THE ORDER OF THE FUNDAMENTAL SOLUTION OF $X^2 - DY^2 = 1$ IN $\mathbb{Z}[^{\sqrt{D}}]/(D)$

Stephen Choi
Department of Mathematics, Simon Fraser University, Burnaby, British Columbia, Canada
schola@sfu.ca

Daniel Tarnu
Department of Mathematics, Simon Fraser University, Burnaby, British Columbia, Canada
daniel_tarnu@sfu.ca

Received: 7/1/22, Accepted: 8/17/22, Published: 8/24/22

Abstract

Let D be a positive integer that is not a perfect square and $x_0 + y_0 \sqrt{D}$ be the fundamental solution of Pell’s equation $x^2 - Dy^2 = 1$. In this article, we study the multiplicative order of the fundamental solution in $\mathbb{Z}[^{\sqrt{D}}]/(D)$, which we denote by $g(D)$. Ultimately, we describe the fundamental solution of $x^2 - D^{2\ell+1}y^2 = 1$ in terms of x_0 and y_0 for $\ell \geq 0$, and use this to conclude that

$$g(D^{2\ell+1}) = \begin{cases}
D^{2\ell+1} & \text{if order}(x_0, D) = 1 \text{ and } D \text{ is odd}, \\
2D^{2\ell+1} & \text{if order}(x_0, D) = 2 \text{ and } D \text{ is odd}, \\
D^{2\ell+1} & \text{if } D \text{ is even}
\end{cases}$$

for sufficiently large ℓ.

1. Introduction

Consider Pell’s equation

$$x^2 - Dy^2 = 1 \quad (1.1)$$

where D is a positive integer that is not a perfect square. We consider the ring

$$\mathbb{Z}[\sqrt{D}] := \{x + y\sqrt{D} : x, y \in \mathbb{Z}\}.$$

We say that $s + t\sqrt{D} \in \mathbb{Z}[\sqrt{D}]$ or $(s, t) \in \mathbb{Z}^2$ is an integer solution (or simply solution) of Equation (1.1) if $s^2 - Dt^2 = 1$. Let $x_0 + y_0 \sqrt{D}$ be the fundamental solution of Pell’s Equation (1.1), i.e., $x_0 + y_0 \sqrt{D}$ is the smallest positive solution of
Equation (1.1). It is well-known that all the solutions of Equation (1.1) are given by
\[\{ \pm (x_0 \pm y_0 \sqrt{D})^\ell : \ell \in \mathbb{Z} \}. \]

Let \(m \geq 2 \) and \(\Phi_m \) be the reduction map from \(\mathbb{Z}[\sqrt{D}] \) to \(\mathbb{Z}[\sqrt{D}]/(m) \) such that
\[\Phi_m(x + y\sqrt{D}) = \overline{x} + \overline{y}\sqrt{D} \]
where \(\overline{x} \equiv x \pmod{m} \) and \(\overline{x} \in \{0, 1, \ldots, m-1\} \) and similarly with \(\overline{y} \).

Since \((x_0 + y_0\sqrt{D})(x_0 - y_0\sqrt{D}) = x_0^2 - Dy_0^2 = 1 \)
we have \((x_0 + y_0\sqrt{D})(x_0 - y_0\sqrt{D}) = 1 \) in \(\mathbb{Z}[\sqrt{D}]/(m) \). Hence \(\Phi_m(x_0 + y_0\sqrt{D}) \) is a unit in the finite ring \(\mathbb{Z}[\sqrt{D}]/(m) \). We call \(g_D(m) \) the multiplicative order of \(\Phi_m(x_0 + y_0\sqrt{D}) \) in the unit ring of \(\mathbb{Z}[\sqrt{D}]/(m) \). In this article, we are interested in studying \(g_m(D) \) in the case that \(m = D \) and denote \(g_D(D) \) by \(g(D) \). We will study and obtain an explicit formula for \(g(D) \).

The authors believe there is little literature on this notion of order besides [6]. In [6], Chahal and Priddis study the order of \(\Phi_m(G) \) in \(\text{GL}_2(\mathbb{Z}/m\mathbb{Z}) \) where \(G \) is the solution set for \(x^2 - Dy^2 = 1 \) realized as a group of 2 \(\times \) 2 matrices with integer entries. Their order is more general than ours. We only consider the special case that \(m = D \).

The order \(g_m(D) \) has some applications. In [8], we use \(g_k(2A) \) to find infinitely many solutions \((s,t) \in \mathbb{N}^2 \) of \(x^2 - ky^2 = 1 \) with \(s + t \equiv 1 \pmod{2A} \) and \(s + kt \equiv 1 \pmod{2A} \) where \(A \in \mathbb{N} \). This step is essential in the proof of the main theorem in [8]. The order \(g(D) \) is also useful in finding all solutions \((x,y) \) of the generalized Pell equation
\[x^2 - Dy^2 = k \]
satisfying the congruence conditions
\[x \equiv a \pmod{D} \quad \text{and} \quad y \equiv b \pmod{D} \]
where \(\text{gcd}(D,k) = 1 \). If \(u := x_0 + y_0\sqrt{D} \) is the fundamental solution of \(x^2 - Dy^2 = 1 \), then it is well-known that every solution \((x, y) \) of Equation (1.2) is in the form of
\[x + y\sqrt{D} = \pm(x' + y'\sqrt{D})(x_0 + y_0\sqrt{D})^\ell, \]
for \(\ell \in \mathbb{Z} \) and some solution \((x', y') \) of Equation (1.2) satisfying
\[|x'| \leq \frac{\sqrt{|k|}(\sqrt{u} + 1)}{2}, \quad |y'| \leq \frac{\sqrt{|k|}(\sqrt{u} + 1)}{2\sqrt{D}}. \]
We then find all of the finitely many solutions \((x_i, y_i), 1 \leq i \leq q \), of Equation (1.2) satisfying Equation (1.3) and Equation (1.4). If no such \((x_i, y_i) \) exist, then Equation (1.2) has no solution satisfying the congruence conditions Equation (1.3) as we show below.
Proposition 1. Let $x_i + y_i \sqrt{D}, 1 \leq i \leq q$, be the solutions of Equation (1.2) satisfying Equation (1.3) and Equation (1.4). The solutions of of the generalized Pell Equation (1.2) satisfying Equation (1.3) are

$$\pm (x_i \pm y_i \sqrt{D})(x_0 \pm y_0 \sqrt{D})^{ng(D)}, n \in \mathbb{Z}, 1 \leq i \leq q.$$

Proof. If (x, y) is a solution of Equation (1.2), we have $\gcd(x, D) = 1$ because $\gcd(k, D) = 1$. Note that if $x + y \sqrt{D} = (x' + y' \sqrt{D})(s + t \sqrt{D}) = (x's + y'tD) + (y's + x't)\sqrt{D}$ (1.5) then

$$\begin{cases} x \equiv x' \pmod{D}, \\ y \equiv y' \pmod{D}, \quad \text{if and only if} \quad \begin{cases} s \equiv 1 \pmod{D}, \\ t \equiv 0 \pmod{D}. \end{cases} \end{cases}$$

Indeed, if $s \equiv 1 \pmod{D}$ and $t \equiv 0 \pmod{D}$, then from Equation (1.5), we have $x \equiv x's \equiv x' \pmod{D}$ and $y \equiv y's \equiv y' \pmod{D}$. Conversely, if $x \equiv x' \pmod{D}$ and $y \equiv y' \pmod{D}$, then from Equation (1.5) again, we have $x \equiv xs + ytD \equiv xs \pmod{D}$. Thus $s \equiv 1 \pmod{D}$ because $\gcd(x, D) = 1$. Since $y = y's + x't \equiv y + xt \pmod{D}$, we have $xt \equiv 0 \pmod{D}$ and so $t \equiv 0 \pmod{D}$. Therefore, the solutions of Equation (1.2) satisfying Equation (1.3) are precisely

$$(x_i + y_i \sqrt{D})(x_0 + y_0 \sqrt{D})^{ng(D)}, n \in \mathbb{Z}. \quad \square$$

We begin by obtaining a formula for $g(D)$. We later discuss the Ankeny-Artin-Chowla and Mordell conjectures, which consider y_0 modulo D when D is prime. Afterwards, we establish some technical lemmas which allow us to prove Theorems 5 and 6. Theorems 5 and 6 are our main results, which, together with Theorem 4, tell us how the fundamental solutions of $x^2 - Dy^2 = 1$ can be constructed from the fundamental solutions of $x^2 - D^{2\ell+1}y^2 = 1$ and furthermore that

$$g(D^{2\ell+1}) = \begin{cases} 2D^{2\ell+1} & \text{if } \gcd(x_0, D) = 1 \text{ and } D \text{ is odd}, \\ 2D^{2\ell+1} & \text{if } \gcd(x_0, D) = 2 \text{ and } D \text{ is odd}, \\ D^{2\ell+1} & \text{if } D \text{ is even} \end{cases}$$

for sufficiently large ℓ.

2. Formula for $g(D)$

In this section, we derive a formula for $g(D)$ in terms of the fundamental solution $x_0 + y_0 \sqrt{D}$.
Theorem 1. Suppose D is a positive integer that is not a perfect square and $x_0 + y_0 \sqrt{D}$ is the fundamental solution of $x^2 - Dy^2 = 1$. Then

$$g(D) = \text{lcm} \left(\text{order}(x_0, D), \frac{D}{\gcd(y_0, D)} \right)$$

(2.1)

where order(x_0, D) is the multiplicative order of x_0 in $\mathbb{Z}/D\mathbb{Z}$. In particular, order$(x_0, D) = 1$ if $x_0 \equiv 1 \pmod{D}$ and order$(x_0, D) = 2$ if $x_0 \not\equiv 1 \pmod{D}$.

Proof. We first note that

$$(x_0 + y_0 \sqrt{D})^\ell = \sum_{k=0}^\ell \binom{\ell}{k} x_0^{\ell-k} y_0^k D^{k/2}$$

$$= \sum_{0 \leq 2k \leq \ell} \binom{\ell}{2k} x_0^{\ell-2k} y_0^{2k} D^k + \sqrt{D} \sum_{0 \leq 2k+1 \leq \ell} \binom{\ell}{2k+1} x_0^{\ell-2k-1} y_0^{2k+1} D^k$$

$$= \left(\frac{\ell}{2(0)} \right) x_0^\ell + \sqrt{D} \left(\frac{\ell}{2(0) + 1} \right) x_0^{\ell-1} y_0 \pmod{D}$$

$$= x_0^\ell + \ell x_0^{\ell-1} y_0 \sqrt{D}.$$

So if $(x_0 + y_0 \sqrt{D})^\ell = 1$ in $(\mathbb{Z}/D\mathbb{Z})[\sqrt{D}]$, then $x_0^\ell \equiv 1 \pmod{D}$ and $\ell x_0^{\ell-1} y_0 \equiv 0 \pmod{D}$. This implies that $\ell y_0 \equiv 0 \pmod{D}$ and hence $\frac{D}{\gcd(y_0, D)} | \ell$. So

$$\text{lcm} \left(\text{order}(x_0, D), \frac{D}{\gcd(y_0, D)} \right) | \ell.$$

Therefore,

$$g(D) = \text{lcm} \left(\text{order}(x_0, D), \frac{D}{\gcd(y_0, D)} \right).$$

This proves Equation (2.1). The theorem now follows immediately from the fact that $x_0^2 \equiv 1 \pmod{D}$.

The usual way to find the fundamental solution $x_0 + y_0 \sqrt{D}$ of $x^2 - Dy^2 = 1$ is using the continued fraction expansion of \sqrt{D}. We state some well-known properties of continued fractions and the fundamental solutions of \sqrt{D} in next lemma.

Lemma 1. Let D be a positive integer that is not a perfect square. Suppose the continued fraction of \sqrt{D} is $[a_0, a_1, \ldots, a_\ell]$. Then we have

(a) $a_0 = \lfloor \sqrt{D} \rfloor$ and $a_\ell = 2a_0$;

(b) $a_1, \ldots, a_{\ell-1}$ is a palindrome, i.e., $a_j = a_{\ell-j}$ for $1 \leq j \leq \ell - 1$;

(c) Pell’s equation $x^2 - Dy^2 = 1$ has its fundamental solution $x_0 + y_0 \sqrt{D}$ satisfying

$$\frac{x_0}{y_0} = \begin{cases} [a_0, a_1, \ldots, a_\ell] & \text{if } \ell \text{ is even}, \\
[a_0, a_1, \ldots, a_{2\ell-1}] & \text{if } \ell \text{ is odd}. \end{cases}$$
(d) The negative Pell equation \(x^2 - Dy^2 = -1 \) has a solution if and only if \(\ell \) is odd; in this case, the fundamental solution \(x_1 + y_1\sqrt{D} \) satisfies
\[
\frac{x_1}{y_1} = [a_0, a_1, \ldots, a_{\ell-1}].
\]

Proof. See Theorem 5.15 of [12].

In view of Theorem 1, to compute \(g(D) \), we need to determine if \(x_0 \equiv 1 \pmod{D} \) and evaluate \(\gcd(y_0, D) \). Mollin and Srinivasan [13, 14] showed that the values of \(x_0 \pmod{D} \) are closely related to the solvability of the following three generalized Pell equations:
\[
\begin{align*}
x^2 - Dy^2 &= -1, \\
x^2 - Dy^2 &= 2, \\
x^2 - Dy^2 &= -2.
\end{align*}
\tag{2.2}
\]

We first mention a classical result of Perron.

Theorem 2 ([17]).

(i) If \(D > 2 \) is a positive integer that is not a perfect square, then at most one of the equations in Equation (2.2) is solvable.

(ii) If \(D = p^\ell \) or \(D = 2p^\ell \) for odd prime \(p \) and \(\ell \geq 1 \), then one and only one equation in Equation (2.2) is solvable.

Proof. Part (i) is Satz 21 of §26 in [17] and part (ii) is Satz 23 of §26 in [17].

For \(D = 2 \), all three equations of Equation (2.2) are clearly solvable.

The following result by Mollin and Srinivasan describes the relation between \(x_0 \pmod{D} \) and the solvability of the equations in Equation (2.2).

Theorem 3 ([13], [14]). Let \(D > 2 \) be a positive integer that is not a perfect square. Let \(x_0 + y_0\sqrt{D} \) be the fundamental solution of Pell’s equation
\[
x^2 - Dy^2 = 1.
\tag{2.3}
\]

Then, we have the following.

(i) The negative Pell equation \(x^2 - Dy^2 = -1 \) is solvable if and only if \(x_0 \equiv -1 \pmod{2D} \).

(ii) The equation
\[
x^2 - Dy^2 = 2
\tag{2.4}
\]
is solvable if and only if \(x_0 \equiv 1 \pmod{D} \).

(iii) The equation \(x^2 - Dy^2 = -2 \) is solvable if and only if \(x_0 \equiv -1 \pmod{D} \) and \(x_0 \not\equiv -1 \pmod{2D} \).
Proof. In view of Lemma 1(d), the negative Pell equation is solvable if and only if \(\ell \) is odd. Theorem 3 follows readily from Theorem 2 (i), Theorem 4.3 of [13] and Theorem 1.1 of [14].

Although Theorem 3 gives a necessary and sufficient condition for \(x_0 \equiv 1 \pmod{D} \), there is no simple condition on \(D \) for the solvability of Equation (2.4). The next few results give simple necessary conditions for the solvability of Equation (2.4).

Lemma 2. Suppose \(x^2 - Dy^2 = 2 \) is solvable. If \(p \) is an odd prime factor of \(D \), then \(p \equiv \pm 1 \pmod{8} \). Moreover, if \(D \) is odd, then \(D \equiv 7 \pmod{8} \) and if \(D \) is even, then \(D = 2d \) with odd \(d \) and \(D \equiv \pm 2 \pmod{8} \).

Proof. If \(p \) is an odd prime divisor of \(D \), then \(x^2 \equiv 2 \pmod{p} \) is solvable. This implies that \(p \equiv \pm 1 \pmod{8} \).

Suppose \(D \) is odd and \((x, y) \in \mathbb{N}^2 \) is a solution of Equation (2.4), then either \(x \equiv y \equiv 0 \pmod{2} \) or \(x \equiv y \equiv 1 \pmod{2} \). If \(x \equiv y \equiv 0 \pmod{2} \), then \(x^2 \equiv y^2 \equiv 0 \pmod{4} \). By Equation (2.4), this implies that \(4 \equiv 2 \pmod{4} \). This is impossible. Hence we must have \(x \equiv y \equiv 1 \pmod{2} \). Then \(x^2 \equiv y^2 \equiv 1 \pmod{8} \). Hence \(D \equiv 7 \pmod{8} \).

If \(D \) is even and \((x, y) \in \mathbb{N}^2 \) is a solution of Equation (2.4), we write \(D = 2d \). From Equation (2.4), we deduce that \(x \) is even. Hence \(x^2 \equiv 0 \pmod{4} \) and \(Dy^2 \equiv 2 \pmod{4} \). This implies that \(D \equiv 2 \pmod{4} \) and hence \(d \) and \(y \) are odd. Since \(x \) is even, we write \(x = 2x' \). Then we have \(2(x')^2 - dy^2 = 1 \). Since \(y \) is odd, we have that \(y^2 \equiv 1 \pmod{4} \). If \(x' \) is even, then \(d \equiv -1 \pmod{4} \) and so \(D \equiv -2 \pmod{8} \). If \(x' \) is odd, then \(d \equiv 1 \pmod{4} \) and so \(D \equiv 2 \pmod{8} \).

Corollary 1. If \(D \equiv 0, 1 \pmod{4} \), then \(x^2 - Dy^2 = 2 \) is insolvable and hence \(x_0 \not\equiv 1 \pmod{D} \) and \(\text{order}(x_0, D) = 2 \).

Corollary 2. Let \(p \) be an odd prime and \(\ell \geq 0 \). Suppose \(x_0 + y_0 \sqrt{p^{2\ell+1}} \) is the fundamental solution of \(x^2 - p^{2\ell+1}y^2 = 1 \). Then \(x_0 \equiv 1 \pmod{p^{2\ell+1}} \) if and only if \(p \equiv 7 \pmod{8} \).

Proof. We have that \(x_0 \equiv 1 \pmod{p^{2\ell+1}} \) if and only if \(x^2 - p^{2\ell+1}y^2 = 2 \) is solvable by Theorem 3. So, if \(x_0 \equiv 1 \pmod{p^{2\ell+1}} \), then \(p^{2\ell+1} \equiv 7 \pmod{8} \) and \(p \equiv \pm 1 \pmod{8} \) by Lemma 2 with \(D = p^{2\ell+1} \). Hence \(p \equiv 7 \pmod{8} \). Conversely, if \(p \equiv 7 \pmod{8} \), then \(-1 \) and \(-2 \) are quadratic non-residues modulo \(p \). Hence both \(x^2 - p^{2\ell+1}y^2 = -1 \) and \(x^2 - p^{2\ell+1}y^2 = -2 \) are insolvable. By Theorem 2 (ii) , \(x^2 - p^{2\ell+1}y^2 = 2 \) is solvable and hence \(x_0 \equiv 1 \pmod{p^{2\ell+1}} \).

If the continued fraction of \(\sqrt{D} \) is very simple, we can find out the fundamental solutions explicitly and compute \(g(D) \). For example, if \(\sqrt{D} = [m, \overline{2m}] \), then

\[
g(D) = \begin{cases}
2(1 + m^2) & \text{for even } m, \\
1 + m^2 & \text{for odd } m;
\end{cases}
\]
and if $\sqrt{D} = [mn, n, 2mn]$, $m, n \in \mathbb{N}, m \geq 2$, then

$$g(D) = \text{lcm} \left(2, \frac{m^2n^2 + m}{\gcd(2n, m^2n^2 + m)} \right).$$

The next theorem evaluates $g(2^{2\ell+1})$.

Theorem 4. For $\ell \geq 1$, we have

$$\left(3 + 2\sqrt{2}\right)^{2\ell-1} = x_0 + y_0\sqrt{2^{2\ell+1}}, \quad (2.5)$$

where $x_0 + y_0\sqrt{2^{2\ell+1}}$ is the fundamental solution of $x^2 - 2^{2\ell+1}y^2 = 1$ and $3 + 2\sqrt{2}$ is the fundamental solution of $x^2 - 2y^2 = 1$. Furthermore, we have that $g(2^{2\ell+1}) = 2^{2\ell+1}$.

Proof. We prove Equation (2.5) by induction on $\ell \geq 1$. For $\ell = 1$, we have

$$\left(3 + 2\sqrt{2}\right)^{2(1)-1} = 3 + 3\sqrt{2} = 3 + \sqrt{2(1)^2 + 1}$$

so $x_0 = 3$ and $y_0 = 1$. Thus Equation (2.5) is true for $\ell = 1$.

Suppose

$$\left(3 + 2\sqrt{2}\right)^{2\ell-1} = s + t\sqrt{2^{2\ell+1}} = s + t\ell \sqrt{2}$$

for some odd integers $s, t \in \mathbb{N}$. Then

$$\left(3 + 2\sqrt{2}\right)^{2\ell} = (s + t\ell \sqrt{2})^2 = (s^2 + 2^{2\ell+1}t^2) + st\sqrt{2^{2(\ell+1)}+1}.$$

so $x_0 = s^2 + 2^{2\ell+1}t^2$ and $y_0 = st$. Clearly, x_0 and y_0 are odd because s and t are odd. This proves Equation (2.5).

Clearly (x_0, y_0) in Equation (2.5) is a solution of $x^2 - 2^{2\ell+1}y^2 = 1$. If $(x_1, y_1) \in \mathbb{N}^2$ is the fundamental solution of $x^2 - 2^{2\ell+1}y^2 = 1$, then

$$x_0 + y_0\sqrt{2^{2\ell+1}} = (x_1 + y_1\sqrt{2^{2\ell+1}})^j$$

for some $j \in \mathbb{N}$. On the other hand, (x_1, y_12^ℓ) is also a solution of $x^2 - 2y^2 = 1$. Hence

$$x_1 + y_12^\ell \sqrt{2} = (3 + 2\sqrt{2})^i$$

for some $i \in \mathbb{N}$. Therefore, from Equation (2.5), we have

$$\left(3 + 2\sqrt{2}\right)^{2i-1} = x_0 + y_0\sqrt{2^{2i+1}} = (x_1 + y_1\sqrt{2^{2i+1}})^j = (3 + 2\sqrt{2})^{ij}.$$

So $ij = 2\ell-1$ and $i = 2^m$ for some $m \geq 0$. In view of Equation (2.5), we have

$$x_1 + y_1\sqrt{2^{2\ell+1}} = (3 + 2\sqrt{2})^i = (3 + 2\sqrt{2})^{2^m} = x_0 + y_0\sqrt{2^{2(2^m+1)+1}}$$

as desired.
with odd $x'_0, y'_0 \in \mathbb{N}$. Since both y_1 and y'_0 are odd, we have that $\ell = m + 1$. Therefore, $j = 1$ and we conclude that $x_0 + y_0\sqrt{2^{2\ell+1}} = x_1 + y_1\sqrt{2^{2\ell+1}}$ is the fundamental solution of $x^2 - 2^{2\ell+1}y^2 = 1$.

In view of Lemma 2, the equation $x^2 - 2^{2\ell+1}y^2 = 2$ is insolvable for $\ell \geq 1$. Hence $x_0 \not\equiv 1 \pmod{2^{2\ell+1}}$ and order $(x_0, 2^{2\ell+1}) = 1$. Therefore, we have

$$g(2^{2\ell+1}) = \text{lcm}\left(1, \frac{2^{2\ell+1}}{\gcd(y_0, 2^{2\ell+1})}\right) = 2^{2\ell+1}$$

for $\ell \geq 1$. This completes the proof. \hfill \Box

3. Ankeny, Artin and Chowla’s Conjecture and Mordell’s Conjecture

In this section, we study $g(p)$ for odd primes p. In view of Theorem 1, it is important to determine if $p | y_0$, where $x_0 + y_0\sqrt{p}$ is the fundamental solution of $x^2 - py^2 = 1$.

Based on numerical checking for the first 1000 primes p, we find that p does not divide y_0. We are led to conjecture the following.

Conjecture 1. Let p be an odd prime and $x_0 + y_0\sqrt{p}$ be the fundamental solution of $x^2 - py^2 = 1$. Then $p \nmid y_0$. Hence

$$g(p) = \begin{cases} p & \text{if } p \equiv 7 \pmod{8}, \\
2p & \text{if } p \not\equiv 7 \pmod{8}. \end{cases}$$

There is a famous conjecture of Ankeny, Artin and Chowla (AAC conjecture) (Conjecture 2 below) in [3] concerning the fundamental unit of the real quadratic field $\mathbb{Q}(\sqrt{p})$ where p is a prime congruent to 1 modulo 4. Mordell also made a conjecture (Conjecture 3 below) in [16] similar in nature to the AAC conjecture for a prime p congruent to 3 modulo 4. Both conjectures are still unsolved but are widely believed to be true. The AAC conjecture was first verified for all primes not exceeding 10^{11} by Van Der Poorten et al. in [18] and then for all primes not exceeding $2(10^{11})$ in [19]. In [15], Mordell proved the AAC conjecture for any regular prime p, i.e., when p does not divide the class number of the number field $\mathbb{Q}\left(e^{\frac{2\pi i}{p}}\right)$.

The conjecture of Mordell has also been verified for all primes not exceeding 10^7 in [5]. Both the AAC conjecture and Mordell’s conjecture are widely studied. For more discussion on these conjectures, we refer readers to [1], [7], and [9].

Conjecture 2 ([3]). Let p be a prime congruent to 1 modulo 4 and $\frac{1}{2}(a + b\sqrt{p})$ be the fundamental unit for $\mathbb{Q}(\sqrt{p})$ where $a, b \in \mathbb{N}$ and $a \equiv b \pmod{2}$. Then $p \nmid b$.

Conjecture 3 ([16]). Let p be a prime congruent to 3 modulo 4. Let $x_0 + y_0\sqrt{p}$ be the fundamental solution of $x^2 - py^2 = 1$. Then $p \nmid y_0$.
Conjecture 1 is exactly the same as Mordell’s conjecture for \(p \equiv 3 \pmod{4} \). By using the relation between the fundamental unit for \(\mathbb{Q}(\sqrt{p}) \) and the fundamental solutions of \(x^2 - py^2 = 1 \), it can be shown that Conjecture 1 is the same as the AAC Conjecture for \(p \equiv 1 \pmod{4} \).

Corollary 3. If Ankeny, Artin and Chowla’s conjecture and Mordell’s conjecture are true, then for any odd prime \(p \) and \(\ell \geq 0 \), we have

\[
g(p^{2\ell+1}) = \begin{cases}
p^{2\ell+1} & \text{if } p \equiv 7 \pmod{8}, \\
2p^{2\ell+1} & \text{if } p \not\equiv 7 \pmod{8}.
\end{cases}
\]

Proof. This follows readily from Corollary 4 and \(\gcd(y_0, p^{2\ell+1}) = 1 \). \(\Box \)

From our gathered data, we observe that for \(D = 2p \) we have \(\gcd(y_0, 2p) = 2 \) for all odd primes \(p \) except for \(p = 23 \). We present an analogue of the AAC and Mordell’s conjecture in which \(p \) is replaced by \(2p \).

Conjecture 4. Let \(p \) be an odd prime and \(x_0 + y_0\sqrt{2p} \) be the fundamental solution of \(x^2 - 2py^2 = 1 \). Then \(\gcd(y_0, 2p) = 2 \) except when \(p = 23 \). For \(p = 23 \), \(\gcd(y_0, 2(23)) = 46 \). Hence for \(p \neq 23 \)

\[
g(2p) = \begin{cases}
p & \text{if order } (x_0, 2p) = 1, \\
2p & \text{if order } (x_0, 2p) = 2.
\end{cases}
\]

4. The Order \(g(D^{2\ell+1}) \)

In this section, we study the order \(g(D^{2\ell+1}) \). In view of Theorem 1, we need to find the relation between the fundamental solutions \(x_0 + y_0\sqrt{D} \) and \(x_1 + y_1\sqrt{D^{2\ell+1}} \) of \(x^2 - Dy^2 = 1 \) and \(x^2 - D^{2\ell+1}y^2 = 1 \), respectively. Since

\[
1 = x_1^2 - D^{2\ell+1}y_1^2 = x_1^2 - D(D^\ell y_1)^2,
\]

we have that \(x_1 + y_1\sqrt{D^{2\ell+1}} \) is a power of \(x_0 + \sqrt{D}y_0 \). Theorem 5 below gives us the exact power of \(x_0 + \sqrt{D}y_0 \). The prime number 3 is special among all other prime numbers in this aspect. Although the values of \(g(p) \) are still undetermined (c.f. Ankeny, Artin and Chowla’s and Mordell’s conjectures), Theorem 6 below gives the values of \(g(D^{2\ell+1}) \) for sufficiently large \(\ell \).

For any prime number \(p \) and \(m \in \mathbb{N} \), we define the exact power of \(p \) dividing \(m \) by \(n_p(m) \), that is, \(p^{n_p(m)} \parallel m \). Here \(d^n \parallel m \) if \(d^n \mid m \) but \(d^{n+1} \nmid m \).

Lemma 3. Let \(D \) be a positive integer that is not a perfect square. Suppose \((x_0, y_0) \) is a solution of \(x^2 - Dy^2 = 1 \) such that \(3 \nmid y_0 \) and

\[
(x_0 + y_0\sqrt{D})^3 = x_0' + y_0'\sqrt{D}
\]
with \(\ell_1 := n_3(y_0') \geq 1 \) and \(y_0' = 3^{\ell_1}y_0z_0 \) for some \(z_0 \in \mathbb{N} \) with \(3 \nmid z_0 \) and \(\gcd(z_0, D) = 1 \). Then for any \(\ell \geq 1 \), we have

\[
(x_0 + y_0\sqrt{D})^{3^\ell} = x_1 + y_1\sqrt{D}
\]

with \(n_3(y_1) = \ell + \ell_1 - 1 \) and \(y_1 = 3^{\ell+\ell_1-1}y_0z_1 \) for some \(z_1 \in \mathbb{N} \) with \(3 \nmid z_1 \) and \(\gcd(z_1, D) = 1 \).

Proof. We prove the lemma by induction on \(\ell \geq 1 \). The case \(\ell = 1 \) is true by assumption. Suppose

\[
(x_0 + y_0\sqrt{D})^{3^\ell} = x_1 + y_1\sqrt{D}
\]

with \(n_3(y_1) = \ell + \ell_1 - 1 \) and \(y_1 = 3^{\ell+\ell_1-1}y_0z_1 \) for some \(z_1 \in \mathbb{N} \) with \(3 \nmid z_1 \) and \(\gcd(z_1, D) = 1 \). We see that

\[
(x_0 + y_0\sqrt{D})^{3^{\ell+1}} = (x_1 + y_1\sqrt{D})^3 = (x_1^3 + 3x_1y_1^2D) + (3x_1^2y_1 + y_1^3D)\sqrt{D}.
\]

Since \(x_1^2 - Dy_1^2 = 1 \) and \(3 \mid y_1 \), we must have that \(3 \nmid x_1 \). We conclude that

\[
n_3(x_1^3 + 3x_1y_1^2D) = 0
\]

and

\[
n_3(3x_1^2y_1 + y_1^3D) = n_3 \left(3y_1 \left(x_1^2 + \frac{y_1^2D}{3} \right) \right) = n_3(3y_1) = \ell + \ell_1.
\]

Moreover,

\[
3x_1^2y_1 + y_1^3D = y_1 \left(3x_1^2 + y_1^2D \right) = 3^{\ell+\ell_1}y_0z_1 \left(x_1^2 + 3^{2\ell+2\ell_1-3}y_0^2z_1^2D \right) = 3^{\ell+\ell_1}y_0z_1'
\]

for some \(z_1' \in \mathbb{N} \) and \(3 \nmid z_1' \) and \(\gcd(z_1', D) = 1 \) because \(\gcd(x_1, D) = 1 \). This proves the lemma.

Lemma 4. Let \(D \in \mathbb{N} \) and let \(M \in \mathbb{N} \) be such that \(p \mid D \) if \(p \mid M \). Then we have

\[
DM \mid \left(\frac{M}{2j+1} \right) D^j
\]

for any \(2 \leq j \leq (M-1)/2 \).

Proof. We first note that we can write

\[
\left(\frac{M}{2j+1} \right) D^j = (DM) \left(\frac{(M-1)\cdots(M-2j)D^{j-1}}{(2j+1)!} \right).
\] \hfill (4.1)

It suffices to show that

\[
n_p(DM) \leq n_p \left(\frac{M}{2j+1} \right) D^j
\] \hfill (4.2)
for all primes $p \mid D$. It is well-known that for any prime p and $m \in \mathbb{N}$, we have

$$n_p(m!) = \left\lfloor \frac{m}{p} \right\rfloor + \left\lfloor \frac{m}{p^2} \right\rfloor + \cdots \leq \frac{m}{p} + \frac{m}{p^2} + \cdots$$

$$= m \sum_{n=1}^{\infty} \frac{1}{p^n} = m \left(1 - \frac{1}{p} \right) = \frac{m}{p-1}$$

(4.3)

where $\lfloor \xi \rfloor$ is the greatest integer $\leq \xi$.

Let p be a prime dividing D. Consider first the case that $p \geq 5$. In view of Equation (4.3), we have $n_p((2j + 1)!) \leq \frac{2j+1}{p-1} \leq \frac{2j+1}{4}$ and hence $n_p((2j + 1)!) \leq \left\lfloor \frac{2j+1}{4} \right\rfloor$. This implies that for all $2 \leq j \leq (M-1)/2$ and $p \geq 5$, we have

$$n_p((2j + 1)!) \leq \frac{2j+1}{4} \leq \frac{j}{2} \leq j - 1 \leq n_p(D)(j - 1) = n_p(D^{j-1}).$$

In view of Equation (4.1), this shows Equation (4.2) for $p_k \geq 5$.

Now, suppose $p = 2$. Note that $5! = 2^3(15)$ and $7! = 2^4(315)$, so $n_2(5!) = 3$ and $n_2(7!) = 4$. Since $2^3 \mid (M - 1)(M - 2)(M - 3)(M - 4)$ and $2^4 \mid (M - 1)(M - 2)(M - 3)(M - 4)(M - 5)(M - 6)$, we use Equation (4.1) to conclude that

$$n_2(DM) \leq n_2 \left(\left(\frac{M}{2j+1} \right) D^j \right)$$

for $j = 2, 3$. For $j \geq 4$, among $M - 1, M - 2, \ldots, M - 2j$, there are j even numbers and at least two of them are divisible by 4 because there are more than 8 consecutive integers. Thus, $2^{j+2} \mid (M - 1) \cdots (M - 2j)$. Note also that, by Equation (4.3), $n_2((2j + 1)!) \leq \frac{2j+1}{2j+1} = 2j + 1$. It then follows that

$$n_2 \left((M - 1) \cdots (M - 2j) D^{j-1} \right) \geq n_2(D)(j - 1) + (j + 2) \geq j - 1 + j + 2 = 2j + 1 \geq n_2((2j + 1)!)$$

and hence $n_2(DM) \leq n_2 \left(\left(\frac{M}{2j+1} \right) D^j \right)$ for $j \geq 4$. This proves Equation (4.2) for $p = 2$.

Finally, suppose $p = 3$. Then, by Equation (4.3), $n_3((2j + 1)!) \leq \frac{2j+1}{3-1} = \frac{2j+1}{2} \leq j + \frac{1}{2}$ and so $n_3((2j + 1)!) \leq j$. For $j \geq 2$, among $M - 1, M - 2, \ldots, M - 2j$, there are more than 4 consecutive integers. Thus, $3 \mid (M - 1) \cdots (M - 2j)$. It then follows that

$$n_3 \left((M - 1) \cdots (M - 2j) D^{j-1} \right) \geq n_3(D)(j - 1) + 1 \geq (j - 1) + 1 = j \geq n_3((2j + 1)!)$$

and hence $n_3(DM) \leq n_3 \left(\left(\frac{M}{2j+1} \right) D^j \right)$. This proves Equation (4.2) for $p = 3$.

Therefore, we have proved Equation (4.2) for all $p \mid D$ and thus we have proved the lemma. □
Lemma 5. Let D be a positive integer that is not a perfect square and $M \in \mathbb{N}$ be such that $p \mid D$ if $p \mid M$. If $(x_0, y_0) \in \mathbb{N}^2$ is a solution of $x^2 - Dy^2 = 1$ and

$$(x_0 + y_0\sqrt{D})^M = x_1 + y_1\sqrt{D}$$

for some $x_1, y_1 \in \mathbb{N}$, then $\gcd(x_1, D) = 1$ and $y_1 = My_0y_2$ with

$$\gcd(y_2, D) = \begin{cases} 3 & \text{if } 3 \nmid y_0, 3 \nmid D, \frac{D}{3} \equiv -1 \pmod{3}, \text{ and } 3 \mid M, \\ 1 & \text{otherwise.} \end{cases}$$

Proof. Suppose $M \in \mathbb{N}$ such that $p \mid D$ if $p \mid M$. Then we have

$$(x_0 + y_0\sqrt{D})^M = \sum_{j=0}^{M} \binom{M}{j} x_0^{M-j}(y_0\sqrt{D})^j$$

$$= \sum_{0 \leq j \leq M/2} \binom{M}{2j} x_0^{M-2j} y_0^{2j} D^j + \sum_{0 \leq j \leq (M-1)/2} \binom{M}{2j+1} x_0^{M-2j-1}(y_0\sqrt{D})^{2j+1}$$

$$= \sum_{0 \leq j \leq M/2} \binom{M}{2j} x_0^{M-2j} y_0^{2j} D^j + \sqrt{D} \sum_{0 \leq j \leq (M-1)/2} \binom{M}{2j+1} x_0^{M-2j-1}(y_0\sqrt{D})^{2j+1}$$

$$:= x_1 + y_1\sqrt{D}.$$

It is known that (x_1, y_1) is also a solution of $x^2 - Dy^2 = 1$. Thus, $\gcd(x_1, D) = 1$. We now consider y_1. In view of Lemma 4, we can write

$$\sum_{2 \leq j \leq (M-1)/2} \binom{M}{2j+1} x_0^{M-2j-1} y_0^{2j+1} D^j = DMy_0z$$

for some $z \in \mathbb{N}$. Hence we have

$$y_1 = \sum_{0 \leq j \leq (M-1)/2} \binom{M}{2j+1} x_0^{M-2j-1} y_0^{2j+1} D^j$$

$$= Mx_0^{M-1} y_0 + \binom{M}{3} x_0^{M-3} y_0^3 D + DMy_0z$$

$$= My_0 \left(x_0^{M-1} + \frac{(M-1)(M-2)}{6} y_0^2 Dx_0^{M-3} + Dz \right) = My_0y_2$$

where

$$y_2 := x_0^{M-1} + \frac{(M-1)(M-2)}{6} y_0^2 Dx_0^{M-3} + Dz.$$

It remains to evaluate

$$\gcd(y_2, D) = \gcd \left(x_0^{M-1} + \frac{(M-1)(M-2)}{6} y_0^2 Dx_0^{M-3}, D \right).$$ \hspace{1cm} (4.4)$$
If $3
mid D$, then $3
mid M$ and $6 \mid (M-1)(M-2)$. Hence from Equation (4.4), we have $\gcd(y_2, D) = \gcd(x_0^{M-1}, D) = 1$.

We now suppose $3 \nmid D$.

If $3 \nmid y_0$, then $6 \mid (M-1)(M-2)y_0^2$. Hence from Equation (4.4), we have $\gcd(y_2, D) = \gcd(x_0^{M-1}, D) = 1$.

If $3 \nmid y_0$, then

$$\gcd(y_2, D) = \gcd\left(x_0^{M-1} + \frac{(M-1)(M-2)}{2} y_0^2 \left(\frac{D}{3}\right), x_0^{M-3}, D\right) = \gcd\left(1 + \frac{(M-1)(M-2)}{2} y_0^2 \left(\frac{D}{3}\right), D\right)$$

because $\gcd(x_0, D) = 1$ and $x_0^2 - Dy_0^2 = 1$. Let p be a prime such that $p \mid D$ and $p \neq 3$. Then, $p \mid \frac{D}{3}$ and so

$$p \nmid 1 + \frac{(M-1)(M-2)}{2} y_0^2 \left(\frac{D}{3}\right).$$

Hence the only possible prime divisor of $\gcd\left(1 + \frac{(M-1)(M-2)}{2} y_0^2 \left(\frac{D}{3}\right), D\right)$ is 3.

If $3^2 \mid D$, then $3 \mid \frac{D}{3}$ and hence $3 \nmid 1 + \frac{(M-1)(M-2)}{2} y_0^2 \left(\frac{D}{3}\right)$. It follows that $\gcd(y_2, D) = \gcd\left(1 + \frac{(M-1)(M-2)}{2} y_0^2 \left(\frac{D}{3}\right), D\right) = 1$.

If $3\|D$, then $\gcd\left(1 + \frac{(M-1)(M-2)}{2} y_0^2 \left(\frac{D}{3}\right), D\right) = 1$ or 3. Also we have

$$\gcd\left(1 + \frac{(M-1)(M-2)}{2} y_0^2 \left(\frac{D}{3}\right), D\right) = 3$$

if and only if

$$1 + \frac{(M-1)(M-2)}{2} y_0^2 \left(\frac{D}{3}\right) \equiv 0 \pmod{3}$$

if and only if

$$\frac{(M-1)(M-2)}{2} \left(\frac{D}{3}\right) \equiv 2 \pmod{3}$$

because $3 \nmid y_0$ and hence $y_0^2 \equiv 1 \pmod{3}$. Since $3 \mid \frac{D}{3}$, we have that $\frac{D}{3} \equiv \pm 1 \pmod{3}$.

If $\frac{D}{3} \equiv 1 \pmod{3}$, then

$$\frac{(M-1)(M-2)}{2} \left(\frac{D}{3}\right) \equiv 2 \pmod{3}$$

if and only if $(M-1)(M-2) \equiv 1 \pmod{3}$. However, $(M-1)(M-2) \neq 1 \pmod{3}$ for any $M \in \mathbb{Z}$. So if $\frac{D}{3} \equiv 1 \pmod{3}$, then $\gcd(y_2, D) = 1$ by Equation (4.3).
If $\frac{D}{3} \equiv -1 \pmod{3}$, then $\gcd\left(1 + \frac{(M-1)(M-2)}{2}y_0^2 \left(\frac{D}{3}\right), D\right) = 3$ if and only if $\frac{(M-1)(M-2)}{2} \equiv 1 \pmod{3}$ if and only if $3 \mid M$. We conclude that

$$\gcd(y_2, D) = \begin{cases} 3 & \text{if } 3 \nmid y_0, 3 \mid D, \frac{D}{3} \equiv -1 \pmod{3}, \text{and } 3 \mid M, \\ 1 & \text{otherwise.} \end{cases}$$

\[\square\]

Theorem 5. Let D be a positive integer that is not a perfect square and let $x_0 + y_0 \sqrt{D}$ be the fundamental solution of $x^2 - Dy^2 = 1$. Suppose $D^{\ell_0} \mid y_0$ for some $\ell_0 \geq 0$ and $\ell_1 := n_3 \left(3x_0^2 y_0 + Dy_0^3\right)$. We have three cases:

(i) In the case that $0 \leq \ell \leq \ell_0$, we have that $(x_0, y_0 D^{-\ell})$ is the fundamental solution of $x^2 - D^{2\ell+1}y = 1$.

(ii) In the case that $\ell_0 < \ell$ and

$$3 \nmid y_0, 3 \mid D, \text{ and } \frac{D}{3} \equiv -1 \pmod{3} \quad (4.5)$$

we have that if

$$(x_0 + y_0 \sqrt{D})^{3 \min\{\ell, \ell_1\} - 1 \gcd(D^\ell, y_0)} = x_1 + y_1 \sqrt{D}$$

then $n_3(y_1) = \max\{\ell, \ell_1\}$, $D^\ell \mid y_1$, and $(x_1, y_1 D^{-\ell})$ is the fundamental solution of $x^2 - D^{2\ell+1}y^2 = 1$.

(iii) In the case that $\ell_0 < \ell$ and Equation (4.5) does not hold, we have that if

$$(x_0 + y_0 \sqrt{D})^{\frac{D^\ell}{\gcd(D^\ell, y_0)}} = x_1 + y_1 \sqrt{D}$$

then $D^\ell \mid y_1$ and $(x_1, y_1 D^{-\ell})$ is the fundamental solution of $x^2 - D^{2\ell+1}y^2 = 1$.

Proof. Suppose $x_0 + y_0 \sqrt{D}$ is the fundamental solution of $x^2 - Dy^2 = 1$ and $D^{\ell_0} \mid y_0$. We write $y_0 = D^{\ell_0} ab$ for some $a, b \in \mathbb{N}$ with $\gcd(b, D) = 1$ and $p \mid D$ for any $p \mid a$.

(i) For $0 \leq \ell \leq \ell_0$, since

$$1 = x_0^2 - Dy_0^2 = x_0^2 - D^{2\ell+1}(D^{\ell_0-\ell} ab)^2$$

so $(x_0, D^{\ell_0-\ell} ab) = (x_0, y_0 D^{-\ell}) \in \mathbb{N}^2$ is a solution of $x^2 - D^{2\ell+1}y^2 = 1$. We claim that $(x_0, y_0 D^{-\ell})$ is the smallest such solution. Indeed, if $(s, t) \in \mathbb{N}^2$ is any solution of $x^2 - D^{2\ell+1}y^2 = 1$, then $(s, D^\ell t)$ is a solution of $x^2 - Dy^2 = 1$ and hence $s \geq x_0$.
We will show that N so that with z

Note that (N for some M with $\ell > \ell$. Thus, $(x_0, y_0 D^{-t})$ is the minimal solution and hence the fundamental solution of $x^2 - D^{2\ell+1} y^2 = 1$. This proves part (i).

(ii) Now, we consider the case in which $\ell > \ell_0$ and Equation (4.5) holds. We write

$$ (x_0 + y_0 \sqrt{D})^\frac{D^\ell}{\gcd(D^\ell, y_0)} = x_1 + y_1 \sqrt{D}. $$

Note that (x_1, y_1) is a solution of $x^2 - Dy^2 = 1$. By Lemma 3, we can write

$$ (x_0 + y_0 \sqrt{D})^{\ell - \min\{\ell, \ell_1\} + 1} = x_0' + y_0' \sqrt{D} $$

with $n_3(y_0) = \ell - \min\{\ell, \ell_1\} + \ell_1 = \max\{\ell, \ell_1\}$ and $y_0' = 3^{\max\{\ell, \ell_1\}} y_0 z_0$ for some $z_0 \in \mathbb{N}$ with $3 \nmid z_0$. It follows from this and Lemma 5 that

$$ (x_0 + y_0 \sqrt{D})^{\frac{D^\ell}{\gcd(D^\ell, y_0)}} = (x_0' + y_0' \sqrt{D})^{\frac{(D/3)^\ell}{\gcd(D^\ell, y_0)}} = x_1 + y_1 \sqrt{D} \quad (4.6) $$

with

$$ y_1 = \frac{(D/3)^\ell}{\gcd(D^\ell, y_0)} y_0' y_2 = \left(\frac{D}{3}\right)^\ell 3^{\max\{\ell, \ell_1\}} \left(\frac{y_0}{\gcd(D^\ell, y_0)}\right) z_0 y_2 $$

so that $D^\ell | y_1$ and $n_3(y_1) = n_3(y_0') = \max\{\ell, \ell_1\}$. So, we have that $(x_1, y_1 D^{-t})$ is a solution of $x^2 - D^{2\ell+1} y^2 = 1$. We claim that $(x_1, y_1 D^{-t})$ is the fundamental solution of $x^2 - D^{2\ell+1} y^2 = 1$. Suppose (s, t) is the fundamental solution of $x^2 - D^{2\ell+1} y^2 = 1$. Then,

$$ x_1 + y_1 \sqrt{D} = \left(s + t D^\ell \sqrt{D}\right)^N $$

for some $N \in \mathbb{N}$. On the other hand, $(s, t D^\ell) \in \mathbb{N}^2$ is a solution of $x^2 - Dy^2 = 1$, so

$$ s + t D^\ell \sqrt{D} = (x_0 + y_0 \sqrt{D})^M \quad (4.7) $$

for some $M \in \mathbb{N}$. Therefore, we have

$$ (x_0 + y_0 \sqrt{D})^{\frac{D^\ell}{\gcd(D^\ell, y_0)}} = x_1 + y_1 \sqrt{D} = \left(s + t D^\ell \sqrt{D}\right)^N = (x_0 + y_0 \sqrt{D})^{NM}. $$

We will show that $N = 1$. Note that

$$ M | \frac{D^\ell}{3^{\min\{\ell, \ell_1\} - 1} \gcd(D^\ell, y_0)}. \quad (4.8) $$
Using Equation (4.7) and Lemma 5, we have that \(M y_0 y_2 = t D^\ell \). Again using Lemma 5, if \(3 \mid M \), then \(3 \mid y_0 y_2 \) which contradicts \(3 \mid t D^\ell \). So, we have that \(3 \nmid M \).

Let \(M_1 \) be such that \(M = 3^{n_3(M)} M_1 \) and \(3 \nmid M_1 \). By Lemmas 3 and 5, we have
\[
s + t D^\ell \sqrt{D} = (x_0 + y_0 \sqrt{D})^{3^{n_3(M)} M_1} = (a + b \sqrt{D})^{M_1},
\]
with \(t D^\ell = M_1 a y_2' \), where \(n_3(a) = n_3(M) + \ell_1 - 1 \) and \(3 \nmid y_2' \). Hence
\[
n_3(M_1 a y_2') = n_3(a) = n_3(M) + \ell_1 - 1 \geq n_3(D) \ell = \ell
\]
and furthermore
\[
n_3\left(\frac{D^\ell}{3^{\min\{\ell, \ell_1\}} \gcd(D^\ell, y_0)} \right) = \ell - \min\{\ell, \ell_1\} + 1 \leq n_3(M)
\]
by Equation (4.9).

For primes \(p \mid D \) with \(p \neq 3 \), we use \(M y_0 y_2 = t D^\ell \) with \(\gcd(y_2, D) = 3 \) from Equation (4.7) to get
\[
n_p(M) + n_p(y_0) \geq n_p(D) \ell,
\]
and furthermore
\[
n_p\left(\frac{D^\ell}{3^{\min\{\ell, \ell_1\}} \gcd(D^\ell, y_0)} \right) = n_p\left(\frac{D^\ell}{\gcd(D^\ell, y_0)} \right) = n_p(D) \ell - \min\{n_p(D) \ell, n_p(y_0)\}
\leq n_p(M)
\]
by Equation (4.10). Therefore, we have shown that any prime power that divides \(\frac{D^\ell}{3^{\min\{\ell, \ell_1\}} \gcd(D^\ell, y_0)} \) divides \(M \). Together with Equation (4.8), we conclude that
\[
M = \frac{D^\ell}{3^{\min\{\ell, \ell_1\}} \gcd(D^\ell, y_0)}
\]
and hence \(N = 1 \). Thus \((x_1, y_1 D^{-\ell}) \) is the fundamental solution of \(x^2 - D^{2\ell+1} y^2 = 1 \).

(iii) Now, we consider the case in which \(\ell > \ell_0 \) and Equation (4.5) does not hold. We write
\[
(x_0 + y_0 \sqrt{D})^{\frac{D^\ell}{\gcd(D^\ell, y_0)}} = x_1 + y_1 \sqrt{D}.
\]
Note that \((x_1, y_1) \) is a solution of \(x^2 - D y^2 = 1 \) and, by Lemma 5, \(D^\ell \mid y_1 \). So, we have that \((x_1, y_1 D^{-\ell}) \) is a solution of \(x^2 - D^{2\ell+1} y^2 = 1 \). We claim that \((x_1, y_1 D^{-\ell}) \) is the fundamental solution of \(x^2 - D^{2\ell+1} y^2 = 1 \). Suppose \((s, t) \) is the fundamental solution of \(x^2 - D^{2\ell+1} y^2 = 1 \). Then, as in case (ii), we have
\[
(x_0 + y_0 \sqrt{D})^{\frac{D^\ell}{\gcd(D^\ell, y_0)}} = x_1 + y_1 \sqrt{D} = \left(s + t D^\ell \sqrt{D} \right)^N = (x_0 + y_0 \sqrt{D})^{N M}
\]
for some \(N, M \in \mathbb{N} \). Hence \(\frac{D^t}{\gcd(D^t,y_0)} = NM \) and so \(M \mid \frac{D^t}{\gcd(D^t,y_0)} \). Using Lemma 5, we may write \(M y_0 y_2 = t D^t \) where \(y_2 \in \mathbb{N} \) with \(\gcd(y_2, D) = 1 \). So, \(M = \left(\frac{t}{y_0 y_2} \right) D^t \).

Since \(\gcd(y_2, D) = 1 \), we must have that \(\frac{\gcd(D^t,y_0)}{\gcd(D^t,y_0)} \mid M \). We conclude that \(M = \frac{D^t}{\gcd(D^t,y_0)} \), so \(N = 1 \) and \((x_1, y_1 D^{-\ell}) \) is the fundamental solution of \(x^2 - D^{2\ell+1} y^2 = 1 \). Additionally, we use Lemma 5 to get that \(y_1 = \frac{D^t}{\gcd(D^t,y_0)} y_0 y_2 D^t \frac{y_0}{\gcd(D^t,y_0)} y_2 \) with \(\gcd(y_2, D) = 1 \), so \(D \mid \frac{y_0}{\gcd(D^t,y_0)} y_2 \) and thus \(D^t \mid y_1 \). This proves part (iii). □

In view of Theorem 5, we are now able to evaluate \(g(D^{2\ell+1}) \) for sufficiently large \(\ell \).

Theorem 6. Let \(D > 2 \) be a positive integer which is not a perfect square and \(x_0 + y_0 \sqrt{D} \) is the fundamental solution of \(x^2 - D^2 y^2 = 1 \). If Equation (4.5) does not hold and \(\ell \geq \max\{\ell_0 + 1, \lfloor n_p(y_0)/n_p(D) \rfloor : p \mid D\} \), or Equation (4.5) holds and \(\ell \geq \max\{\ell_0 + 1, \ell_1, \lfloor n_p(y_0)/n_p(D) \rfloor : p \mid D, p \neq 3\} \) where \(\ell_0 \) and \(\ell_1 \) are defined as in Theorem 5, then we have

\[
g(D^{2\ell+1}) = \begin{cases}
D^{2\ell+1} & \text{if order}(x_0, D) = 1 \text{ and } D \text{ is odd}, \\
2D^{2\ell+1} & \text{if order}(x_0, D) = 2 \text{ and } D \text{ is odd}, \\
D^{2\ell+1} & \text{if } D \text{ is even}.
\end{cases}
\]

Proof. Suppose Equation (4.5) does not hold and \(\ell > \ell_0 \). By Theorem 5,

\[
\left(x_0 + y_0 \sqrt{D}\right)^{\frac{D^t}{\gcd(D^t,y_0)}}
\]

is the fundamental solution of \(x^2 - D^{2\ell+1} y^2 = 1 \). In view of Lemma 5, we have

\[
\left(x_0 + y_0 \sqrt{D}\right)^{\frac{D^t}{\gcd(D^t,y_0)}} = x_1 + \frac{D^t}{\gcd(D^t,y_0)} y_0 y_2 \sqrt{D} = x_1 + y_1 \sqrt{D^{2\ell+1}},
\]

with \(y_1 = \frac{y_0 y_2}{\gcd(D^t,y_0)} \) and \(\gcd(y_2, D) = 1 \). In view of Theorem 1, we need to evaluate \(\text{order}(x_1, D^{2\ell+1}) \) and \(\frac{D^{2\ell+1}}{\gcd(D^{2\ell+1},y_1)} \). So if \(\ell \geq \frac{n_p(y_0)}{n_p(D)} \) for all \(p \mid D \), then \(\gcd(D^t,y_0) = y_0 \) and \(y_1 = y_2 \). Hence \(\gcd(y_1, D) = 1 \). So \(\frac{D^{2\ell+1}}{\gcd(D^{2\ell+1},y_1)} = D^{2\ell+1} \).

Suppose Equation (4.5) holds and \(\ell > \ell_0 \). By Theorem 5,

\[
\left(x_0 + y_0 \sqrt{D}\right)^{\frac{D^t}{\gcd(D^t,y_0)}}
\]

is the fundamental solution of \(x^2 - D^{2\ell+1} y^2 = 1 \). In the proof of (ii) of Theorem 5 and Equation (4.6), we have

\[
(x_0 + y_0 \sqrt{D})^{\frac{D^t}{\gcd(D^t,y_0)}} = x_1 + y_1 \sqrt{D^{2\ell+1}}
\]
with
\[y_1 = 3^{\max\{\ell, \ell_1\} - \ell} \left(\frac{y_0}{\gcd(D^\ell, y_0)} \right) \]
and \(\gcd(D, z_0 y_2) = 1 \). So, if \(\ell \geq \max\{\ell_1, n_p(y_0) / n_p(D) : p \mid D, p \neq 3\} \), then
\[\max\{\ell, \ell_1\} - \ell = 0 \]
and \(\gcd(D^\ell, y_0) = y_0 \). Hence \(y_1 = z_0 y_2 \) and \(\gcd(D^{2\ell+1}, y_1) = 1 \).

It follows that \(\frac{y_1}{\gcd(D^{2\ell+1}, y_1)} = D^{2\ell+1} \).

We now consider order \((x_1, D^{2\ell+1})\). If \(D \) is odd, then we claim that order \((x_1, D^{2\ell+1}) = \text{order}(x_0, D)\), equivalently, \(x_1 \equiv 1 \pmod{D^{2\ell+1}} \) if and only if \(x_0 \equiv 1 \pmod{D} \). Indeed, if \(x_1 \equiv 1 \pmod{D^{2\ell+1}} \), then by Theorem 3 (ii) we have \(x^2 - D^{2\ell+1} y^2 = 2 \) is solvable. Thus \(x^2 - D y^2 = 2 \) is also solvable and hence \(x_0 \equiv 1 \pmod{D} \). Conversely, suppose \(x_0 \equiv 1 \pmod{D} \). Since from the proof of Lemma 5, we have
\[
x_1 = \sum_{0 \leq j \leq M/2} \binom{M}{2j} x_0^{M-2j} y_0^j D^j = x_0^M \pmod{D}
\]
with \(M = \frac{D^\ell}{\gcd(D^\ell, y_0)} \) or \(M = \frac{D^\ell}{3^{\min(\ell, \ell_1)-1} \gcd(D^\ell, y_0)} \), so \(x_1 \equiv 1 \pmod{D} \). Note that \(x_1 \) is a solution of the congruence equation \(x_1 \equiv 1 \pmod{D^{2\ell+1}} \). For any odd prime \(p \) such that \(p \nmid D \), \(x_1 \) is a solution of the congruence equation \(x_1 \equiv 1 \pmod{D^{2\ell}(p^{r+1})} \) and \(x \equiv 1 \pmod{p^r} \). In view of Theorem 5.30 of [4], we can uniquely lift \(x_1 \) from a solution of \(x^2 \equiv 1 \pmod{p^r} \) to a solution \(a \) of
\[
\begin{align*}
 x^2 &\equiv 1 \pmod{p^{r+1}} \\
 x &\equiv 1 \pmod{p^r}.
\end{align*}
\]
(4.11)

Thus, \(a \equiv 1 \pmod{p^{r+1}} \). Since \(x_1 \) is also a solution of the equations in Equation (4.11), we must also have that \(x_1 \equiv 1 \pmod{p^{r+1}} \). Inductively, \(x_1 \equiv 1 \pmod{p^{r^{(2\ell+1)}}} \).

By the Chinese remainder theorem, \(x_1 \equiv 1 \pmod{D^{2\ell+1}} \). This proves the claim.

Suppose \(D \) is even. Since \(\ell \geq 1 \), we have that \(x^2 - D^{2\ell+1} y^2 = 2 \) is not solvable by Lemma 2 because \(D \neq 2d \) with odd \(d \). Hence \(x_1 \not\equiv 1 \pmod{D^{2\ell+1}} \) and so order \((x_1, D^{2\ell+1}) = 2 \).

Therefore
\[
g(D^{2\ell+1}) = \begin{cases}
\text{lcm} \left(\text{order}(x_1, D^{2\ell+1}), \frac{D^{2\ell+1}}{\gcd(D^{2\ell+1}, y_1)} \right) & \\
\text{lcm} \left(\text{order}(x_0, D), D^{2\ell+1} \right) & \text{if } D \text{ is odd,} \\
\text{lcm} (2, D^{2\ell+1}) & \text{if } D \text{ is even,} \\
D^{2\ell+1} & \text{if } \text{order}(x_0, D) = 1 \text{ and } D \text{ is odd,} \\
2D^{2\ell+1} & \text{if } \text{order}(x_0, D) = 2 \text{ and } D \text{ is odd,} \\
D^{2\ell+1} & \text{if } D \text{ is even.}
\end{cases}
\]

This completes the proof of the theorem. \(\square \)
Corollary 4. Let p be an odd prime. If $p^{\ell_0} \| y_0$, then
\[
g(p^{2\ell+1}) = \begin{cases}
p^{2\ell+1-\min(\ell_0-\ell,2\ell+1)} & \text{if } p \equiv 7 \pmod{8}, \\
2p^{2\ell+1-\min(\ell_0-\ell,2\ell+1)} & \text{if } p \not\equiv 7 \pmod{8},
\end{cases}
\]
for $0 \leq \ell \leq \ell_0$. For $\ell > \ell_0$, we have
\[
g(p^{2\ell+1}) = \begin{cases}
p^{2\ell+1} & \text{if } p \equiv 7 \pmod{8}, \\
2p^{2\ell+1} & \text{if } p \not\equiv 7 \pmod{8}.
\end{cases}
\]

In many of the proofs found in this section, we considered the binomial expansion of
\[
(x_0 + y_0 \sqrt{D})^n = x_n + y_n \sqrt{D}
\]
for various $n \geq 1$ in order to establish congruence properties for x_n and y_n modulo D. We now touch upon a potential alternative method to obtain the same results. We define
\[
x_{-1} = 2, \quad y_{-1} = 0, \quad u_n = \frac{y_n}{y_0}, \quad v_n = 2x_n.
\]
It is known that x_n, y_n, u_n, and v_n are Lucas sequences, satisfying
\[
\sigma_n = 2x_1\sigma_{n-1} - \sigma_{n-2}
\]
for all $n > 0$, where σ is any of x, y, u, v. There are many divisibility properties known about Lucas sequences. For some of the many identities known for x_n, y_n, u_n, v_n, see [10].

For certain D, perhaps it is possible to determine $\gcd(y_0, D)$, thus simplifying the formula for $g(D)$ given in Theorem 1. Of course, a proof of the AAC and Mordell conjectures would resolve the case for prime D. A related notion is the rank of apparition of k in $\{y_n\}$, which is to say the smallest n such that $k \mid y_n$, around which there is much literature. In the same vein, we have the following result due to Lehmer (Theorem 7 in [10] and Theorem 2.2 in [11]):

Let $p \mid D$ be prime. Then $p \nmid y_0$ if and only if
\[
\prod_{i=0}^{p-2} y_i \equiv -\left(\frac{x_0}{p}\right) \pmod{p}.
\]
This is a potentially useful result for proving more explicit versions of Theorem 1 for certain D.

References

Table 1: $3 \leq D \leq 100$, and D is not a perfect square and $g(D) = 2D$
<table>
<thead>
<tr>
<th>D</th>
<th>Fundamental Solution Order</th>
<th>order(x_0, D)</th>
<th>$g(D)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>$5 + 2\sqrt{6}$</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>$8 + 3\sqrt{7}$</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>$3 + \sqrt{8}$</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>10</td>
<td>$19 + 6\sqrt{10}$</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>18</td>
<td>$17 + 4\sqrt{4.6}$</td>
<td>2</td>
<td>18</td>
</tr>
<tr>
<td>22</td>
<td>$197 + 42\sqrt{22}$</td>
<td>2</td>
<td>22</td>
</tr>
<tr>
<td>23</td>
<td>$24 + 5\sqrt{23}$</td>
<td>1</td>
<td>23</td>
</tr>
<tr>
<td>24</td>
<td>$5 + \sqrt{24}$</td>
<td>2</td>
<td>24</td>
</tr>
<tr>
<td>26</td>
<td>$51 + 10\sqrt{26}$</td>
<td>2</td>
<td>26</td>
</tr>
<tr>
<td>30</td>
<td>$11 + 2\sqrt{4.9}$</td>
<td>2</td>
<td>30</td>
</tr>
<tr>
<td>31</td>
<td>$1520 + 273\sqrt{31}$</td>
<td>1</td>
<td>31</td>
</tr>
<tr>
<td>32</td>
<td>$17 + 3\sqrt{32}$</td>
<td>2</td>
<td>32</td>
</tr>
<tr>
<td>38</td>
<td>$37 + 6\sqrt{38}$</td>
<td>2</td>
<td>38</td>
</tr>
<tr>
<td>40</td>
<td>$19 + 3\sqrt{40}$</td>
<td>2</td>
<td>40</td>
</tr>
<tr>
<td>42</td>
<td>$13 + 2\sqrt{42}$</td>
<td>2</td>
<td>42</td>
</tr>
<tr>
<td>47</td>
<td>$48 + 7\sqrt{47}$</td>
<td>1</td>
<td>47</td>
</tr>
<tr>
<td>48</td>
<td>$7 + \sqrt{48}$</td>
<td>2</td>
<td>48</td>
</tr>
<tr>
<td>50</td>
<td>$99 + 14\sqrt{50}$</td>
<td>2</td>
<td>50</td>
</tr>
<tr>
<td>58</td>
<td>$19603 + 2574\sqrt{58}$</td>
<td>2</td>
<td>58</td>
</tr>
<tr>
<td>66</td>
<td>$65 + 8\sqrt{66}$</td>
<td>2</td>
<td>66</td>
</tr>
<tr>
<td>71</td>
<td>$3480 + 413\sqrt{71}$</td>
<td>1</td>
<td>71</td>
</tr>
<tr>
<td>74</td>
<td>$3699 + 430\sqrt{74}$</td>
<td>2</td>
<td>74</td>
</tr>
<tr>
<td>79</td>
<td>$80 + 9\sqrt{79}$</td>
<td>1</td>
<td>79</td>
</tr>
<tr>
<td>80</td>
<td>$9 + \sqrt{80}$</td>
<td>2</td>
<td>80</td>
</tr>
<tr>
<td>82</td>
<td>$163 + 18\sqrt{82}$</td>
<td>2</td>
<td>82</td>
</tr>
<tr>
<td>86</td>
<td>$10405 + 1122\sqrt{86}$</td>
<td>2</td>
<td>86</td>
</tr>
<tr>
<td>88</td>
<td>$197 + 21\sqrt{88}$</td>
<td>2</td>
<td>88</td>
</tr>
<tr>
<td>90</td>
<td>$19 + 2\sqrt{90}$</td>
<td>2</td>
<td>90</td>
</tr>
<tr>
<td>96</td>
<td>$49 + 5\sqrt{96}$</td>
<td>2</td>
<td>96</td>
</tr>
</tbody>
</table>

Table 2: $2 \leq D \leq 100$, and D is not a perfect square and $g(D) = D$
<table>
<thead>
<tr>
<th>D</th>
<th>Fundamental Solution Order</th>
<th>$\text{order}(x_0, D)$</th>
<th>$g(D)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>$3 + 2\sqrt{2}$</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td>$7 + 2\sqrt{12}$</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>14</td>
<td>$15 + 4\sqrt{14}$</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>20</td>
<td>$9 + 2\sqrt{20}$</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>28</td>
<td>$127 + 24\sqrt{28}$</td>
<td>2</td>
<td>14</td>
</tr>
<tr>
<td>34</td>
<td>$35 + 6\sqrt{34}$</td>
<td>1</td>
<td>17</td>
</tr>
<tr>
<td>44</td>
<td>$199 + 30\sqrt{44}$</td>
<td>2</td>
<td>22</td>
</tr>
<tr>
<td>52</td>
<td>$649 + 90\sqrt{52}$</td>
<td>2</td>
<td>26</td>
</tr>
<tr>
<td>56</td>
<td>$15 + 2\sqrt{56}$</td>
<td>2</td>
<td>28</td>
</tr>
<tr>
<td>60</td>
<td>$31 + 4\sqrt{60}$</td>
<td>2</td>
<td>30</td>
</tr>
<tr>
<td>62</td>
<td>$63 + 8\sqrt{62}$</td>
<td>1</td>
<td>31</td>
</tr>
<tr>
<td>68</td>
<td>$33 + 4\sqrt{68}$</td>
<td>2</td>
<td>34</td>
</tr>
<tr>
<td>72</td>
<td>$17 + 2\sqrt{72}$</td>
<td>2</td>
<td>36</td>
</tr>
<tr>
<td>76</td>
<td>$57799 + 6630\sqrt{76}$</td>
<td>2</td>
<td>38</td>
</tr>
<tr>
<td>92</td>
<td>$1151 + 120\sqrt{92}$</td>
<td>2</td>
<td>46</td>
</tr>
<tr>
<td>94</td>
<td>$2143295 + 221064\sqrt{94}$</td>
<td>1</td>
<td>47</td>
</tr>
<tr>
<td>98</td>
<td>$99 + 10\sqrt{98}$</td>
<td>1</td>
<td>49</td>
</tr>
</tbody>
</table>

Table 3: $2 \leq D \leq 100$, and D is not a perfect square and $g(D) = D/2$

<table>
<thead>
<tr>
<th>D</th>
<th>Fundamental Solution Order</th>
<th>$\text{order}(x_0, D)$</th>
<th>$g(D)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>46</td>
<td>$24335 + 3588\sqrt{46}$</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>54</td>
<td>$485 + 66\sqrt{54}$</td>
<td>2</td>
<td>18</td>
</tr>
<tr>
<td>70</td>
<td>$251 + 30\sqrt{70}$</td>
<td>2</td>
<td>14</td>
</tr>
<tr>
<td>78</td>
<td>$53 + 6\sqrt{78}$</td>
<td>2</td>
<td>26</td>
</tr>
<tr>
<td>84</td>
<td>$55 + 6\sqrt{84}$</td>
<td>2</td>
<td>14</td>
</tr>
</tbody>
</table>

Table 4: $2 \leq D \leq 100$, and D is not a perfect square and $g(D) < D/2$