt{74}$	2	74
79	$80+9 \sqrt{79}$	1	79
80	$9+\sqrt{80}$	2	80
82	$163+18 \sqrt{82}$	2	82
86	$10405+1122 \sqrt{86}$	2	86
88	$197+21 \sqrt{88}$	2	88
90	$19+2 \sqrt{90}$	2	90
96	$49+5 \sqrt{96}$	2	96

Table 2: $2 \leq D \leq 100$, and D is not a perfect square and $g(D)=D$

D	Fundamental Solution Order	$\operatorname{order}\left(x_{0}, D\right)$	$g(D)$
2	$3+2 \sqrt{2}$	1	1
12	$7+2 \sqrt{12}$	2	6
14	$15+4 \sqrt{14}$	1	7
20	$9+2 \sqrt{20}$	2	10
28	$127+24 \sqrt{28}$	2	14
34	$35+6 \sqrt{34}$	1	17
44	$199+30 \sqrt{44}$	2	22
52	$649+90 \sqrt{52}$	2	26
56	$15+2 \sqrt{56}$	2	28
60	$31+4 \sqrt{60}$	2	30
62	$63+8 \sqrt{62}$	1	31
68	$33+4 \sqrt{68}$	2	34
72	$17+2 \sqrt{72}$	2	36
76	$57799+6630 \sqrt{76}$	2	38
92	$1151+120 \sqrt{92}$	2	46
94	$2143295+221064 \sqrt{94}$	1	47
98	$99+10 \sqrt{98}$	1	49

Table 3: $2 \leq D \leq 100$, and D is not a perfect square and $g(D)=D / 2$

D	Fundamental Solution Order	$\operatorname{order}\left(x_{0}, D\right)$	$g(D)$
46	$24335+3588 \sqrt{46}$	1	1
54	$485+66 \sqrt{54}$	2	18
70	$251+30 \sqrt{70}$	2	14
78	$53+6 \sqrt{78}$	2	26
84	$55+6 \sqrt{84}$	2	14

Table 4: $2 \leq D \leq 100$, and D is not a perfect square and $g(D)<D / 2$

