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Abstract

We extend results given by Popescu and Dı́az-Barrero and by Alzer and Luca and
determine all real parameters r and s such that the inequality

(FnFn+1)2 ≤
n∑
k=1

F rk

n∑
k=1

F sk

holds for all n ≥ 1. Here, Fk denotes the k-th Fibonacci number.

1. Introduction

In this paper, we study an inequality which involves the classical Fibonacci numbers,

defined recursively by

F0 = 0, F1 = 1, Fn = Fn−2 + Fn−1 (n = 2, 3, ...).

Explicit representations are given by

Fn =
1√
5

(
ϕn − (1− ϕ)n

)
=

[(n−1)/2]∑
k=0

(
n− k − 1

k

)
,

where

ϕ =
1

2

(
1 +
√

5
)

= 1.618...

denotes the golden ratio. Inspired by the elegant formula

FnFn+1 =

n∑
k=1

F 2
k ,
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Popescu and Dı́az-Barrero [2] used methods from Real Analysis to prove that the

inequality

(FnFn+1)2 ≤
n∑
k=1

F rk

n∑
k=1

F 4−r
k

is valid for all natural numbers n and integers r. Recently, Alzer and Luca [1]

obtained the following extensions of this result.

Theorem A. Let r, s ∈ R with r + s ≥ 4. Then, for n ≥ 1,

(FnFn+1)2 ≤
n∑
k=1

F rk

n∑
k=1

F sk . (1)

The sign of equality is valid in (1) if and only if n = 1, 2 or n ≥ 3, r = s = 2.

Theorem B. Let r, s ∈ R with rs ≥ 0. The inequality (1) holds for all n ≥ 1 if

and only if r + s ≥ 4.

An application gives that the equation

(FnFn+1)2 =

n∑
k=1

F rk

n∑
k=1

F sk (r, s ∈ R, rs ≥ 0)

holds for all n ≥ 1 if and only if r = s = 2.

The aim of this paper is to extend Theorems A and B and to solve the following

problem which is formulated in [1]: determine all real parameters r and s such that

(1) is valid for all n.

In the next section, we introduce some helpful notation and in Section 3, we

collect five lemmas. Finally, in Section 4, we state and prove our main result.

The numerical calculations have been carried out by using the computer software

Maple 13.

2. Preliminaries

We denote by λ = 4.12612... the only real number with

2λ + 3λ =
221

2
.

The function

A(x) =
225

2 + 2x + 3x
− 2

is strictly decreasing on R with A(λ) = 0. It follows that for each r ∈ R with r < λ

there exists a unique number µ(r) ∈ R such that

2µ(r) + 3µ(r) = A(r).
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The function µ is strictly decreasing on (−∞, λ) with

lim
r→−∞

µ(r) = λ, µ(4) = −2.34572..., lim
r→ λ−

µ(r) = −∞.

In what follows, we maintain the notation introduced in this section.

3. Lemmas

First, we present upper and lower bounds for the ratio of Fibonacci numbers.

Lemma 1. For n ≥ 9, we have

1.617 ≤ Fn+1

Fn
≤ 1.619. (2)

Proof. We use induction to prove (2). Since

F10

F9
=

55

34
= 1.6176...,

we conclude that (2) holds for n = 9. Next, we assume that (2) is valid. Applying

Fn+2

Fn+1
=
Fn + Fn+1

Fn+1
= 1 +

Fn
Fn+1

gives

1.6176... = 1 +
1

1.619
≤ Fn+2

Fn+1
≤ 1 +

1

1.617
= 1.6184....

This implies that (2) holds with n+ 1 instead of n.

The following three lemmas provide lower bounds for power sums of Fibonacci

numbers.

Lemma 2. Let r ∈ R with r > 0. Then, for n ≥ 9,

1− (p(r))n−8

1− p(r)
F rn ≤

n∑
k=1

F rk (3)

with p(r) = (1.619)−r.

Proof. Let n ≥ 9. Using Lemma 1 gives for k ∈ {9, ..., n},

Fn
Fk

=

n∏
j=k+1

Fj
Fj−1

≤ (1.619)n−k.
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It follows that

n∑
k=1

F rk ≥
n∑
k=9

F rk ≥ F rn
n∑
k=9

(p(r))n−k = F rn
1− (p(r))n−8

1− p(r)
.

Lemma 3. For n ≥ 5, we have

(FnFn+1)2 ≤ 2

n∑
k=1

Fλk . (4)

Proof. Let

Sn = 2

n∑
k=1

Fλk − (FnFn+1)2.

By direct computation we get

S5 = 156.32..., S6 = 1588.90..., S7 = 16816.20..., S8 = 152504.21.... (5)

Let n ≥ 9. From Lemma 1 we obtain

Fλn ≥ F 2
n · F 2

n · F 0.126
n ≥ F 2

n ·
(Fn+1

1.619

)2
· F 0.126

9 = a(FnFn+1)2 (6)

with

a =
F 0.126
9

(1.619)2
= 0.594....

Applying (3) with r = λ and (6) leads to

2

n∑
k=1

Fλk ≥ bn(FnFn+1)2 (7)

with

bn = 2a
1− (p(λ))n−8

1− p(λ)
≥ 2a = 1.189.... (8)

From (5), (7) and (8) we conclude that (4) holds for n ≥ 5.

Lemma 4. Let r ∈ R with r ≥ 4. Then, for n ≥ 5,

(FnFn+1)2 ≤ 225

2 + 2r + 3r

n∑
k=1

F rk . (9)
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Proof. We denote the expression on the right-hand side of (9) by Gn(r). Then,

Gn(r) = 225
(

1 +

n∑
k=5

F rk
h(r)

)
with h(r) = 2 + 2r + 3r. Since Fk ≥ 5 (k ≥ 5), we conclude that

h(r)

F rk
=

2

F rk
+
( 2

Fk

)r
+
( 3

Fk

)r
, k ≥ 5,

is decreasing on (0,∞). It follows that Gn is increasing on (0,∞). Thus, for r ≥ 4,

Gn(r) ≥ Gn(4) =
25

11

n∑
k=1

F 4
k . (10)

Let n ≥ 11. We apply Lemma 2 with r = 4. This yields

Gn(4) ≥ 25

11

1− (p(4))n−8

1− p(4)
F 4
n ≥ cF 4

n (11)

with

c =
25

11

1− (p(4))3

1− p(4)
.

From Lemma 1 we obtain

F 4
n = (FnFn+1)2

( Fn
Fn+1

)2
≥ 1

(1.619)2
(FnFn+1)2. (12)

Using (11) and (12) gives

Gn(4) ≥ c∗(FnFn+1)2 (13)

with

c∗ =
c

(1.619)2
= 1.011.... (14)

Combining (10), (13) and (14) we conclude that (9) holds for n ≥ 11. Let

Hn =
25

11

n∑
k=1

F 4
k − (FnFn+1)2.

Then,

H5 = 45.45..., H6 = 138.54..., H7 = 1336.90...,

H8 = 8072.18..., H9 = 58095.45..., H10 = 390845.48...,

so that (10) yields that (9) is also valid for n = 5, ..., 10.

Our fifth lemma gives a necessary condition for which (1) is valid.
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Lemma 5. Let r, s ∈ R with r > 0 > s. If (1) holds for all n ≥ 1, then r ≥ 4.

Proof. Let r > 0 > s. From (1) we obtain for n ≥ 1,

Un ≤ Rn(r, s) (15)

with

Un = ϕ2
(Fn
ϕn

Fn+1

ϕn+1

)2
and

Rn(r, s) = Xn(r)Yn(s)Zn(r),

where

Xn(r) =
1

ϕrn

n∑
k=1

F rk , Yn(s) =
n∑
k=1

F sk , Zn(r) = ϕ(r−4)n.

Since

lim
n→∞

Fn
ϕn

=
1√
5
,

we get

lim
n→∞

Un =
ϕ2

25
. (16)

Next, we show that the sequences (Xn(r)) and (Yn(s)) are bounded with respect to

n. We have for k ≥ 1,
√

5Fk = ϕk − (−1)k(ϕ− 1)k ≤ ϕk + (ϕ− 1)k ≤ 2ϕk

and √
5Fk ≥ ϕk − (ϕ− 1)k ≥ ϕk − ϕkϕ− 1

ϕ
≥ 1

2
ϕk.

Let u = ϕr > 1. Then,(√5

2

)r
Xn(r) ≤ 1

ϕrn

n∑
k=1

ϕrk =
u

u− 1

un − 1

un
≤ u

u− 1
.

Let v = ϕs ∈ (0, 1). We obtain

(2
√

5)sYn(s) ≤
n∑
k=1

ϕsk =
v

1− v
(1− vn) ≤ v

1− v
.

Now, we assume that r < 4. Since 0 < ϕr−4 < 1, we get

lim
n→∞

Zn(r) = 0.

Thus,

lim
n→∞

Rn(r, s) = 0. (17)

The limit relations (16) and (17) contradict (15). Therefore, r ≥ 4.
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4. Main Result

We are now in a position to state and prove our main result.

Theorem . Let r, s ∈ R with r ≥ s. The inequality

(FnFn+1)2 ≤
n∑
k=1

F rk

n∑
k=1

F sk (18)

holds for all n ≥ 1 if and only if (I) rs ≥ 0 and r + s ≥ 4 or (II) rs < 0 and either

(i) 4 ≤ r < λ and s ≥ µ(r) or (ii) r ≥ λ.

Proof. From Theorem A we conclude that if rs ≥ 0 and r+s ≥ 4, then (18) is valid

for all n ≥ 1. Let rs < 0. If n = 1 or n = 2, then equality holds in (18). To prove

(18) for n ≥ 3 we consider two cases.

Case 1. 4 ≤ r < λ and s ≥ µ(r).

Let n = 3. We obtain

(F3F4)2 = 36 = (2 + 24) · 2 ≤ (2 + 2r)(2 + 2s) =

3∑
k=1

F rk

3∑
k=1

F sk .

Let n = 4. Then,

(F4F5)2 = 225 = (2 + 2r + 3r)(2 + 2µ(r) + 3µ(r))

≤ (2 + 2r + 3r)(2 + 2s + 3s)

=

4∑
k=1

F rk

4∑
k=1

F sk .

Let n ≥ 5. Using Lemma 4 gives

(FnFn+1)2 ≤ 225

2 + 2r + 3r

n∑
k=1

F rk =

n∑
k=1

F rk

4∑
k=1

F
µ(r)
k ≤

n∑
k=1

F rk

n∑
k=1

F sk .

Case 2. r ≥ λ.

Let n = 3. Then,

(F3F4)2 = 2 · (2 + 24) ≤ 2 · (2 + 2r) = 2

3∑
k=1

F rk ≤
3∑
k=1

F rk

3∑
k=1

F sk .

Let n = 4. We obtain

(F4F5)2 = 2 · (2 + 2λ + 3λ) = 2

4∑
k=1

Fλk ≤
4∑
k=1

F rk

4∑
k=1

F sk .
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Let n ≥ 5. We apply Lemma 3 and get

(FnFn+1)2 ≤ 2

n∑
k=1

Fλk ≤
n∑
k=1

F rk

n∑
k=1

F sk .

Next, we assume that (18) holds for all n ≥ 1. Let r ≥ s.
Case 1. rs ≥ 0. From Theorem B we conclude that r + s ≥ 4.

Case 2. rs < 0. Applying Lemma 5 gives r ≥ 4. Let r < λ. From (18) with

n = 4 we obtain

A(r) =
225

2 + 2r + 3r
− 2 ≤ 2s + 3s = g(s), say.

Moreover, we have

A(r) = g
(
µ(r)

)
.

Thus,

g
(
µ(r)

)
≤ g(s).

Since g is strictly increasing on R, we get µ(r) ≤ s. This completes the proof of the

Theorem.
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