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Abstract
We prove explicit bounds for the number of sums of consecutive prime squares below
a given magnitude.

1. Motivation and the Main Result

Early last year the authors learned that 2020 can be represented as a sum of squares
of consecutive prime numbers, namely

2020 = 17% + 192 + 232 + 292

It is a natural question to ask what the next year with this property will be. We
shall show that such a representation is a rare event.

Indeed, if scp(z) counts the number of sums of squares of consecutive primes
below z, i.e.,

sep(z) = §{ph + Py o Ph 1 <@ i meN},

where p; denotes the j-th prime number in ascending order, then lim,_,, scp(z)/z =
0. The following theorem provides more precise bounds.

Theorem 1. We have
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where the inequality on the far left is valid for x > 289 and all those to the right for
x > 377.

Here, as usual, 7(N) is counting the number of primes p < N and explicit bounds
for this prime counting function are the main tool for proving the inequalities above;
we have chosen a recent paper [1] by Pierre Dusart. The dear reader is invited to
improve upon the bounds of our theorem; maybe it is even possible to prove an
asymptotic formula with a main term of the form Cz® (logz)™? with constants
a, 8, C for the number of sums of consecutive prime squares below x; in this case
one could expect the exponent a to be close to 2/3 (because our lower bound is
pretty rough). Note that we do not consider here the question whether or not an
integer can have two or even more such representations or how many of these exist.

Using a computer algebra package one can verify that the next sum of squares
of consecutive primes is given by the expected suspect, namely

2189 = 132 + 172 + 192 + 232 + 292,

A list with all integers below 5000 that can be written as a sum of consecutive prime
squares can be found in the third and final section.

2. Proof of the Theorem

It is convenient to define, for fixed m € N, the counting function for sums of m
consecutive prime squares, i.e.,

scp, (x) =4 {p% + Po1 + - Do 1ypm ST}

For the lower bound we first observe that the number of squares of prime numbers
p? below or equal to x is given by 7(\/7).
In the sequel we shall use the explicit bounds

< n(N) < 12551 — (1)

log N log N’

where the left inequality is valid for N > 17 and the one on the right for N > 1
(see Corollary 5.2 in [1]); of course, the celebrated prime number theorem provides
an asymptotic formula for 7(N) with main term N/log N, however, for excluding
the related error term for our analysis, we prefer the version above with the factor
1.2551. The corresponding range for these inequalities (resp. the range for = in our
theorem) is also useful with respect to computer experiments.

It follows from Equation (1) that
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sep(z) > sepy (z) = 7(Va) >
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which is valid for z > 172 = 289. This proves the lower bound.
The reasoning for the upper bound is a little more advanced. First we note that
for n = scp(x) we have

mpy < paA+Pai ot Do 1w ST <Pa Do+ Do 1im T Dot

Hence, by the inequality in Equation (1),

scp, () = n < w(y/z/m) < 1.2551 ———— /x/m (2)

3 log(x/m)’

which is valid for > m, which, obviously, is no severe restriction (since the largest
integer < x is a trivial upper bound for the length of a sum of consecutive primes
squares < ).

To continue we shall next bound the length m of possible sums of consecutive
prime squares below x. For this purpose we shall use an old result due to Barkley
Rosser [3] which has been improved several times, in particular by Dusart [1], how-
ever, we prefer the more simple inequality

pn > nlogn,

valid for all n € N; this lower bound is trivial for n = 1. We shall use this so-called
Rosser theorem for the sum of the squares of the first primes:

PP pi4 ..+ pi > Z (nlogn)?.
2<n<M

If we can show that the right hand side is larger than z, then the least sum of
M consecutive prime squares already exceeds the given magnitude. Assuming that
this M is the least positive integer with this property, this leads to a bound for
M depending on x. This estimate in combination with the previous one allows
us to derive the upper bound of the theorem. Alternatively, one could also use
partial summation here together with the prime number theorem, however, it is our
intention to circumvent error terms.
Obviously, for M > 6,

Z (nlogn)? > Z n?(logn)?
2<n<M VM<n<M
> (%logM)2 Z n221—12M3(logM)27
VM<n<M

where we have used in the final step the well-known formula

1+224+3%+. .+ M? =L M(M+1)(2M +1)
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and some pen and paper. It thus follows that every sum of consecutive prime
squares below z has less than roughly z!/3 summands. For a more precise bound
we observe that substituting

M =[50 (logz)7*/? | 3)

into the lower bound above yields a quantity slightly larger than z; here | z| denotes
the largest integer less than or equal to z. Note that one could replace the constant
5 by 1241/3 however, for the sake of readability we have chosen the rough bound.
Since M > 6, this implies that = > 377.

To use this for an upper bound we first observe that we have m < M in Equation
(2) and

2
log(z/m) > logx —log M > logx — log (5,7:1/3) =3 log z — log5 > 0.395log x,

valid for z > 377; restricting x further would lead to a smaller upper bound, how-
ever, the factor 1/3 above can by this reasoning not be replaced by anything larger
than 2/3. Now Equation (2) implies

zt/

2
E m /2.
log x
1<m<M

scp(z) < Z scp,, (x) < 6.355
1<m<M

In general, we have, for a € (0,1),
m M 1—
M~ —
Z m- %<1+ Z / u_aduzl—i—/ oy = = — %
m—1 1 11—«
1<m<M 2<m<M
This in combination with Equation (3) leads to

(xM)1/2 x2/3

Y
sep(z) < 12.7099 <12.7099 - 5 (log 2)1/3

This proves the upper bound of the theorem.

3. Explicit Sums of Consecutive Prime Squares

We conclude with a list of all integers below 5000 that can be written as a sum of
consecutive prime squares:
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4 9 13 25 34 38 49
74 83 87 121 169 170 195
204 208 289 290 339 361 364
373 377 458 529 579 628 650
653 662 666 819 841 890 940
961 989 1014 1023 1027 1179 1348
1369 1370 1469 1518 1543 1552 1556
1681 1731 1802 1849 2020 2189 2209
2310 2330 2331 2359 2384 2393 2397
2692 2809 2981 3050 3150 3171 3271
3320 3345 3354 3358 3481 3530 3700
3721 4011 4058 4061 4350 4489 4519
4640 4689 4714 4723 4727 4852 4899

This sequence of sums of consecutive prime squares appears as A340771 in the
On-Line Encyclopedia of Integer Sequences [2] (founded by Neal Sloane in 1964).
Related sequences, listed earlier in this encyclopedia, are A069484 consisting of the
integers that are sums of two squares and A034707 consisting of sums of squares of
any number of consecuted primes (but not squared).
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