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Abstract

In diffusion, a chip-firing variant, chips flow from places of high concentration to
places of low concentration (or equivalently, from the rich to the poor). It was
proved by Long and Narayanan that this process is periodic with period 1 or 2. In
this paper, we enumerate the number of period configurations on complete graphs
using connections to polyominoes.

1. Introduction

Diffusion involves vertices sending chips, one at a time, to those adjacent vertices

that have fewer chips. This model was introduced in [3], and in [6], it was shown

that the diffusion process ended either when all the vertices have the same number

of chips or the process alternated between two states. See Figure 1 for an example.

In this paper, with Lemma 1, we show that there is an equivalence relation on the

states, with only a finite number of equivalence classes. Consequently, the question

of “how many non-equivalent ways can the diffusion process terminate?” can be

raised.

We are interested in counting the number of configurations (distributions of chips)

on Kn, n ≥ 1 (up to equivalence). Configurations either exist inside the pre-period

(meaning that they never repeat) or inside the period (meaning that they will repeat

infinitely). We will show, with Theorem 3, a bijection between the number of period

1This author was supported by NSERC.
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configurations (up to equivalence) that exist on unlabelled complete graphs of order

n and the number of board-pile n-ominoes (or sets of stacked rectangles of height

1 with a total area of n). An example of a board-pile n-omino is given in Figure 2,

and an example of a configuration on Kn is given in Figure 3.
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Figure 1: Several steps in a diffusion game on P5. The period begins with C3. This
is the first configuration that is repeated.
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Figure 2: Board-pile 6-omino X.
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Figure 3: Configuration on a complete graph, K5.

Unlike some other chip-firing processes, like the original chip-firing game [1] and

brushing [7], in diffusion it is possible for a vertex to initially have a positive number

of chips but for that number to become negative as time goes on. For example if

some vertex v with n chips, n ∈ N, is adjacent to n+1 vertices, each of which having

0 chips, then after firing, v would have −1 chips. However, diffusion is such that

an addition of some constant k chips, k ∈ Z, to each vertex will have no effect on

determining when and if a chip will move from one vertex to another (see Lemma 1).

So if one wanted to view diffusion as a process in which vertices never had negative

amounts of chips, one would only need to add a sufficient constant k, k ∈ N, to each

vertex. Some results pertaining to locating an appropriate k value for any given

graph can be found in [2].

2. Diffusion Background

We begin with some necessary terminology.

Each vertex is assigned a stack size which is an integral number. This number

represents the number of chips a vertex has. At each time step, the chips are
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redistributed by firing the vertices of the graph such that the following rule is

obeyed: if a vertex is adjacent to a vertex with fewer chips, it sends a chip to that

vertex, meaning a chip is taken from its stack and added it to the stack of the

neighbor with fewer chips. Note that when a vertex fires but has no neighbors with

fewer chips, it does not send any chips. An assignment of stack sizes to the vertices of

a graphG is referred to as a configuration and is denoted C = {(v, |v|C) : v ∈ V (G)},
where |v|C is the stack size of v in C. We omit the superscript when the configuration

is clear. A vertex v is said to be richer than another vertex u in configuration C if

|v|C > |u|C . In this instance, u is said to be poorer than v in C.

In diffusion, given a graph G and a configuration C on G, to fire C is to decrease

the stack size of every vertex v ∈ V (G) by the number of poorer neighbors v has

and increase the stack size of v by the number of richer neighbors v has. More

formally, for all v, let ZC
− (v) = {u ∈ N(v) : |v|C > |u|C} and let ZC

+ (v) = {u ∈
N(v) : |u|C > |v|C}. Firing results in every vertex v changing from a stack size of

|v|C to a stack size of |v|C + |ZC
+ (v)| − |ZC

− (v)|.
The diffusion process occurs in steps, which correspond to the discrete time

increments. A step consists of both a configuration and the subsequent firing of the

vertices in that configuration, which yields the configuration for the next step. We

refer to the configuration at step 0 as the initial configuration. The firing of vertices

at step 0 which yields the configuration at step 1 is called the initial firing.

Given a graph G and an initial configuration, as time progresses in the diffusion

process, we may want to refer to the configuration at a given step or the stack size

of a particular vertex. The configuration at step t is denoted by Ct, so the initial

configuration is C0. The stack size of vertex v at time t is denoted |v|C0
t . We omit

the superscript when the initial configuration is clear from context. This means that

the configuration corresponding to step t can be expressed as Ct = {(v, |v|C0
t ) : v ∈

V (G)}. When step t occurs, the vertices of our graph fire according to their stack

sizes in Ct and the configuration corresponding to step t+1, Ct+1, is obtained. The

configuration sequence Seq(C0) = (C0, C1, C2, . . . ) is the sequence of configurations

that arises as the steps of the diffusion process occur. The configuration sequence

clearly depends on both the initial configuration and the graph G. However, G

is omitted from the notation since it will always be clear to which graph we are

referring.

For a configuration sequence Seq(C0), a positive integer p is a period length if

Ct = Ct+p for all t ≥ N for some natural number N . In this case, N is a preperiod

length. For such a value N , if k ≥ N , then we say that the configuration Ck is inside

the period. For the purposes of this paper, all references to period length will refer to

the minimum period length p in a given configuration sequence. Also, all references

to preperiod length will refer to the least preperiod length that yields that minimum

period length p in a given configuration sequence. Given two configurations, C and

D, of a graph G, in which the vertices are labelled, C and D are equal if |v|C = |v|D
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for all v ∈ V (G). In Figure 1, the period length is 2 and the preperiod length is 3.

In their paper [6], Long and Narayanan prove that the period length of every

configuration sequence is either 1 or 2. Let Seq(C0) denote the singleton or or-

dered pair of configurations contained within the period of a configuration sequence

Seq(C0).

Let C be a configuration on a graph G. Let C+k denote the configuration created

by adding an integer k to every stack size in the configuration C. Two configuration

sequences, Seq(C) and Seq(D), are equivalent if Seq(C + k) = Seq(D) for some

integer k. For all configurations C and all integers k, we say that C and C + k are

equivalent.

We see an example of equivalent configuration sequences in Figure 4.

A configuration D on a graph G is a period configuration if D is in Seq(C) for

some configuration C.

We conclude this section with the following lemma which will prove useful. It

was first stated in [3]. Here we include the proof from [8].

Lemma 1. Let C and D be configurations on a graph G. Let k be an integer.

Suppose that for all v ∈ V (G), |v|C = |v|D + k. Then for all t, |v|Ct = |v|Dt + k.

Proof. We will prove this by induction on t. Let C and D be configurations on a

graph G. Let k be an integer. Suppose that for all v ∈ V (G), |v|C = |v|D + k. So

for all u, v ∈ V (G), |u|C > |v|C if and only if |u|C = |u|D + k > |v|D + k = |v|C .

Thus after the first firing, we get that |u|C1 = |u|D1 + k for all u ∈ V (G). We will

consider this as the base case of an induction. Our induction hypothesis is that

|v|Ct = |v|Dt + k for all v ∈ V (G). So for all u, v ∈ V (G), |u|Ct > |v|Ct if and

only if |u|Ct = |u|Dt + k > |v|Dt + k = |v|Ct . Thus, after the firing at step t, we

get that |u|Ct+1 = |u|Dt+1 + k for all u ∈ V (G). Thus, we conclude that for all t,

|v|Ct = |v|Dt + k.

3. Polyominoes

We now introduce polyominoes. The following definitions are from David Klarner’s

paper [4], reworded slightly to improve the clarity of our results.

Definition 1. A polyomino is a plane figure composed of a number of connected

unit squares joined edge on edge. A polyomino with exactly n unit squares is called

an n-omino.

Definition 2. In a polyomino X, a horizontal strip, or h-strip, is a maximal rect-

angle of height one.

By convention, we will set each h-strip in the plane so that its height spans from

an integer k to k + 1.



INTEGERS: 22 (2022) 6
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Figure 4: Two equivalent configuration sequences.
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Definition 3. The infinite area enclosed by the lines y = k and y = k+ 1 is called

a row.

Definition 4. A board-pile polyomino is a polyomino which has a finite number of

h-strips, with one h-strip per row. A board-pile polyomino with n unit squares is

called a board-pile n-omino.

With this, we can now begin to prove that there exists a bijection between the

number of board-pile n-ominoes and the number of period configurations of an unla-

belled complete graph on n vertices. To accomplish this, we first develop a notation

for polyominoes that will eliminate the necessity of a pictorial representation. Then

we define a mapping from the set of all board-pile polyominoes on n unit squares

to the set of all period configurations of (an unlabelled) Kn up to equivalence, and

then show that mapping to be a bijection.

Given a polyomino X, we will use the convention of labelling the h-strips from

bottom to top as S1, S2, . . . , SN , where N is the number of h-strips in X.

A board-pile polyomino X can be represented as a list of ordered pairs of the form

X = [(d1, |S1|), (d2, |S2|), (d3, |S3|), . . . , (dN , |SN |)], where |Si| is the number of unit

squares in the h-strip Si, and di is the difference between the greatest x-coordinate

in Si and the least x-coordinate in Si−1. By convention, d1 = 0. Note that since

polyominoes are connected edge on edge, di ≥ 1 for all i ≥ 2. See Figure 5 for an

example of a board-pile 6-omino with h-strips S1, S2, S3.

1
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3

3

S1

S2

S3

X = {(0, 2), (3, 3), (2, 1)}

Figure 5: Board-pile 6-omino X with shading differentiating between S1, S2, and
S3.
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4. Period Configurations on Unlabelled Complete Graphs

In this section, we will be counting the number of period configurations that exist

on unlabelled complete graphs.

A configuration C of an unlabelled Kn, n ≥ 1, is represented by a set of cardinal-

ity N , where N is the number of distinct stack sizes. We will use the notation ak to

represent k instances of stack size a in C. An example is shown in Figure 6. Note

the difference between this notation and that which is used in the first section for

labelled graphs. As Kn is a vertex transitive graph, we need not label the vertices.

Thus in our notation, we do not need to use a set of ordered pairs to keep vertex

labels and corresponding stack sizes together.

3 5

5

4

4

C = {3, 42, 52}

Figure 6: Configuration on an unlabelled complete graph.

We will show that given n ∈ N, we can define a map f from the set of all board-

pile n-ominoes to a set of period configurations on Kn, and show this map to be a

bijection, thus giving a way to enumerate all period configurations on Kn.

Let Bn be the set of all board-pile n-ominoes, Pn a set of configurations on Kn

and f : Bn → Pn be such that for a board-pile n-omino

X = {(d1, |S1|), (d2, |S2|), (d3, |S3|), . . . (dN , |SN |)},

f(X) = f({(d1, |S1|), (d2, |S2|), (d3, |S3|), . . . (dn, |SN |)}) (1)

=
{

0|S1|,
( 2∑

i=1

di

)|S2|
,
( 3∑

i=1

di

)|S3|
, . . .

( N∑
i=1

di

)|SN |}
. (2)

It will be shown in Theorem 3 that Pn is the set of period configurations of Kn

(up to the equivalence that the least stack size is 0). As can be seen from f , the

board-pile polyomino X is mapped to a configuration with least stack size 0. From

Lemma 1, we know that any configuration is equivalent to one with minimum stack
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size 0.

The configuration f(X) corresponds to a complete graph that is such that its

number of vertices is equal to the number of unit squares in X. The number of

unique stack sizes in f(X) is equal to N , the number of h-strips in X. The unit

squares of X are partitioned by the h-strips into S1, S2, . . . , SN . Similarly, the

vertices of Kn with configuration f(X) are partitioned into N sets of vertices, each

with a common stack size.

The complete graph configuration f(X) has
∑N

k=1 |Sk| vertices. We denote the

set of vertices in f(X) corresponding to the h-strip Sk to be Vk for all k ≤ N .

Each v ∈ Vk has a stack size of
∑k

i=1 di. An example of this mapping is shown in

Figure 7.

We will now use f to show that the number of period configurations of Kn is

equal to the number of board-pile polyominoes containing exactly n unit squares.

Lemma 2. Let X = {(d1, |S1|), (d2, |S2|), (d3, |S3|), . . . (dN , |SN |)} be a board-pile

polyomino with exactly N h-strips. If 1 ≤ i ≤ N−1, then 1 ≤ di+1 ≤ |Si|+|Si+1|−1.

Proof. Suppose 1 ≤ i ≤ N − 1. Since Si and Si+1 are adjacent h-strips, and

polyominoes, by definition, are joined edge on edge, the distance from the least

x-coordinate of Si to the greatest x-coordinate of Si+1 must be less than the sum

of the two lengths (|Si| + |Si+1|). So, di+1 must be less than |Si| + |Si+1|. Since

di+1 is equal to the difference between the greatest x-coordinate in Si and the least

x-coordinate in Si−1, and since Si and Si−1 are connected edge on edge, di+1 ≥ 1.

Thus, we conclude 1 ≤ di+1 ≤ |Si|+ |Si+1| − 1.

Theorem 3. For all n ≥ 1, the set of all board-pile n-ominoes has the same car-

dinality as the set of all period configurations on unlabelled complete graphs up to

equivalence.

Proof. This proof will amount to proving a list of three statements. Consider the

map f from Equation 1. We will show that Pn is the set of period configurations of

Kn (up to the equivalence that the least stack size is 0) (i), and that f is a bijection

by showing that the map is surjective (ii) and injective (iii). This will prove that

the set of all board-pile n-ominoes has the same cardinality as the set of all period

configurations on an unlabelled copy of Kn up to equivalence. The statements are

as follows.

(i) For any board-pile polyomino X on n unit squares, n ≥ 1, f(X) is a period

configuration on Kn.

(ii) For any period configuration C of Kn, there is some board-pile polyomino X

on n unit squares such that C = f(X).

(iii) For any two board-pile polyominos X and Y , if X 6= Y , then f(X) 6= f(Y ).
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Figure 7: Mapping a board-pile 10-omino to its corresponding configuration on K10.

(i) We will first suppose that X is a board-pile n-omino and reach that f(X) is

a period configuration on the complete graph Kn. We will prove this by inducting

on the number of h-strips in the board-pile n-omino. We begin with showing the

basis cases of a polyomino having one h-strip or two h-strips hold true.

A board-pile polyomino with exactly one h-strip maps trivially to a period con-
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figuration on Kn. In this case, every stack size is equal to 0, as f([(d1, S1)]) = {0S1},
which is a period configuration with a period length of 1.

We now show that any board-pile polyomino with exactly two h-strips maps to

a period configuration. Let X = [(d1, S1), (d2, S2)] be such a board-pile polyomino.

Recall that, by convention, d1 = 0. So f(X) = {0|S1|, d
|S2|
2 }. Let V1 be the |S1|

vertices with stack size 0 and let V2 be the |S2| vertices with stack size d2.

By Lemma 2, in f(X) the vertices of V2 must have a common stack size such

that 1 ≤ d2 ≤ |S1| + |S2| − 1. Without loss of generality, assume that the initial

configuration for Kn is C0 = f(X). After the initial firing, the vertices of V1 will

each have |S2| chips, having just received from |S2| richer neighbors, and the vertices

of V2 will each have d2 − |S1| chips, having just sent to |S1| poorer neighbors. Call

this configuration C1. By Lemma 1, we can normalize the resulting configuration by

subtracting d2−|S1| from the stack size of every vertex in C1, leaving |S1|+ |S2|−d2
chips on each of the vertices in V1 and leaving 0 chips on each of the vertices in

V2. Note that since the x-distance from the least x-coordinate of S1 to the greatest

x-coordinate of S2 is d2, then the x-distance from the least x-coordinate of S2 to

the greatest x-coordinate of S1 must, when added to d2, equal the sum of the two

h-strip lengths. So, the x-distance from the least x-coordinate of S2 to the greatest

x-coordinate of S1 is |S1|+ |S2| − d2. To show that the relative sizes have changed

and that in the second firing, the vertices of V1 will send chips back to the vertices

of V2, we must show that |S2| + |S1| − d2 > 0. We know that the maximum value

that d2 can take on is |S1|+ |S2| − 1. So,

|S1|+ |S2| − d2 ≥ |S1|+ |S2| − (|S1|+ |S2| − 1), so

|S1|+ |S2| − d2 ≥ |S1|+ |S2| − |S1| − |S2|+ 1, thus

|S1|+ |S2| − d2 ≥ 1, therefore

|S1|+ |S2| − d2 > 0.

Thus we can conclude that in C1, the vertices of V1 are richer than the vertices

of V2.

This gives us that C1 is itself equal to f(X ′) for some board-pile n-omino X ′. In

fact, since in f(X ′), the difference between the two stack sizes is |S1|+ |S2|−d2 and

every pair of vertices with common stack size in C0 also have common stack size in

C1, X ′ is the board-pile n-omino created by reflecting X about the horizontal axis

(see Figure 8).

Call the configuration after the second firing C2. In C2, the vertices of V2 have

|S1| chips and the vertices of V1 have |S1| − d2 chips. By adding d2 − |S1| to both

totals (to counteract our subtracting of d2−|S1| chips previously), we get back where

we started with the vertices of V1 having 0 chips and the vertices of V2 having d2
chips. So C2 = C0 and we have that f(X) is a period configuration.
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Thus, the basis cases of our induction hold.
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Figure 8: Board-pile polyominoes X and Y are reflections of each other over the
x-axis. The complete graph configurations f(X) and f(Y ) contain one vertex for
every unit square and the vertices are given the stack sizes shown. The complete
graph configuration f(X) yields the configuration f(Y ) upon firing.

We now continue our induction on the number of h-strips to show that for all

board-pile n-ominoes, X, the initial firing of C0 = f(X) yields C1 = f(X ′) (up

to an addition of a constant to each of the stack sizes) where X ′ is the board-pile

n-omino created by reflecting X about the horizontal axis. When f(X ′) is fired,

we will show that we again obtain f(X) and this will imply that f(X) is a period

configuration of some complete graph.

Our inductive hypothesis is that for all board-pile polyominoes X with at most

k h-strips, the initial firing of f(X) yields f(X ′) (up to an addition of a constant to
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each of the stack sizes) where X ′ is the board-pile polyomino created by reflecting

X about the horizontal axis.

Now suppose we have a board-pile n-omino, Y = [(d1, S1), . . . , (dk+1, Sk+1], with

exactly k + 1 h-strips. Then f(Y ) is some configuration on Kn. We know by

our inductive hypothesis that if Sk+1 were removed from Y , then the resulting

polyomino would map to a period configuration on some complete graph.

Let C0 = f(Y ). Recall that Vj is the set of |Sj | vertices in C0 with stack size

(
∑j

i=1 di), where 1 ≤ j ≤ k + 1.

Let W be the board-pile polyomino created by removing the h-strip, Sk and Sk+1

from Y .

By our induction hypothesis, f(W ) when fired is equal to the configuration

f(W ′), where W ′ is obtained by reflecting the polyomino W about the horizon-

tal axis.

Now consider adding Sk and Sk+1 back to obtain Y and configuration C0 = f(Y ).

Consider the initial firing to obtain C1.

The vertices of Vk+1 and Vk in C0 have greater stack size than all other vertices

in Vi, i < k, and thus send a chip to all of those vertices. By Lemma 1, the addition

of such vertices to a configuration cannot affect the relative stack sizes of the other

vertices upon firing because each of the vertices in W will receive a chip from each

vertex in Vk and Vk+1. We know from our base cases that the board-pile polyomino

Z, composed of just the squares of the top two h-strips of Y , namely Sk and Sk+1,

is such that the configuration f(Z), when fired, obtains a new configuration f(Z ′)

where Z ′ is the polyomino Z reflected about the horizontal axis. That is, the vertices

in Vk become richer than those in Vk+1 after the initial firing. Thus in Y , after the

initial firing when we obtain C1, all vertices in Vk and Vk+1 lose a chip to each

vertex in Vi, i < k, which by Lemma 1 does not affect the diffusion process. Thus

in C1, the vertices of Vk are richer than those of Vk+1.

So in C1, for every pair of vertices u and v, if |u|0 > |v|0, then |u|1 < |v|1.

Therefore, C1 = f(Y ′) where Y ′ is the polyomino Y reflected about the horizontal

axis.

(ii) We now present the second portion of the proof where we begin by supposing

that C is a period configuration on Kn and reach that there exists some board-pile

n-omino X such that C = f(X).

Suppose the vertices of C have N distinct stack sizes, listed in increasing order,

{
0a1 ,

( 2∑
i=1

di

)a2

, . . . ,
( N∑

i=1

di

)aN
}

for some set a1, a2, . . . , aN ∈ N and some set d1 = 0, d2, d3, . . . , dN with d2, . . . , dN ∈
N. By Lemma 1, we can suppose at least one vertex in C has a stack size of 0 and
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that every stack size is non-negative.

For j, 1 ≤ j ≤ N , let Vj be the set of all vertices in C with stack size (
∑j

i=1 di).

Let X be a collection of N h-strips on a plane with exactly one h-strip per row for

y = 1, 2, . . . , N . Call these h-strips S1, S2, . . . , SN , with Si spanning y-coordinates

i − 1 to i for all i ≤ N and containing |Si| unit squares. Arrange these h-strips

so that dj is equal to the x-distance from the leftmost coordinate of Sj−1 to the

rightmost coordinate of Sj .

By the definition of board-pile polyomino, since X is a plane figure with a finite

number of h-strips and exactly one h-strip per row, all that remains to be shown is

that the unit squares of X are connected edge on edge in a single connected plane

figure.

In particular, we must prove that dj+1 ≤ |Vj | + |Vj+1| − 1 for all j such that

1 ≤ j ≤ N − 1. By Lemma 2, this will imply that every pair of h-strips |Sj | and

|Sj+1| are connected edge on edge, proving that X is a single board-pile polyomino

rather than a number of disconnected board-pile polyominoes in the plane.

By contradiction, suppose dj+1 > |Vj |+ |Vj+1| − 1 for some j such that 1 ≤ j ≤
N − 1. Let C = C0 be the initial configuration on Kn. Following the initial firing,

the vertices of Vj each have (
∑j

i=1 di) + |Vj+1| + δ chips, where δ represents the

difference between the number of vertices richer than those in Vj+1 and the number

of vertices poorer than those in Vj . Also, following the initial firing, the vertices of

Vj+1 each have (
∑j+1

i=1 di)−|Vj |+ δ chips. Since C is a period configuration, we get

that

(

j∑
i=1

di) + |Vj+1|+ δ > (

j+1∑
i=1

di)− |Vj |+ δ

|Vj+1| > dj+1 − |Vj |. (1)

Together with dj+1 > |Vj |+ |Vj+1| − 1, we will reach a contradiction. We have

dj+1 > |Vj |+ |Vj+1| − 1

dj+1 − |Vj | > |Vj |+ |Vj+1| − 1− |Vj |
dj+1 − |Vj | > |Vj+1| − 1. (2)

Combining inequalities (1) and (2), we get that some integer, dj+1 − |Vj |, is less

than the integer |Vj+1| and greater than |Vj+1| − 1. This is a contradiction. Thus

for all period configurations C, C = f(X), for some board-pile polyomino X.

(iii) For the final portion of the proof, we begin by supposing that X and Y are

board-pile polyominoes and that X 6= Y . Suppose, by way of contradiction, that

f(X) = f(Y ) and call this configuration C.
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Let X = {(d1, |S1|), (d2, |S2|), . . . (dN , |SN |)}, and let

Y = {(d′1, |S′1|), (d′2, |S′2|), . . . (d′N ′ , |S′N ′ |)}.
Since C = f(X) = f(Y ), the length of each h-strip in ascending order must be

equal in X and Y , that is |Si| = |S′i| for 1 ≤ i ≤ N . It follows that in order to reach

a contradiction, we only need to show that the corresponding di values in X and Y

are equal for 1 ≤ i ≤ N .

By convention, d1 = d′1 = 0 for both X and Y . By induction, we now suppose

that di = d′i for 0 ≤ i ≤ k−1 are equal in X and Y . By the definition of f , dk = d′k
since there are |Sk| = |S′k| vertices in C with stack size equal to

∑k−1
i=0 di. Therefore,

the corresponding di values in X and Y are equal, which is a contradiction since

X 6= Y . Therefore f(X) 6= f(Y ).

Therefore, f is a bijection and thus the set of all board-pile n-ominoes has the

same cardinality as the set of all period configurations on an unlabelled Kn up to

equivalence.

Since we have shown f to be bijective, we can now count the number of period

configurations of unlabelled complete graphs with a given number of vertices by

using previous results regarding board-pile polyominoes.

Theorem 4 ([5], [9]). The number of board-pile polyominoes with n unit squares

follows the recurrence relation an = 5an−1 − 7an−2 + 4an−3 for n ≥ 5 with initial

values a1 = 1, a2 = 2, a3 = 6, and a4 = 19.

Thus from Theorem 3 we have the following.

Theorem 5. The number of period configurations of a complete graph on n ver-

tices follows the recurrence relation an = 5an−1 − 7an−2 + 4an−3 for n ≥ 5 with

initial values a1 = 1, a2 = 2, a3 = 6, and a4 = 19.

Corollary 1 ([5]). The sequence (an), the number of period configurations of

complete graphs (up to equivalence), has a growth rate of approximately 3.2.

5. Open Problems

One of the main open problems in this area is the enumeration of pre-period and

period configurations. In this paper, we found a relationship between board-pile

polyominoes and period configurations of Kn, which allowed us to count the number

of period configurations. Perhaps there are other combinatorial objects related to

the diffusion process on other families of graphs that will aid in the enumeration of

their pre-period and period configurations as well.
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Prior to this result using polyominoes, the only results for counting period con-

figurations in diffusion were for paths and stars [8]. It remains an open problem to

count all of the period configurations up to equivalence on many other families of

graphs like cycles, trees, and complete bipartite graphs. However, there also remain

many questions about pre-period configurations that have not been answered.
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