
#G2 INTEGERS 22 (2022)

PYRAMID NIM

Stephen J. Curran
Department of Mathematics, University of Pittsburgh at Johnstown, Johnstown,

Pennsylvania
sjcurran@pitt.edu

Daniel Gray
Department of Mathematical Sciences, Florida Atlantic University, Boca Raton,

Florida
dgray24@fau.edu

Stephen C. Locke
Department of Mathematical Sciences, Florida Atlantic University, Boca Raton,

Florida
lockes@fau.edu

Richard M. Low
Department of Mathematics, San Jose State University, San Jose, California

richard.low@sjsu.edu

Received: 8/4/21, Accepted: 1/19/22, Published: 2/7/22

Abstract

Pyramid Nim is played on a directed acyclic graph. Players remove vertices of a
path of undominated vertices. We determine Grundy-values for some small games
of Pyramid Nim, and Grundy-values for a special class of directed acyclic graphs
called triangular pyramids. The rules of the game are quite simple, and the analysis
in general may be difficult. These two properties make Pyramid Nim an appealing
game.

1. Introduction and Preliminaries

Combinatorial game theory (CGT) developed in the context of recreational mathe-

matics. In their seminal work and with a spirit of playfulness, Berlekamp, Conway

and Guy [3, 6] established the mathematical framework from which games of com-

plete information could be studied. The power of this theory would soon become

apparent and was utilized by many researchers (see Fraenkel’s bibliography [7]).

Along with its natural appeal, combinatorial game theory has applications to com-

plexity theory, logic, and biology. Literature on the subject continues to increase and
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the interested reader can find comprehensive introductions to CGT in [2, 3, 6, 13].

Additional research articles with a theoretical flavor can be found in [1, 8, 9, 10, 11].

We first recall some basic concepts from CGT which are used in this paper.

Terms which are not explicitly defined can be found in [13]. A combinatorial game

is one of complete information and no element of chance is involved in gameplay.

Each player is aware of the game position at any point in the game. Under normal

play, two players (P1 and P2) alternate taking turns and a player loses when he

cannot make a move. An impartial combinatorial game is one where both players

have the same options from any position. A finite game eventually terminates (with

a winner and a loser, no draws allowed). It is understood that P1 makes the first

move in any combinatorial game.

For any finite impartial combinatorial game Γ, there is an associated non-negative

integer value (Grundy-value) Gr(Γ). The Grundy-value Gr(Γ) immediately tells us

if Γ is a P-position (previous player win) or an N -position (next player win). In

particular, Gr(Γ) = 0 if and only if Γ is a P-position. To compute Gr(Γ), we need

the following definitions.

Definition 1. The minimum excluded value (or mex ) of a multiset of non-negative

integers is the smallest non-negative integer which does not appear in the multiset.

This is denoted by mex{t1, t2, t3, . . . , tk}.

Definition 2. Let Γ be a finite impartial game. Then, the Grundy-value of Γ

(denoted by Gr(Γ)) is defined to be

Gr(Γ) = mex{Gr(∆) : ∆ is an option of Γ}.

The sum of finite impartial games is the game obtained by placing the individual

games, side by side. On a player’s turn, a move is made in a single summand.

Under normal play, the last person to make a move wins. For any finite impartial

game Γ = γ1 + γ2 + · · · + γk, the Grundy-value of Γ is computed in the following

way. First, convert Gr(γi) into binary. Then, compute
⊕

Gr(γi), where the sum is

BitXor (Nim-addition). Finally, convert this value back into a nonnegative integer.

Example 1. Suppose that γ1, γ2 and γ3 are finite impartial games with Gr(γ1) = 1,

Gr(γ2) = 2 and Gr(γ3) = 3. Then the game Γ = γ1 + γ2 + γ3 has Grundy-value

Gr(Γ) = 01⊕ 10⊕ 11 = 00,

and thus has Grundy-value 0. ♦

2. Pyramid Nim

In 1902, Bouton [5] gave a beautiful mathematical analysis and complete solution

for Nim. Since then, many variations of Nim have been investigated. Within the
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literature, analyses on Nim variants with modified rule sets, Nim played on different

configurations (circular, triangular and rectangular), and Nim played on graphs can

be found. As of this writing, a keyword search for Nim yields 135 entries in the

MathSciNet database.

Here is how Pyramid Nim is played. For general graph-theoretic definitions, we

refer the reader to [4]. Let D be a directed acyclic graph. A source in D is a

vertex of indegree zero. A sink in D is a vertex with outdegree zero. We say that

D is weakly-connected if the undirected graph that results from removing the ori-

entations from the arcs of D is a connected graph. If a directed acyclic graph D

has more than one vertex, D cannot be strongly-connected. Hence, there will be

no confusion to say that D is connected if it is weakly-connected. A subdigraph

H of D is undominated if there are no pairs of vertices x and y with x in V (H)

and y in V (D) − V (H) such that yx is an arc of D. Two players play Pyramid

Nim on D by alternately removing the vertices of an undominated directed path

P , where P has at least one vertex. A player loses when there is no move remaining.

We note the following:

• Pyramid Nim is an impartial game which has to end after at most |V (D)|
moves.

• If the digraph D has connected components H1, H2, . . . , Hk, then Gr(D) =

Gr(H1)⊕Gr(H2)⊕ · · · ⊕Gr(Hk).

Definition 3. The triangular pyramid of height n, denoted by Tn, is the directed

acyclic graph, with n squares in the bottom row, that has vertices representing the

squares in a 2-dimensional pyramid with a directed edge from square A to square

B if square A sits partially on top of square B.

Example 2. The triangular pyramid T3 of height three is illustrated in Figure 1.

There are three possible moves from T3, up to isomorphism. These three possible

moves from T3 in Pyramid Nim are shown in Figure 2. The removed squares in

each move are shaded in blue. ♦

Figure 1: The triangular pyramid T3 of height three.
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Figure 2: The three possible moves in Pyramid Nim from T3, up to isomorphism.
The removed squares are shaded in blue.

Observation 1. If every connected component of D is a path, then Pyramid Nim

on D is equivalent to regular Nim.

Observation 2. If D has a single sink t and every other vertex has indegree at

most one, then ignoring t until the very last move results in a game of Nim. When

the indegree of t is reduced to one, the next player should take the remaining path.

The strategy for the directional dual is only a bit more complicated and we can

determine the Grundy-value of a position in O(|V (D)|) time.

Observation 3. If D has a single source s, and every other vertex has outdegree

at most one, then removing s leaves a game of Nim, and the first player to play

from D can leave a P-position by selecting an appropriate directed path. Thus, D

is an N -position.

In fact, we may calculate the Grundy-value of a singe source directed acyclic

graph such that every other vertex has outdegree at most one.

Theorem 1. Let D be a directed acyclic graph with a single source such that every

other vertex has outdegree at most one. Suppose the maximal paths from the source

have a1 + 1, a2 + 1, . . . , ak−1 + 1, and ak + 1 vertices. Let

s = a1 ⊕ a2 ⊕ · · · ⊕ ak and

S = {s} ∪ {s⊕ aj ⊕ i : 1 6 j 6 k, 0 6 i < aj}.

Then, Gr(D) = mex(S).

Proof. Let t be the source of D, and, for each 1 6 j 6 k, let Pj denote the maximal

path from the source that has aj +1 vertices. The possible moves from D are either

• remove the source t, or

• for some 1 6 j 6 k and 1 6 ` 6 aj , remove the `+ 1 vertices on path Pj that

are closest to the source (including the source).
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When we remove source t, the resultant Grundy-value is s = a1 ⊕ a2 ⊕ · · · ⊕ ak.

Consider the move of removing the `+ 1 vertices on path Pj that are closest to the

source for some 1 6 j 6 k and 1 6 ` 6 aj . Let i = aj − `. Then, we have i vertices

left on path Pj after applying this move where 0 6 i < aj . Hence, the Grundy-value

of this move is

a1 ⊕ a2 ⊕ · · · ⊕ aj−1 ⊕ i⊕ aj+1 ⊕ · · · ⊕ ak = s⊕ aj ⊕ i.

Therefore,

Gr(D) = mex
(
{s} ∪ {s⊕ aj ⊕ i : 1 6 j 6 k, 0 6 i < aj}

)
= mex(S).

3. Balanced Complete Binary Trees

We consider Pyramid Nim on a category of trees called balanced complete binary

trees.

Definition 4. The balanced complete binary tree of height n is defined recursively

by

1. B0 is a single-vertex directed acyclic graph, and

2. Bn+1 is constructed from two disjoint copies of Bn by adding a new source

with an arc to the source of each copy of Bn.

Remark 1. Alternatively, we may define Bn as the directed acyclic graph with

vertex set

V (Bn) = {1, 2, . . . , 2n+1 − 1}

and arc set

A(Bn) = {(j, 2j), (j, 2j + 1) : 1 6 j 6 2n − 1}.

We will show that Gr(Bn) is the highest power of 2 that divides n+1. In order to

demonstrate this result, we introduce the following defining property of the sequence

of highest powers of 2 in n+ 1, as n ranges over all non-negative integers.

Definition 5. For any non-negative integer n, let qn be the highest power of 2 in

n+ 1. We write n+ 1 = qnFn, where qn = 2tn for some non-negative integer tn and

Fn is an odd positive integer.

Lemma 1. We have q0 = 1. Also, let n be a non-negative integer. We have

q2n+k = qk for any integer 0 6 k < 2n − 1, and

q2n+k = 2qk for k = 2n − 1.
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Proof. Let 0 6 k < 2n− 1. Since k+ 1 = qkFk, we have q2n+kF2n+k = 2n + k+ 1 =

2n + qkFk. Thus, 2t2n+kF2n+k = 2n + 2tkFk = 2tk(2n−tk + Fk). Since n > tk,

t2n+k = tk and F2n+k = 2n−tk + Fk. Therefore, q2n+k = 2t2n+k = 2tk = qk.

Let k = 2n − 1. Then, q2n+k = 2t2n+k = 2n+1 = 2× 2tk = 2qk.

We use Lemma 1 to demonstrate that the Grundy-value of Bk is the highest

power of 2 that divides k + 1.

Theorem 2. For any non-negative integer k, Gr(Bk) is the highest power of 2 that

divides k + 1.

Proof. We use a double induction argument. For convenience, we let βk = Gr(Bk).

First, we observe that β0 = 1. If we remove the source of Bk, the resultant digraph

Bk − s has two connected components, each of which is a copy of Bk−1. Thus,

Gr(Bk − s) = 0. If we remove an undominated path P on i vertices, for some

2 6 i 6 k, from Bk, the resultant digraph Bk−V (P ) has i+1 connected components

consisting of one copy of each of Bk−1, Bk−2, . . . , Bk−i+1 and two copies of Bk−i.

Thus, Gr(Bk−V (P )) = βk−1⊕βk−2⊕· · ·⊕βk−i+1. If P is an undominated path on

k+1 vertices, the digraph Bk−V (P ) has k connected components consisting of one

copy of each of Bk−1, Bk−2, . . . , B0. Thus, Gr(Bk−V (P )) = βk−1⊕βk−2⊕· · ·⊕β0.

Hence, βk = mex{0, βk−1 ⊕ βk−2 ⊕ · · · ⊕ βj : 0 6 j 6 k − 1}. In particular,

β20+0 = β1 = mex{0, β0} = 2 = 2β0. This establishes the base case.

Suppose n is a positive integer and k is an integer where 0 6 k 6 2n − 1 such

that, for all integers 0 6 n′ < n, we have

• β2n′+k′ = βk′ for all integers 0 6 k′ < 2n
′ − 1,

• β2n′+k′ = 2βk′ for k′ = 2n
′ − 1, and

• β2n+j = βj for all integers 0 6 j < k.

We want to show that β2n+k = βk if 0 6 k < 2n−1, and β2n+k = 2βk if k = 2n−1.

Since βj satisfies the property of qj in Lemma 1 for all integers 0 6 j < 2n + k,

βj is the highest power of 2 that divides j + 1 for all integers 0 6 j < 2n + k. In

particular, β2n−1 is the highest power of 2 that divides 2n. Thus,

β2n−1 = 2n. (1)

Let kn = 2n − 1. By (1), we have βkn
= 2n. Let

S = {0, βkn−1 ⊕ βkn−2 ⊕ · · · ⊕ βj : 0 6 j 6 kn − 1}.

Then, βkn
= mex(S). Since S has at most kn + 1 = 2n distinct elements and βkn

=

mex(S) = 2n, S is a permutation on the set of non-negative integers {0, 1, . . . , 2n−
1}. Thus, S = {i : 0 6 i 6 2n − 1}.
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Suppose k = 0. We need to show that β2n+0 = βkn+1 = 1 = β0. Since βkn
= 2n

and S = {i : 0 6 i 6 2n − 1}, we have

β2n+0 = mex{0, βkn ⊕ βkn−1 ⊕ · · · ⊕ βj : 0 6 j 6 kn}
= mex{0, βkn

⊕ α : α ∈ S}
= mex{0, 2n ⊕ i : 0 6 i 6 2n − 1}
= mex{0, j : 2n 6 j 6 2n+1 − 1} = 1 = β0.

Suppose 0 < k < 2n − 1 = kn. Let β̂k = βk−1 ⊕ βk−2 ⊕ · · · ⊕ β0. Since 2n - j + 1

for all 0 6 j 6 kn − 1, we have βj = 2tj < 2n for all 0 6 j 6 kn − 1. Thus,

β̂k = βk−1 ⊕ βk−2 ⊕ · · · ⊕ β0 < 2n. By the induction hypothesis,

β2n+k−1 ⊕ β2n+k−2 ⊕ · · · ⊕ β2n+j = βk−1 ⊕ βk−2 ⊕ · · · ⊕ βj (2)

for all 0 6 j < k and

β2n+k−1 ⊕ β2n+k−2 ⊕ · · · ⊕ β2n ⊕ βkn
⊕ · · · ⊕ βj (3)

= βk−1 ⊕ βk−2 ⊕ · · ·β0 ⊕ βkn
⊕ · · · ⊕ βj

= β̂k ⊕ βkn
⊕ · · · ⊕ βj

for all 0 6 j 6 kn.

By (2), we have

mex{0,β2n+k−1 ⊕ β2n+k−2 ⊕ · · · ⊕ β2n+j : 0 6 j 6 k − 1} (4)

= mex{0, βk−1 ⊕ βk−2 ⊕ · · · ⊕ βj : 0 6 j 6 k − 1} = βk.

There are at most k < 2n − 1 distinct non-negative integers in the list

βk−1, βk−1 ⊕ βk−2, . . . , βk−1 ⊕ βk−2 ⊕ · · · ⊕ β0. (5)

Thus, there exists a positive integer r < 2n missing from (5). Hence,

βk = mex{0, βk−1 ⊕ βk−2 ⊕ · · · ⊕ βj : 0 6 j 6 k − 1} 6 r < 2n. (6)

Since S = {i : 0 6 i 6 2n − 1} and βkn
= 2n, we have

{βkn ⊕ βkn−1 ⊕ · · · ⊕ βj : 0 6 j 6 kn} = {βkn ⊕ α : α ∈ S}
= {2n ⊕ i : 0 6 i 6 2n − 1}
= {j : 2n 6 j 6 2n+1 − 1}.

Since β̂k < 2n,

{β̂k ⊕ βkn
⊕ βkn−1 ⊕ · · · ⊕ βj : 0 6 j 6 kn} = {β̂k ⊕ j : 2n 6 j 6 2n+1 − 1} (7)
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is a permutation on the set of integers {2n, 2n + 1 . . . , 2n+1 − 1}. By (3) and (7),

we have

{β2n+k−1 ⊕ β2n+k−2 ⊕ · · · ⊕ β2n ⊕ βkn
⊕ · · · ⊕ βj : 0 6 j 6 kn} (8)

= {j : 2n 6 j 6 2n+1 − 1}.

By (4), (6) and (8), we have

β2n+k = mex{0, β2n+k−1 ⊕ β2n+k−2 ⊕ · · · ⊕ βj : 0 6 j 6 2n + k − 1}
= mex

(
{0, β2n+k−1 ⊕ β2n+k−2 ⊕ · · · ⊕ β2n+j : 0 6 j 6 k − 1}

∪ {β2n+k−1 ⊕ β2n+k−2 ⊕ · · · ⊕ β2n ⊕ βkn
⊕ · · · ⊕ βj : 0 6 j 6 kn}

)
= mex

(
{0, βk−1 ⊕ βk−2 ⊕ · · · ⊕ βj : 0 6 j 6 k − 1}

∪ {j : 2n 6 j 6 2n+1 − 1}
)

= mex{0, βk−1 ⊕ βk−2 ⊕ · · · ⊕ βj : 0 6 j 6 k − 1} = βk.

Suppose k = 2n − 1 = kn. By the induction hypothesis, for all 0 6 j < kn,

β2n+j = βj . We want to show that β2n+kn
= 2βkn

. An argument similar to the one

above shows that

{0, β2n+kn−1 ⊕ β2n+kn−2 ⊕ · · · ⊕ β2n+j : 0 6 j 6 kn − 1}
= {0, βkn−1 ⊕ βkn−2 ⊕ · · · ⊕ βj : 0 6 j 6 kn − 1}
= S = {i : 0 6 i 6 2n − 1}

and

{β2n+kn−1 ⊕ β2n+kn−2 ⊕ · · · ⊕ β2n ⊕ βkn ⊕ · · · ⊕ βj : 0 6 j 6 kn}
= {j : 2n 6 j 6 2n+1 − 1}.

Hence,

β2n+kn
= mex{0, β2n+kn−1 ⊕ β2n+kn−2 ⊕ · · · ⊕ βj : 0 6 j 6 2n + kn − 1}
= mex

(
{0, β2n+kn−1 ⊕ β2n+kn−2 ⊕ · · · ⊕ β2n+j : 0 6 j 6 kn − 1}

∪ {β2n+kn−1 ⊕ β2n+kn−2 ⊕ · · · ⊕ β2n ⊕ βkn
⊕ · · · ⊕ βj : 0 6 j 6 kn}

)
= mex{j : 0 6 j 6 2n+1 − 1} = 2n+1 = 2βkn

.

Since βk satisfies the property of qk in Lemma 1, βk = Gr(Bk) is the highest

power of 2 that divides k + 1.

4. Grundy-values of Truncated Tn

We consider the triangular pyramid of height n with some of the top rows removed.
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Definition 6. Let T j
n denote the triangular pyramid of height n with the top j

rows removed.

We determine the Grundy-values of Tn with the top n−1 and n−2 rows removed.

Theorem 3. Let n be a positive integer. Then,

Gr(Tn−1
n ) = 1 if n is odd, and

Gr(Tn−1
n ) = 0 if n is even.

Proof. Since T1 is a single vertex, it has Grundy-value 1. Note that Tn−1
n corre-

sponds to the graph made up of n disjoint vertices. If n is even, then the BitXoR

of 1 ⊕ · · · ⊕ 1 (n terms) is 0, and thus Gr(Tn−1
n ) = 0. If n is odd, we see that

Gr(Tn−1
n ) = 1.

Theorem 4. Let n > 2 be an integer. Then,

Gr(Tn−2
n ) = 0 if n is odd, and

Gr(Tn−2
n ) = 2 if n is even.

Proof. It is straightforward to see that the Grundy-values of T1 and T 0
2 = T2 are 1

and 2, respectively. Let n > 2. The base case for the induction proof has already

been established. Now, assume that the claim of the theorem holds for all n 6 k.

Let us consider T k+1−2
k+1 = T k−1

k+1 . There are two cases to consider.

Case 1. Assume k is even. Remove an end vertex from the top row. This

results in a disjoint vertex, along with a T k−2
k . The Grundy-value of this position

is 1 ⊕ 2 = 3 by the inductive hypothesis. Removing an end vertex from the top

row and the resultant undominated vertex in the bottom row yields T k−2
k , which

has Grundy-value 2. If we remove an interior vertex from the top row of T k−1
k+1 ,

the resultant graph is T j−2
j + T k−1−j

k+1−j for some integer 2 6 j 6 k − 1. Since

j + (k + 1 − j) = k + 1 is odd, j and k + 1 − j have opposite parity. Thus, one

Grundy-value is 0 and the other is 2. Hence, Gr(T j−2
j )⊕Gr(T k−1−j

k+1−j ) = 0⊕ 2 = 2.

Thus, for k even, Gr(T k−1
k+1 ) = mex{2, 3} = 0.

Case 2. Assume k is odd. Remove an end vertex from the top row. This results in

a disjoint vertex, along with a T k−2
k . The Grundy-value of this position is 1⊕0 = 1

by the inductive hypothesis. Removing an end vertex from the top row and the

resultant undominated vertex in the bottom row yields T k−2
k , which has Grundy-

value 0. If we remove an interior vertex from the top row of T k−1
k+1 , the resultant

graph is T j−2
j +T k−1−j

k+1−j for some integer 2 6 j 6 k−1. Since j+ (k+ 1− j) = k+ 1

is even, j and k + 1 − j have the same parity. Thus, they each have the same

Grundy-value of β = 0 or β = 2. Hence, Gr(T j−2
j ) ⊕ Gr(T k−1−j

k+1−j ) = β ⊕ β = 0.

Thus, for k odd, Gr(T k−1
k+1 ) = mex{0, 1} = 2.
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We introduce the Pyramid Nim signature of n and k in order to determine the

Grundy-value of Tn−3
n .

Definition 7. Let n, k > 0 be integers. The Pyramid Nim signature of n and k is

given by

σ(n, k) = 2
(
(n+ 1)− 2b(n+ 1)/2c

)
+
(
k − 2bk/2c

)
.

Note that,

σ(n, k) = 1 if n is odd and k is odd, (9)

σ(n, k) = 3 if n is even and k is odd, (10)

σ(n, k) = 0 if n is odd and k is even, and (11)

σ(n, k) = 2 if n is even and k is even. (12)

Lemma 2. For all integers n, k > 0, we have

σ(n, k − 1) = σ(n, k)⊕ 1,

σ(n− 1, k) = σ(n, k)⊕ 2, and

σ(n− 1, k − 1) = σ(n, k)⊕ 3.

Proof. When n is odd, we have σ(n, k−1) = σ(n, k)⊕1 by (9) and (11). Also, when

n is even, we have σ(n, k − 1) = σ(n, k)⊕ 1 by (10) and (12). A similar argument

shows that σ(n− 1, k) = σ(n, k)⊕ 2 and σ(n− 1, k − 1) = σ(n, k)⊕ 3.

Definition 8. Let n > 2 and 0 6 k 6 n − 2 be integers. We let Bk
n denote the

collection of connected subdigraphs D of Tn with the property that

1. all vertices of D are on the bottom 3 rows of Tn,

2. D has k vertices on the third row from the bottom,

3. D has n− 1 vertices on the second row from the bottom, and

4. D has n vertices on the bottom row.

We will show that any digraph that lies in the set Bk
n share the same Grundy-

value. For convenience, we will use the symbol Bk
n to represent any of the digraphs

in Bk
n.

Example 3. There are two digraphs that lie in the set B2
5 , up to isomorphism.

These two digraphs are illustrated in Figure 3. ♦

Remark 2. We observe that the Pyramid Nim signature of n and k is defined

for all non-negative integers n and k in Definition 7, and Lemma 2 holds for all

non-negative integers n and k. However, we only make use of the Pyramid Nim

signature of n and k for integers n > 2 and 0 6 k 6 n− 2 in Proposition 1.
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Figure 3: The two digraphs that lie in B2
5 , up to isomorphism.

Proposition 1. Let n > 2 and 0 6 k 6 n−2 be integers. Then, Gr(Bk
n) = σ(n, k).

Proof. The proof will be by induction on ordered pairs of integers (n, k) from the

set {(n, k) ∈ Z× Z : n > 2 and 0 6 k 6 n− 2} placed into lexicographic order. By

Theorem 4, we have Gr(B0
2m) = Gr(T 2m−2

2m ) = 2 and Gr(B0
2m+1) = Gr(T 2m−1

2m+1 ) =

0. This establishes the base case.

Suppose there are integers n > 3 and 0 < k 6 n− 2 such that

• for all integers n′ < n and 0 6 k′ 6 n′ − 2, Gr(Bk′

n′) = σ(n′, k′), and

• for all integers 0 6 k′ < k, Gr(Bk′

n ) = σ(n, k′).

We want to show that Gr(Bk
n) = σ(n, k). In particular, we want to show that

Gr(Bk
n) = 1 if n is odd and k is odd,

Gr(Bk
n) = 3 if n is even and k is odd,

Gr(Bk
n) = 0 if n is odd and k is even, and

Gr(Bk
n) = 2 if n is even and k is even.

If cell t, 1 < t < n − 1, of the second row is undominated, we can delete this

cell, leaving a position P that is a disjoint union of Bi
t and Bj

n−t for some i and j

with i+ j = k. If cell t, 1 < t < n− 1, of the second row is dominated by only one

cell x in the top row, we can delete the cells x and t, leaving a position P that is a

disjoint union of Bi
t and Bj

n−t for some i and j with i + j = k − 1. In either case,

Gr(P ) = Gr(Bi
t)⊕Gr(B

j
n−t).

If n is even, then t and n − t have the same parity. Thus, Gr(P ) = Gr(Bi
t) ⊕

Gr(Bj
n−t) ∈ {2⊕ 2, 2⊕ 3, 3⊕ 3, 0⊕ 0, 0⊕ 1, 1⊕ 1} = {0, 1}. Since σ(n, k) ∈ {2, 3},

Gr(P ) 6= σ(n, k).

If n is odd, then t and n − t have opposite parity. Thus, Gr(P ) = Gr(Bi
t) ⊕

Gr(Bj
n−t) ∈ {2 ⊕ 0, 2 ⊕ 1, 3 ⊕ 0, 3 ⊕ 1} = {2, 3}. Since σ(n, k) ∈ {0, 1}, Gr(P ) 6=

σ(n, k).

Note that when we only take one cell from the top row of Bk
n, we are left

with Bk−1
n . By the induction hypothesis, Gr(Bk−1

n ) = σ(n, k − 1). By Lemma

2, Gr(Bk−1
n ) = σ(n, k)⊕ 1.
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We let t be the first cell of the second row of Bk
n. We consider the cases t is

undominated and t is dominated individually.

First, suppose t is undominated. On one hand, removing t and the first cell in

the bottom row leaves a position P with Gr(P ) = Gr(Bk
n−1). By the induction

hypothesis, Gr(Bk
n−1) = σ(n − 1, k). By Lemma 2, Gr(Bk

n−1) = σ(n, k) ⊕ 2. On

the other hand, removing t leaves a position P that is a disjoint union of Bk
n−1 and

T1. Thus, Gr(P ) = Gr(Bk
n−1)⊕Gr(T1) = (σ(n, k)⊕ 2)⊕ 1 = σ(n, k)⊕ 3.

Next, suppose t is dominated by a cell y. On one hand, removing y, t, and

the first cell in the bottom row leaves a position P with Gr(P ) = Gr(Bk−1
n−1). By

the induction hypothesis, Gr(Bk−1
n−1) = σ(n− 1, k − 1). By Lemma 2, Gr(Bk−1

n−1) =

σ(n, k)⊕3. On the other hand, removing t and y leaves a position P that is a disjoint

union of Bk−1
n−1 and T1. Thus, Gr(P ) = Gr(Bk−1

n−1) ⊕ Gr(T1) = (σ(n, k) ⊕ 3) ⊕ 1 =

σ(n, k)⊕ 2.

Thus, we have moves from Bk
n to positions with Grundy-values σ(n, k) ⊕ 1,

σ(n, k)⊕ 2, and σ(n, k)⊕ 3, but no move to a position with Grundy-value σ(n, k).

Hence, Gr(Bk
n) = σ(n, k), completing the proof by induction.

Theorem 5. Let n > 3 be an integer. Then,

Gr(Tn−3
n ) = 1 if n is odd, and

Gr(Tn−3
n ) = 2 if n is even.

Proof. Since there are n − 2 cells on the top row of Tn−3
n , we have Tn−3

n = Bn−2
n .

By Proposition 1, we have Gr(Tn−3
n ) = Gr(Bn−2

n ) = σ(n, n − 2) = 1 if n is odd,

and Gr(Tn−3
n ) = Gr(Bn−2

n ) = σ(n, n− 2) = 2 if n is even.

We propose the following conjecture.

Conjecture 1. Let n be a positive integer. If k is an integer such that 0 6 2k 6 n,

then

Gr(Tn−2k
n ) = 0 if n is odd, and

Gr(Tn−2k
n ) = 2k if n is even.

If k is an integer such that 0 6 2k + 1 6 n, then

Gr(Tn−2k−1
n ) = 1 if n is odd, and

Gr(Tn−2k−1
n ) = 2k if n is even.

5. Grundy-values of Tn

We first make some general observations about Tn in the following two lemmas.
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Lemma 3. Let n > 1. In Pyramid Nim, Tn is an N -position.

Proof. Our argument is similar to a proof in [12]. If taking the top element is not a

win, then Player 2 makes a move that wins. So, Player 1 (on his first move) steals

this move.

Lemma 4. Let n > 1. Then, 1 6 Gr(Tn) 6 n.

Proof. The lower bound follows immediately from Lemma 3. For the upper bound,

we note that there are only n possible first moves from Tn, up to isomorphism.

Hence, Gr(Tn) 6 n.

Definition 9. Let n > 3 be an integer and 0 6 k, ` 6 n−1 be integers. The digraph

Mn(k, `) is the digraph Tn with an undominated path on n − k vertices removed

from the left side of Tn followed by the removal of an undominated path on n−1−`
vertices on the right side. The result is a digraph with an undominated path on k

vertices on the left side of Mn(k, `) and an undominated path on ` vertices on the

right side.

We make conjectures about Gr(Mn(k, k)) when n is odd, and Gr(Mn(n− 1, k))

when n is even.

Conjecture 2. Let n > 3 be an odd integer and 0 6 k 6 n−2 be an integer. Then,

Gr(Mn(k, k)) = 1. Also, Gr(Mn(n− 1, n− 1)) = 0.

Conjecture 3. Let n > 2 be an even integer and 0 6 k 6 n − 1 be an integer.

Then,

Gr(Mn(n− 1, k)) = k − 1 if k is odd, and

Gr(Mn(n− 1, k)) = k + 1 if k is even.

We use Conjectures 2 and 3 to prove the following theorem.

Theorem 6. Suppose n is a positive integer, and suppose Conjectures 2 and 3 are

true. Then

Gr(Tn) = 1 if n is odd, and

Gr(Tn) = n if n is even.

Proof. Case 1. Assume n is odd. The reachable positions from Tn are Mn(n− 1, k)

for integers 0 6 k 6 n − 1, up to isomorphism. By Lemma 4, Gr(Tn) > 1. By

Conjecture 2, Gr(Mn(n− 1, n− 1)) = 0 6= 1.

Consider the position Mn(n−1, k) for some integer 0 6 k 6 n−2. We remove an

undominated path on n−1−k vertices on the left side of Mn(n−1, k) which results
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in Mn(k, k). By Conjecture 2, Gr(Mn(k, k)) = 1. Thus, Gr(Mn(n − 1, k)) 6= 1.

Therefore,

Gr(Tn) = mex{Gr(Mn(n− 1, k)) : 0 6 k 6 n− 1} = 1.

Case 2. Assume n is even. Again, the reachable positions from Tn are Mn(n −
1, k) for integers 0 6 k 6 n − 1, up to isomorphism. By Conjecture 3, for all

0 6 k < 1
2n,

Gr(Mn(n− 1, 2k + 1)) = 2k and

Gr(Mn(n− 1, 2k)) = 2k + 1.

Therefore,

Gr(Tn) = mex{Gr(Mn(n− 1, k)) : 0 6 k 6 n− 1} = mex{0, 1, . . . , n− 1} = n.

Note that Theorem 6 also follows from the special cases of Conjecture 1, where k

is chosen so that the top index is 0.
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