Some summation and transformation formulas from inversion techniques

Chuanan Wei
School of Biomedical Information and Engineering, Hainan Medical University, Haikou, China

Yi Wei*
College of Traditional Chinese Medicine, Hainan Medical University, Haikou, China
ythainmc@163.com

Chun Li
School of Mathematics and Statistics, Hainan Normal University, Haikou, China

Received: 7/1/22, Revised: 8/12/22, Accepted: 9/18/22, Published: 10/3/22

Abstract
With the help of Gould–Hsu inversions, we find a generalization of Hagen and Rothe’s identity and give a new proof for some generalizations of Simons’ identity and Bruckman’s identity. Furthermore, we derive several Bruckman-type identities via the derivative operator.

1. Introduction
For any complex number x and nonnegative integer n, define the shifted-factorial to be

$$(x)_n = \frac{\Gamma(x+n)}{\Gamma(x)},$$

where $\Gamma(x)$ is the well-known Gamma function. There are a lot of combinatorial identities in the literature. Thereinto, Hagen and Rothe’s identity (cf. [4]) reads

$$\sum_{k=0}^{n} \binom{a+\lambda k}{k} \frac{c-\lambda n}{c-\lambda k} \frac{c-\lambda k}{n-k} = \binom{a+c}{n},$$

(1.1)

where $c-\lambda k \neq 0$. Replacing k by $n-k$ in Equation (1.1), we have

$$\sum_{k=0}^{n} \binom{a+\lambda n-\lambda k}{n-k} \frac{c-\lambda n}{c-\lambda n+\lambda k} \frac{c-\lambda n+\lambda k}{k} = \binom{a+c}{n}.$$

*The corresponding author.
Replacing a and c by $c-\lambda n$ and $a+\lambda n$, respectively, in the last equation, we obtain

$$
\sum_{k=0}^{n} \frac{a}{a+\lambda k} \binom{a+\lambda k}{k} \binom{c-\lambda k}{n-k} = \binom{a+c}{n},
$$

(1.2)

where $a+\lambda k \neq 0$. The linear combination of Equation (1.1) and Equation (1.2) produces

$$
\sum_{k=0}^{n} \frac{a}{a+\lambda k} \binom{a+\lambda k}{k} \frac{c-\lambda kn}{c-\lambda k} \frac{(c-\lambda k)(a+c)}{a+c} = \binom{a+c}{n},
$$

where $a+\lambda k \neq 0$ and $c-\lambda k \neq 0$.

Following Andrews, Askey, and Roy [1], define the hypergeometric series by

$$
1+\text{rF}_{s}\left[a_0, a_1, \ldots, a_r\mid b_1, \ldots, b_s; z\right] = \sum_{k=0}^{\infty} \frac{(a_0)_k (a_1)_k \cdots (a_r)_k}{(b_1)_k \cdots (b_s)_k} z^k,
$$

where $\{a_i\}_{i \geq 0}$ and $\{b_j\}_{j \geq 1}$ are complex parameters such that no zero factors appear in the denominators of the summand on the right-hand side. In this paper, we shall establish the following generalization of Equation (1.1).

Theorem 1. Let a, b, c, d, λ be complex numbers subject to $\min \{\Re(1+a-b), \Re(\lambda - 1)\} > 0$. Then

$$
\sum_{k=0}^{n} (-1)^{n+k} \binom{n}{k} \binom{n+k}{k} (x+1)^k = \sum_{k=0}^{n} \binom{n}{k} \binom{n+k}{k} x^k.
$$

(1.3)

When $b = 0$, Theorem 1 reduces to Equation (1.1) exactly. When $n = 0$, Theorem 1 becomes Gauss’ summation formula:

$$
\text{2F}_1 \left[a, b \mid c ; 1 \right] = \frac{\Gamma(c) \Gamma(c-a-b)}{\Gamma(c-a) \Gamma(c-b)},
$$

where $\Re(c-a-b) > 0$.

In 2001, Simons [16] proved a curious identity. Prodinger [15] displayed another attractive proof of this identity via Cauchy’s integral formula. We refer the reader to [17, 18] for two other proofs of Equation (1.3). Some related conclusions can be seen in the paper [12]. Hirschhorn [7] pointed out that Simons’ identity can be deduced by specifying the parameters in Pfaff’s transformation formula (cf. [1, P. 79]), which can be stated as the following theorem.
Theorem 2. Let b, c, x be complex numbers. Then

$$2F_1\left[\begin{array}{c}
-n/b \\
c
\end{array} ; x \right] = \frac{(c-b)_n}{(c)_n} 2F_1\left[\begin{array}{c}
-n/b \\
1+b-c-n \end{array} ; 1-x \right].$$

By means of Cauchy’s integral formula, Munarini [13] discovered the nice generalization of Equation (1.3):

$$\sum_{k=0}^{n} \binom{\alpha}{n-k} \binom{\beta+k}{k} x^k y^{n-k} = \sum_{k=0}^{n} \binom{\beta - \alpha + n}{n-k} \binom{\beta+k}{k} (-1)^{n-k} (x+y)^k y^{n-k}.$$

Here we point out that this result is an equivalent form of Theorem 2.

In a letter to Henry Gould on 15 April 2008, Paul Bruckman posed the following problem:

$$\sum_{k=1}^{n} (-1)^k \binom{n}{k} \binom{n+k}{k} \frac{k}{(1-2k)(k+r)} = \frac{1+2n}{1+2r},$$

where r is a positive integer with $1 \leq r \leq n$. Through Zeilberger’s Algorithm (cf. [14, Chapter 6]), Gould [5] established an interesting generalization of Bruckman’s identity (1.4), which can be expressed the following theorem.

Theorem 3. Let x be a complex number. Then

$$\sum_{k=1}^{n} (-1)^k \binom{n}{k} \binom{n+k}{k} \frac{k}{(1-2k)(k+x)} = \frac{1+2n}{1+2x} - \frac{1}{1+2x} \frac{1}{1+2x}.$$

(1.5)

It should be mentioned that Xu and Cen [18] also proved Theorem 3 in terms of the contour integral method.

For a differentiable function $f(x)$, define the derivative operator D_x as

$$D_x f(x) = \frac{d}{dx} f(x).$$

For any complex number x and positive integer ℓ, define the generalized harmonic numbers of ℓ-order to be

$$H_0^{(\ell)}(x) = 0 \quad \text{and} \quad H_n^{(\ell)}(x) = \sum_{k=1}^{n} \frac{1}{(x+k)^\ell} \quad \text{when} \quad n \in \mathbb{Z}^+.$$

Setting $\ell = 1$ in $H_0^{(\ell)}(x)$ and $H_n^{(\ell)}(x)$, we get generalized harmonic numbers

$$H_0(x) = 0 \quad \text{and} \quad H_n(x) = \sum_{k=1}^{n} \frac{1}{x+k}.$$
When \(x = 0 \), they reduce to classical harmonic numbers

\[
H_0 = 0 \quad \text{and} \quad H_n = \sum_{k=1}^{n} \frac{1}{k}.
\]

Applying the derivative operator \(D_x \) to both sides of Equation (1.5), we arrive at the following result.

Theorem 4. Let \(x \) be a complex number. Then

\[
\sum_{k=1}^{n} (-1)^k \binom{n}{k} \binom{n+k}{k} \frac{k}{(1-2k)(k+x)^2}
= \frac{2 + 4n}{(1+2x)^2} - \frac{1}{(1+2x)(1+x)} \left\{ \frac{2}{1+2x} + H_n(x) + H_n(-x) \right\}.
\]

Fixing \(x = r \) in Theorem 4 and utilizing the relation

\[
(1 - x)_n H_n(-x) = (1 - x)_{r-1}(r - x)(1 + r - x)_{n-r}
\]

\[
\times \left\{ H_{r-1}(-x) + \frac{1}{r-x} + H_{n-r}(r - x) \right\},
\]

we can derive the following formula.

Corollary 5. Let \(r \) be a positive integer with \(1 \leq r \leq n \). Then

\[
\sum_{k=1}^{n} (-1)^k \binom{n}{k} \binom{n+k}{k} \frac{k}{(1-2k)(k+r)^2}
= \frac{2 + 4n}{(1+2r)^2} + \frac{(-1)^r}{(1+2r)} \frac{(1)_r(1)_{n-r}}{(1+r)_n}.
\]

Applying the derivative operator \(D_x \) to both sides of Equation (1.6), we are led to the following conclusion.

Theorem 6. Let \(x \) be a complex number. Then

\[
\sum_{k=1}^{n} (-1)^k \binom{n}{k} \binom{n+k}{k} \frac{k}{(1-2k)(k+x)^3}
= \frac{4 + 8n}{(1+2x)^3} - \frac{1}{(2+4x)(1+x)} \left\{ \frac{8}{(1+2x)^2} + \Omega_n(x) \right\},
\]

where

\[
\Omega_n(x) = \left[\frac{4}{1+2x} + H_n(x) + H_n(-x) \right] [H_n(x) + H_n(-x)]
+ [H_n^{(2)}(x) - H_n^{(2)}(-x)].
\]
Choosing \(x = r \) in Theorem 6, we can deduce the following formula.

Corollary 7. Let \(r \) be a positive integer with \(1 \leq r \leq n \). Then

\[
\sum_{k=1}^{n} (-1)^k \binom{n}{k} \binom{n+k}{k} \frac{k}{(1-2k)(k+r)^3} = 4 + 8n \left(\frac{1}{1+2r} \right) + \left(\frac{-1}{1+2r} \right) \frac{(1-r)_{n-r}}{(1+r)n} \left\{ H_{n+r} + H_{n-r} - 2H_r + \frac{1+4r}{r(1+2r)} \right\}.
\]

For a complex variable \(x \) and two complex sequences \(\{a_k, b_k\}_{k \geq 0} \), define a polynomial sequence by

\[
\phi(x; 0) \equiv 1 \quad \text{and} \quad \phi(x; n) = \prod_{i=0}^{n-1} (a_i + xb_i) \quad \text{when} \quad n \in \mathbb{Z}^+.
\]

Then a pair of inverse series relations due to Gould and Hsu [6] can be written as

\begin{align*}
 f(n) &= \sum_{k=0}^{n} (-1)^k \binom{n}{k} \phi(k; n) g(k), \\ g(n) &= \sum_{k=0}^{n} (-1)^k \binom{n}{k} \frac{a_k + kb_k}{\phi(n; k+1)} f(k). \tag{1.8}
\end{align*}

Inversion techniques are very useful for dealing with combinatorial identities. Some nice results can be seen in the papers [3, 8–11].

Inspired by the works just mentioned, we shall prove Theorems 1-3 by using Gould–Hsu inversions (1.7) and (1.8). The corresponding details will be provided in Sections 2-4, respectively.

2. Proof of Theorem 1

In order to prove Theorem 1, we require the following transformation formula (cf. [1, P. 142]):

\[
3F2 \left[\begin{array}{c} a, b, c \\ d, e \end{array} : 1 \right] = \frac{\Gamma(e)\Gamma(d+e-a-b-c)}{\Gamma(e-a)\Gamma(d+e-b-c)} 3F2 \left[\begin{array}{c} a, d-b, d-c \\ d, d+e-b-c \end{array} : 1 \right]. \tag{2.1}
\]

Proof of Theorem 1. Performing the replacements \(a \rightarrow -n, b \rightarrow -a-c, c \rightarrow d-b, d \rightarrow 1-b-c+\lambda n-n, e \rightarrow d \) in Equation (2.1), we obtain...
\[\sum_{k=0}^{n} (-1)^k \binom{n}{k} \frac{(-b - c + \lambda k)(d - b)_k}{(-b - c + \lambda n - n)_k} \times 3F_2 \left[\begin{array}{c} -k, 1 + a - b + \lambda k - k, 1 - c - d + \lambda k - k \\ 1 - b - c + \lambda k - k, 1 + a + \lambda k - k \end{array} ; 1 \right] = \frac{(1 + a + \lambda n - n)_n}{(-b - c + \lambda n - n)(d)_n} 3F_2 \left[\begin{array}{c} -n, 1 + a - b + \lambda n - n, 1 - c - d + \lambda n - n \\ 1 - b - c + \lambda n - n, 1 + a + \lambda n - n \end{array} ; 1 \right]. \]

It satisfies Equation (1.8) and Equation (1.7) brings out the dual relation:

\[\sum_{k=0}^{n} (-1)^k \binom{n}{k} \frac{(-b - c + \lambda k)(d - b)_k}{(-b - c + \lambda n - n)_k} \times 3F_2 \left[\begin{array}{c} -k, 1 + a - b + \lambda k - k, 1 - c - d + \lambda k - k \\ 1 - b - c + \lambda k - k, 1 + a + \lambda k - k \end{array} ; 1 \right] = \frac{(-a - c)_n (d - b)_n}{(-b - c + \lambda n)(d)_n}. \] (2.2)

The iteration of Equation (2.1) results in the transformation formula (cf. [1, P. 143]):

\[3F_2 \left[\begin{array}{c} a, b, c \\ d, e \end{array} ; 1 \right] = \frac{\Gamma(d)\Gamma(e)\Gamma(d + e - a - b - c)}{\Gamma(a)\Gamma(d + e - a - b)\Gamma(d + e - a - c)} \times 3F_2 \left[\begin{array}{c} d - a, e - a, d + e - a - b - c \\ d + e - a - b, d + e - a - c \end{array} ; 1 \right]. \] (2.3)

Employing the replacements \(a \rightarrow 1 + a - b + \lambda k - k \), \(b \rightarrow -k \), \(c \rightarrow 1 - c - d + \lambda k - k \), \(d \rightarrow 1 - b - c + \lambda k - k \), \(e \rightarrow 1 + a + \lambda k - k \) in Equation (2.3), we have

\[3F_2 \left[\begin{array}{c} -k, 1 + a - b + \lambda k - k, 1 - c - d + \lambda k - k \\ 1 - b - c + \lambda k - k, 1 + a + \lambda k - k \end{array} ; 1 \right] = \frac{\Gamma(1 - b - c + \lambda k - k)\Gamma(1 + a + \lambda k - k)\Gamma(d + k)}{\Gamma(1 + a - b + \lambda k - k)\Gamma(1 + c + \lambda k)\Gamma(d)} \times 3F_2 \left[\begin{array}{c} -a - c, b, d + k \\ 1 - c + \lambda k, d \end{array} ; 1 \right]. \] (2.4)

Substituting Equation (2.4) into Equation (2.2), we get Theorem 1 after some simplifications. \(\square \)

3. Proof of Theorem 2

For the sake of proving Theorem 2, we draw support from the binomial theorem and Chu–Vandermonde convolution (cf. [1, P. 67]):
\begin{equation}
\genfrac{}{}{0pt}{}{1}{F_0} \left[\begin{array}{c} -n \\ x \end{array} \right] = (1 - x)^n,
\end{equation}
\begin{equation}
\genfrac{}{}{0pt}{}{2}{F_1} \left[\begin{array}{c} -n, b \\ c \end{array} ; 1 \right] = \frac{(c - b)_n}{(c)_n}.
\end{equation}

Proof of Theorem 2. According to Equations (3.1) and (3.2), it is routine to verify that

$$\sum_{i=0}^{n} \frac{(-n)_i(b)_i}{i!(1 + c - b - n)_i} (-x)^i \sum_{k=0}^{n-i} \frac{(-n + i)_k(c + i)_k}{k!(1 + c - b - n + i)_k} = \frac{(b)_n}{(b - c)_n} (1 - x)^n.$$

Shifting the summation index \(k \to k - i \) and then interchanging the summation order in the last equation, we arrive at

$$\sum_{k=0}^{n} (-1)^k \binom{n}{k} (b - c - k)_n \frac{(c)_k}{(1 + c - b)_k} \sum_{i=0}^{k} \frac{(-k)_i(b)_i}{i!(c)_i} x^i = (b)_n (1 - x)^n.$$

It suits to Equation (1.7), and Equation (1.8) gives the dual relation

$$\sum_{k=0}^{n} (-1)^k \binom{n}{k} \frac{b - c}{(b - c - n)_{k+1}} (b)_k (1 - x)^k = \frac{(c)_n}{(1 + c - b)_n} \sum_{i=0}^{n} \frac{(-n)_i(b)_i}{i!(c)_i} x^i.$$

This completes the proof of Theorem 2. \(\square \)

4. Proof of Theorem 3

For the purpose of proving Theorem 3, we need the following lemma.

Lemma 8. Let \(n \) be a nonnegative integer and let \(x \) be a complex number. Then

\begin{equation}
\sum_{k=0}^{n} \frac{(-n)_k}{(2 + n)_k} (1 + 2k)^2 = \frac{1 + n}{1 - 2n},
\end{equation}
\begin{equation}
\sum_{k=0}^{n} \frac{(-n)_k(1 - x)_k}{(2 + n)_k(1 + x)_k} (1 + 2k) = \frac{x(1 + n)}{x + n}.
\end{equation}
Proof. It is not difficult to show that
\[\sum_{k=0}^{n} \frac{(-n)_k (b)_k}{k!(2 + n)_k} (1 + 2k)^2 \]
\[= \sum_{k=0}^{n} \frac{(-n)_k (b)_k}{k!(2 + n)_k} + 4 \sum_{k=1}^{n} \frac{(-n)_k (b)_k}{k!(2 + n)_k} k + 4 \sum_{k=1}^{n} \frac{(-n)_k (b)_k k^2}{k!(2 + n)_k} \]
\[= \sum_{k=0}^{n} \frac{(-n)_k (b)_k}{k!(2 + n)_k} - \frac{8bn}{2 + n} \sum_{k=0}^{n-1} \frac{(1 - n)_k (1 + b)_k}{k!(3 + n)_k} \]
\[- \frac{4b(1 + b)n(1 - n)}{(2 + n)(3 + n)} \sum_{k=0}^{n-2} \frac{(2 - n)_k (2 + b)_k}{k!(4 + n)_k}. \]

Taking \(b = 1 \) in the last equation and then evaluating the three series on the right-hand side by Equation (3.2), we obtain Equation (4.1).

Setting \(a = 1, b = 1, c = 1 - x \) in Dougall’s summation formula for \(5F_4 \) series (cf. [1, P. 71]):
\[5F_4 \left[\frac{a, 1 + \frac{a}{2}, b, c, -n}{\frac{a}{2}, 1 + a - b, 1 + a - c, 1 + a + n; 1} \right] = \frac{(1 + a)n(1 + a - b - c)_n}{(1 + a - b)_n(1 + a - c)_n}, \]
we get Equation (4.2). \(\square \)

Now we prove Theorem 3.

Proof of Theorem 3. In accordance with Lemma 8, it is easy to see that
\[\sum_{k=0}^{n} (-1)^k \binom{n}{k} \frac{1 + 2k}{(1 + n)_k + 1} k! \left\{ \frac{1 + 2k}{1 + 2x} - \frac{1}{1 + 2x} (1 - x)_k \right\} = \frac{n}{(1 - 2n)(n + x)}. \]
The last equation fits into Equation (1.8), and Equation (1.7) produces the dual relation
\[\sum_{k=0}^{n} (-1)^k \binom{n}{k} (1 + k)^n \frac{k}{(1 - 2k)(k + x)} = n! \left\{ \frac{1 + 2n}{1 + 2x} - \frac{1}{1 + 2x} (1 - x)_n \right\}. \]
This completes the proof. \(\square \)

Acknowledgments. The authors are grateful to the reviewer for helpful comments. The work is supported by the National Natural Science Foundation of China (No. 12071103).
References

