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Abstract

Distance games are games played on graphs in which the players alternately color
vertices, and which vertices can be colored depends only on the distance to previ-
ously colored vertices. The polynomial profile encodes the number of positions with
a fixed number of vertices from each player. We extend previous work on finding
the polynomial profile of several distance games (Col, Snort, and Cis) played on
paths. We give recursions and generating functions for the polynomial profiles of
generalizations of these three games when played on paths. We also find the poly-
nomial profile of Cis played on cycles and the total number of positions of Col
and Snort on cycles, as well as pose a conjecture about the number of positions
when playing Col and Snort on complete bipartite graphs.

1. Introduction

A combinatorial game is a game with two players, Left and Right, with perfect

information, no elements of chance, and the players must alternate turns, such

as Chess or Checkers. In this paper, we will be enumerating the positions in

several distance games. These are games in which the two players place pieces on

empty vertices of the board, a finite graph, with the placement of a piece only being

restricted by the distance to previously played pieces. Two well-known examples of

distance games are Snort and Col, where pieces cannot be placed adjacent to an

opponent’s piece or one of their own pieces, respectively.

1This author’s research was supported by the Natural Sciences and Engineering Research Coun-
cil of Canada (funding reference number USRA – 562933 - 2021).
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A relatively new topic of interest in combinatorial game theory is the enumeration

of positions. Early work has focused on specific types of positions, such as Go

endgame positions [6, 5, 17] and second-player win position for some lesser known

games [7, 11]. Recently, all general Domineering positions, as well as specific types

of positions, were counted in [9]. Taking a graph theory view, positions of several

other games played on grids are enumerated in [12, 13]. Our work is motivated

by Brown et al. [2], who introduced the polynomial profile of a game, which is the

generating polynomial for the number of positions given the number of Left and

Right pieces placed. They found generating functions for the polynomial profiles

of several games played on paths, including Snort, Col, and the game Cis. We

extend their work and will find the polynomial profiles of generalizations of these

three games played on paths (Section 3), and consider the original three games

when played on cycles and complete bipartite graphs (Section 4).

In the next section, we provide some background and previous results from this

area of combinatorial game theory. This includes a few definitions and descriptions

of different placement games. We will conclude this paper with several questions

for future work in Section 5.

2. Background

Many combinatorial games are ones in which the players place pieces on a board

without moving or removing them later. These are known as placement or pen-

and-paper games. We will be studying several games that belong to a subclass of

placement games. Note that for placement games, placing a piece is equivalent to

coloring the corresponding vertices of the board. For the placement, Left will color

a vertex blue and Right will color it red.

Definition 1 ([10]). Distance games are a subclass of combinatorial games played

on finite graphs, with each game uniquely identified by a pair of sets (S,D). On

their turn, a player will color in an empty vertex that is not distance s ∈ S from a

piece of the same color or distance d ∈ D from a piece of the opposite (different)

color.

Although the rules of a distance game are deceptively easy to describe, several

games have been extensively studied and are still unsolved. For example, their

computational complexities have been studied in [14, 3, 8].

Definition 2. The following are some previously studied distance games.

• Col [1] is the distance game where S = {1} and D = ∅. In other words,

pieces of different colors can be adjacent, but pieces of the same color cannot.
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• Snort [1] is the distance game where S = ∅ and D = {1}. In other words,

pieces of the same color can be adjacent, but pieces of different colors cannot.

• Cis [2] is the distance game where S = D = {1}. In other words, no two

pieces can be adjacent, no matter the color.

Note that playing Cis is equivalent to playing NodeKayles. If a player can place

a piece on a vertex in either game, then so can the other player. The difference

between these games is that in NodeKayles both players color using the same

color, while in Cis they use different colors. This is not relevant to game play, but

will be important for enumeration.

We will consider generalizations of the above games, the first two of which were

defined in [3].

Definition 3. We give the following definitions.

• EnCol(k) is the distance game where S = {1, . . . , k} and D = ∅.

• EnSnort(k) is the distance game where S = ∅ and D = {1, . . . , k}.

• EnCis(k) is the distance game where S = D = {1, . . . , k}.

• Cis2 is the distance game where S = D = {2}.

We will count the positions in Snort, Col, and Cis played on cycles, stars, and

complete bipartite graphs, as well as their generalization when played on paths. To

enumerate the positions of these distance games we use a generating function called

the polynomial profile.

Definition 4 ([2]). The polynomial profile of the game G played on the board B

with n vertices is the bivariate polynomial

PG,B(x, y) =

n∑
k=0

k∑
j=0

fj,k−jx
jyk−j ,

where fj,j−k is the number of positions with j Left pieces and k − j Right pieces.

Setting x = y we get the univariate polynomial

PG,B(x) := PG,B(x, x) =

n∑
i=0

cix
i,

where ci is the number of positions with exactly i pieces. Finally, the total number

of legal positions can be obtained by setting x = y = 1.

The polynomial profile counts the number of positions without assuming alter-

nating play. In many combinatorial games, including distance games, the board
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naturally breaks into smaller, independent components as game play progresses.

On their turn, a player then chooses which component to play in and makes their

move there. In combinatorial game theory, this is called the disjunctive sum of the

components. Although game play in the entire game is alternating, in a component

it can be non-alternating. In many cases in combinatorial game theory, including

enumeration of positions, it helps to assume that a game is a component of a larger

game and the condition of alternating play is dropped. If desired, we can find the

number of positions restricted to alternating play from the polynomial profile by

taking only the terms where the exponents on x and y differ by at most 1. More

information on combinatorial game theory and common techniques can be found in

[1, 15].

To illustrate these concepts, we will look at a relatively simple example.

Example 1. Consider Cis played on P4. There is one empty position, four positions

with a single Left or Right piece each, three positions with two pieces of the same

color, and six positions with one piece each by Left and Right (shown in Figure 1).

Thus the polynomial profile is

PCis,P4
(x, y) = 1 + 4x+ 4y + 3x2 + 6xy + 3y2.

The univariate polynomial is

PCis,P4(x) = 1 + 8x+ 12x2

and the total number of positions is PCis,P4
(1) = 21.

Figure 1: Possible positions of Cis on P4 with one Left piece and one Right piece
played.

Taking only the relevant terms for alternating play from PCis,P4
(x, y), we get that

the positions in alternating play are enumerated by 1 + 4x+ 4y + 6xy.

We can find the polynomial profile of a game by using the auxiliary board.

Definition 5. The auxiliary board ΓG,B of a distance game G on a board B is the

graph that represents all minimal illegal moves. The vertex set of ΓG,B is given by

V (Γ) = V (B)× {1, 2} where the vertex (xi, 1) represents Left moving in vertex xi
in B and, similarly, (xj , 2) is a move by Right in vertex xj . Two vertices (xi, a) and

(xj , b) are adjacent if the corresponding moves are at an illegal distance.
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Note that the auxiliary board can be generalized to many other placement games,

and the resulting simplicial complex is known as the illegal complex [4].

Example 2. Consider Col played on C4. The auxiliary board ΓCol,C4
, shown in

Figure 2, has vertex set V (GCol,C4
) = {x1, x2, x3, x4} × {1, 2}. Vertices (xi, p) and

(xj , q) are adjacent if xi is adjacent to xj and p = q, or if i = j and p 6= q.

(x0, 1) (x1, 1) (x2, 1) (x3, 1)

(x0, 2) (x1, 2) (x2, 2) (x3, 2)

Figure 2: Auxiliary board for Col on C4.

From Figure 2 we can see that there are eight independent sets of size 1, four

of which are for Left and four for Right. This gives us the terms 4x and 4y in the

polynomial profile. We can also see that there are twelve independent sets with one

blue and one red piece. This gives us the term 12xy. We do this for every possible

combination of blue and red pieces to get the full polynomial

PCol,C4
(x, y) = 1 + 4x+ 4y + 2x2 + 12xy + 2y2 + 4x2y + 4xy2 + 2x2y2.

Example 3. Consider Snort played on C4. The auxiliary board ΓSnort,C4
, shown

in Figure 3, has vertex set V (GSnort,C4
) = {x1, x2, x3, x4} × {1, 2}. Vertices (xi, p)

and (xj , q) are adjacent if i = j and p 6= q, or if xi is adjacent to xj and p 6= q.

(x0, 1) (x1, 1) (x2, 1) (x3, 1)

(x0, 2) (x1, 2) (x2, 2) (x3, 2)

Figure 3: Auxiliary board for Snort on C4.

From Figure 3 we can see that there are two independent sets of size 4, one for

Left and one for Right. This gives us the terms x4 and y4 in the polynomial profile.

We can also see that there are eight independent sets of size 3, four of which are

for Left and four for Right. This gives us the entries 4x3 and 4y3. We do this for
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every possible combination of blue and red pieces to get the full polynomial

PSnort,C4
= 1 + 4x+ 4y + 6x2 + 4xy + 6y2 + 4x3 + 4y3 + x4 + y4.

We will now turn our attention to determining the polynomial profiles in greater

generality.

3. Distance Games on Paths

The positions of Col, Snort, and Cis played on paths were enumerated in [2].

The generating functions for these three games were found to be

GFCol(x, y, t) =
(1 + xt)(1 + yt)

1− (xyt2 + t(1 + xt)(1 + yt))
,

GFSnort(x, y, t) =
1− xyt2

1− (xt+ yt+ xyt2 + t(1− xyt2))
, and

GFCis(x, y, t) =
1 + xt+ yt

1− t− xt2 − yt2
,

where the coefficient of tn is the polynomial profile when playing on a path of n

vertices. Note that there was a typographical error in the generating function of

Cis in [2]. We have given the corrected function here.

We will now generalize this and enumerate the positions of various other distance

games when played on paths.

As a step towards finding the generating function we take into account the empty

vertices in positions by using an e to represent them. We then set e = 1 to get the

polynomial profile.

For many cases we will use regular expressions to represent all possible positions

in the game. For example, E∗(B|R) represents 0 or more empty vertices followed

by a Left (blue) or a Right (red) piece. We will represent the empty word by ε. For

more information on regular expressions, see for example [16].

When finding the generating function from the regular expression, we use the

following operations.

• Concatenation: Corresponds to multiplication in the generating function.

• Union: Corresponds to addition in the generating function.

• Star : The star operator indicates 0 or more repetitions, the generating func-

tion for this is a geometric series, and thus corresponds to 1
1− • . For example

B∗ is enumerated by

1 + xt+ x2t2 + x3t3 + · · · = 1

1− xt
.
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3.1. EnCis(k)

In this section we find the recursions for the polynomial profile and the number of

positions of EnCis(k) played on paths, as well as the generating function.

Proposition 1. For all k ≥ 1, the polynomial profile for the distance game EnCis(k)

played on Pn for all n ≤ k is

PEnCis(k),Pn
(x, y) = 1 + nx+ ny,

and for all n > k it is recursively given by

PEnCis(k),Pn
(x, y) = PEnCis(k),Pn−1

(x, y) + (x+ y)PEnCis(k),Pn−(k+1)
(x, y).

The total number of positions is recursively given by

PEnCis(k),Pn
(1) = PEnCis(k),Pn−1

(1) + 2PEnCis(k),Pn−(k+1)
(1)

with PEnCis(k),Pn
(1) = 2n+ 1 for all n ≤ k.

Proof. When n ≤ k, no pair of pieces can be placed. Therefore the only positions

are the empty board and the n positions each with a single blue or red piece, giving

the initial terms.

For the recursion, consider the leftmost vertex of the path. If this vertex is

uncolored, the rest of the n − 1 vertices can be any legal position on Pn−1. If this

vertex is colored blue or red, then the next k vertices must be empty, which leaves

any legal position on Pn−(k+1) vertices. This gives the desired recursion. Setting

x = y = 1 gives the recursion for the total number of positions.

For large k, this recursion will require a large amount of initial terms. Although

we are not able to give a closed form of the polynomial profile, we will now turn to

determining the generating function, which is

GFG,Pn
(x, y, t) =

∞∑
n=0

PG,Pn
(x, y)tn.

As an in-between step, we will often consider a refined polynomial profile

PG,Pn(e, x, y),

where the exponent on e indicates the number of empty vertices, i.e. the de-

gree of every term will be n. The generating function for this polynomial is

denoted GFG,Pn
(e, x, y, t) and we have GFG,Pn

(x, y, t) = GFG,Pn
(1, x, y, t) and

PG,Pn
(x, y) = PG,Pn

(1, x, y).
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Proposition 2. For all k ≥ 1, the generating function for the polynomial profile of

EnCis(k) played on Pn is

GFEnCis(k),Pn
(x, y, t) =

1− t+ xt+ yt− xtk+1 − ytk+1

(1− t)(1− t− xtk+1 − ytk+1)
.

The total number of positions is generated by

GFEnCis(k),Pn
(1, 1, t) =

1 + t− 2tk+1

(1− t)(1− t− 2tk+1)
.

Proof. In EnCis(k), no pair of vertices at distance 1, 2, . . . , k can be colored si-

multaneously. Therefore, the positions on a path are exactly those that satisfy the

following pattern:

1. Starts with zero or more empty vertices;

2. followed by repeated patterns taken from

• a blue vertex followed by k empty

• a red vertex followed by k empty

followed by zero or more empty vertices; and

3. ends with

• a blue vertex followed by 0 to k − 1 empty,

• a red vertex followed by 0 to k − 1 empty, or

• nothing added.

For example, for EnCis(2) this gives the regular expression

E∗[(B|R)EEE∗]∗(B|BE|R|RE|ε).

For the general case, we use the notation Sk−1
B to represent the string

B|BE|BEE| . . . |BEk−1.

Similarly, we set

Sk−1
R = R|RE|REE| . . . |REk−1.

The regular expression for EnCis(k) is then

E∗[(B|R)EkE∗]∗[Sk−1
B |Sk−1

R |ε].

The corresponding expression in the generating function to the term Sk−1
B is

xt
1− ektk

1− et
,
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and similarly for Sk−1
R we get

yt
1− ektk

1− et
.

The generating function taking empty vertices into account is then

GFEnCis(k)(e, x, y, t) =

(
1

1− et

)(
1

1− (xektk+1

1−et + yektk+1

1−et )

)

×
(
xt(1− ektk)

1− et
+
yt(1− ektk)

1− et
+ 1

)
,

and setting e = 1 gives

GFEnCis(k)(x, y, t) =
1− t+ xt+ yt− xtk+1 − ytk+1

(1− t)(1− t− xtk+1 − ytk+1)
.

With x = y = 1 we get that the generating function for the number of positions is

GFEnCis(k)(1, 1, t) =
1 + t− 2tk+1

(1− t)(1− t− 2tk+1)
.

3.2. EnSnort(k)

To find the generating function for the polynomial profile of EnSnort(k), we will

introduce the following shorthand notation for the regular expression:

Sk−1
B = B|BE|BEE|...|BEk−1

Sk−1
R = R|RE|REE|...|REk−1

Tk−1
B = B(Sk−1

B )∗|B(Sk−1
B )∗E| . . . |B(Sk−1

B )∗Ek−1

Tk−1
R = R(Sk−1

R )∗|R(Sk−1
R )∗E| . . . |R(Sk−1

R )∗Ek−1.

The regular expression for EnSnort(k) is then

E*[(B(Sk−1
B )*|R(Sk−1

R )*)EkE*]*[Tk−1
B |Tk−1

R |ε].

Example 4. Consider EnSnort(2) played on Pn. The regular expression for

EnSnort(2) is

E∗[(B(B|BE)∗|R(R|RE)∗)EEE∗]∗

[B(B|BE)∗|B(B|BE)∗E|R(R|RE)∗|R(R|RE)∗E|ε],

giving that the generating function for the polynomial profile is

GFEnSnort(2)(x, y, t) =

(
1

1− t

)(
1

1− ( xt
1−xt−xt2 + yt

1−yt−yt2 )( t2

1−t )

)

×
(

xt

1− xt− xt2
+

xt2

1− xt− xt2
+

yt

1− yt− yt2
+

yt2

1− yt− yt2
+ 1

)
.

The first few polynomial profiles are in Table 1.
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n PEnSnort(2),Pn
(x, y) PEnSnort(2),Pn

(x) PEnSnort(2),Pn
(1)

0 1 1 1
1 1 + 1x+ 1y 1 + 2x 3
2 1 + 2x+ 2y + x2 + y2 1 + 4x+ 2x2 7
3 1 + 3x+ 3y + 3x2 + 3y2 + x3 + y3 1 + 6x+ 6x2 + 2x3 15

Table 1: First few initial terms for the recursion of the polynomial profile of
EnSnort(2).

In general, we get the following result.

Proposition 3. For k ≥ 1, the generating function for the polynomial profile of

EnSnort(k) on Pn is

GFEnSnort(k),Pn
(x, y, t) =

(
1

1− t

)



1

1−


xt

1−
k∑

i=1

xti

+
yt

1−
k∑

i=1

yti


(

tk

1− t

)



×


k∑

n=1

xtn

1−
k∑

i=1

xti

+

k∑
n=1

ytn

1−
k∑

i=1

yti

+ 1

 .

3.3. Cis2

In this section we find the recursion for the polynomial profile and number of posi-

tions of Cis2 played on paths, as well as the generating function for the polynomial

profile.

Proposition 4. The polynomial profile for Cis2 played on Pn is given by

PCis2,Pn(x, y) =PCis2,Pn−1(x, y) + (x+ y)PCis2,Pn−3(x, y)

+ (x2 + y2 + 2xy)PCis2,Pn−4
(x, y),

for n ≥ 4.
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The total number of positions2 is recursively given by

PCis2,Pn(1) = PCis2,Pn−1(1) + 2PCis2,Pn−3(1) + 4PCis2,Pn−4(1).

The initial terms are given in Table 2.

n PCis2,Pn
(x, y) PCis2,Pn

(x) PCis2,Pn
(1)

0 1 1 1
1 1 + x+ y 1 + 2x 3
2 1 + 2x+ 2y + x2 + y2 + 2xy 1 + 4x+ 3x2 9
3 1 + 3x+ 3y + 2x2 + 2y2 + 4xy 1 + 6x+ 8x2 15

Table 2: Initial terms for the recursion of the polynomial profile of Cis2.

Proof. The initial cases can be checked computationally.

For the recursion, consider the leftmost vertex of the path. If this vertex is

uncolored, the rest of the n − 1 vertices can be any legal position for this game

on Pn−1, which gives PCis2,Pn−1
(x, y) as a term in the recursion. On the other

hand, if this vertex is colored blue or red, then either the next two vertices in the

path are both empty or the next vertex is also colored blue or red, followed by

the next two empty. The first case leaves any legal position on Pn−3, which gives

xPCis2,Pn−3(x, y) for blue and yPCis2,Pn−3(x, y) for red. The second case results in

two colored vertices followed by two empty vertices, leaving any legal position on

Pn−4. In this case, the two leftmost vertices can be any combination of one blue

and one red, two blue, or two red, giving us the term (x2+y2+2xy)PCis2,Pn−4
(x, y).

This gives the recursion

PCis2,Pn
(x, y) = PCis2,Pn−1

(x, y) + (x+ y)PCis2,Pn−3
(x, y)

+ (x2 + y2 + 2xy)PCis2,Pn−4(x, y).

Setting x = y = 1, we get the recursion for the total number of positions as

desired.

Using the shorthand U = BB|BR|RB|RR|B|R, the regular expression is

E∗(UEEE∗)∗(U|UE|ε).

Thus we get the following proposition.

Proposition 5. The generating function for the polynomial profile of Cis2 played

on paths is

GFCis2,Pn
(x, y, t) =

1 + xt+ yt+ (xt+ yt)2 + et(xt+ yt+ (xt+ yt)2)

1− et− e2t2(xt+ yt+ (xt+ yt)2)
.

2OEIS sequence A138495

https://oeis.org/A138495
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The total number of positions is generated by

GFCis2,Pn
(1, 1, t) =

1 + 2t+ 6t2 + 4t3

1− t− 2t3 − 4t4
.

4. Col, Snort, and Cis

4.1. Cis on Cycles

We will generalize the results of [2] for Cis on paths to cycles. We will find the

polynomial profiles using the polynomial profiles on paths, as well as the generating

function for the polynomial profile.

Proposition 6. The polynomial profile when playing Cis on Cn for n ≥ 4 is given

by

PCis,Cn
(x, y) = PCis,Pn−1

(x, y) + (x+ y)PCis,Pn−2
(x, y).

The number of positions is 2n−2 + (−1)n.

Proof. We fix one vertex in the cycle and label it v0. We then label the rest of the

vertices as v1, . . . , vn−1 in a clockwise rotation.

If v0 is colored, then the adjacent vertices (v1 and vn−1) must be empty. This

leaves any possible position on Pn−3 which gives xPCis,Pn−3(x, y) if it is a blue vertex

and yPCis,Pn−3(x, y) if it is a red vertex.

If v0 is uncolored, this leaves any possible position on Pn−1, thus contributing

the term PCis,Pn−1(x, y).

This gives the recursion

PCis,Cn(x, y) = (x+ y)PCis,Pn−3(x, y) + PCis,Pn−1(x, y).

We then set x = y = 1 to get the number of positions recursively as

PCis,Cn
(1) = 2PCis,Pn−3

(1) + PCis,Pn−1
(1).

In [2], the number of positions for Cis on paths was found to be PCis,Pn
(1) =

2n−(−1)n
3 . Substituting this into the recursion, we get

PCis,Cn
(1) = 2PCis,Pn−3

(1) + PCis,Pn−1
(1)

= 2

(
2n−3 − (−1)n−3

3

)
+

(
2n−1 − (−1)n−1

3

)
= 2n−2 + (−1)n.

Proposition 7. The generating function for the polynomial profile of Cis played

on cycles is

GFCis,Cn
(1, x, y, t) =

1 + x2t2 + y2t2

1− t− xt2 − yt2
,
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and thus the generating function for the total number of positions is

GFCis,Cn
(1, 1, 1, t) =

1 + 2t2

1− t− 2t2
.

Proof. For Cis on a cycle, we will fix a vertex v and will consider a position on

Cn as a position on Pn+1, where the first and last vertex are simultaneously either

empty, blue, or red. Recall that no adjacent vertices can both be colored. Therefore,

the positions on the equivalent path Pn+1 are exactly those that satisfy one of the

following patterns:

1. Starts with an empty vertex;

• followed by zero or more empty vertices;

• followed by repeated patterns taken from

– a blue vertex followed by an empty vertex

– a red vertex followed by an empty vertex

followed by zero or more empty vertices; or

2. Starts with a blue vertex;

• followed by at least one empty vertex;

• followed by repeated patterns taken from

– a blue vertex followed by an empty vertex

– a red vertex followed by an empty vertex

followed by zero or more empty vertices;

• ends with a blue vertex; or

3. Starts with a red vertex;

• followed by at least one empty vertex;

• followed by repeated patterns taken from

– a blue vertex followed by an empty vertex

– a red vertex followed by an empty vertex

followed by zero or more empty vertices;

• ends with a red vertex.

The regular expression for Cis then is

[EE∗(BEE∗|REE∗)∗]|[BEE∗(BEE∗|REE∗)∗(B)]|[REE∗(BEE∗|REE∗)∗(R)].

The generating function for the three cases count the first and last vertex sep-

arately, while they are the same for us on the cycle. To adjust for this, we divide
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the generating function for the first case by et, the second by xt, and the third by

yt. This gives us the following generating function for the cycle Cn:

GFCis,Cn(e, x, y, t) =

(
1

1− et

)(
1− et

1− et− xet2 − yet2

)
+

(
xet2

1− et

)(
1− et

1− et− xet2 − yet2

)
+

(
yet2

1− et

)(
1− et

1− et− xet2 − yet2

)
.

Setting e = 1 and simplifying gives the desired generating function.

4.2. Recursion for Col and Snort on Cycles

We will give the recursions for the total number of positions of Col and Snort

on cycles. The recursions for the polynomial profile can be found similarly. As the

latter do not simplify nicely, we will only give the former.

Proposition 8. For n ≥ 4, the number of positions3 when playing Col on Cn is

given by

PCol,Cn(1) = PCol,Pn−1(1) + 3PCol,Pn−3(1) + 2PCol,Pn−4(1) + PCol,Cn−2(1),

with initial terms PCol,C2
(1) = 7 and PCol,C3

(1) = 13.

Proof. We fix one vertex in the cycle and label it v0. We then label the rest of the

vertices as v1, . . . , vn−1 in a clockwise rotation.

If v0 is uncolored, this leaves any possible position on Pn−1, which gives us

PCol,Pn−1(1) possible positions.

If v0 is colored, then there are three cases to consider:

1. both v1 and vn−1 are empty;

2. both v1 and vn−1 are colored, necessarily the opposite color to v0; and

3. either v1 or vn−1 is colored, necessarily the opposite color to v0, with the other

being empty.

The first case leaves any possible position on Pn−3, whether v0 is blue or red,

thus there are 2PCol,Pn−3
(1) possible positions for this case.

The second case can be reduced to a cycle on n−2 vertices where the fixed vertex

cannot be empty. This gives us PCol,Cn−2
(1)− PCol,Pn−3

(1) possible positions.

The third case reduces to a colored path on n − 2 vertices. Let fB(n) denote

the polynomial enumerating the positions when playing Col on Pn with the first

3This sequence seems to be the OEIS sequence A051927. We have confirmed this for n ≤ 12.

https://oeis.org/A051927
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vertex colored blue, and similarly for fR(n) and fE(n). Using this notation, the

number of positions in this case is

fE(n− 3)(1) + fB(n− 3)(1) + fE(n− 3)(1) + fR(n− 3)(1)

= PCol,Pn−3(1)− fR(n− 3)(1) + PCol,Pn−3(1)− fB(n− 3)(1)

= 2PCol,Pn−3
(1)− (fR(n− 3)(1) + fB(n− 3)(1))

= 2PCol,Pn−3
(1)− (PCol,Pn−3

(1)− PCol,Pn−4
(1))

= PCol,Pn−3(1) + PCol,Pn−4(1).

We count this case twice, once for v0 being empty and vn−1 being colored and once

for the opposite; this gives us 2PCol,Pn−3(1) + 2PCol,Pn−4(1).

All together we get

PCol,Cn
(1) = PCol,Pn−1

(1) + 3PCol,Pn−3
(1) + 2PCol,Pn−4

(1) + PCol,Cn−2
(1).

The proof for Snort on cycles is similar to the proof for Col on cycles and is

thus omitted.

Proposition 9. For n ≥ 4, the number of positions4 when playing Snort on Cn

is given by

PSnort,Cn(1) = PSnort,Pn−1(1) + 3PSnort,Pn−3(1) + 2PSnort,Pn−4(1) +PSnort,Cn−2(1),

with initial terms PSnort,C2(1) = 7 and PSnort,C3(1) = 15.

4.3. Col, Snort, and Cis on Complete Bipartite Graphs

When playing Col, Snort, or Cis on the star K1,n, the state of the central vertex

will completely determine the possible positions.

For Col and Snort, if the central vertex is colored blue, the outer vertices can

each independently be red or empty and respectively, blue or empty. Similarly if it is

colored red. If the central vertex is uncolored, the outer vertices can independently

be empty or either color.

For Cis, if the central vertex is colored, the outer vertices have to be empty, while

if it is uncolored, then the outer vertices can independently be empty or either color.

This gives us the following result.

Proposition 10. When playing on a star K1,n, n ≥ 1, the total number of positions

is given by

PCol,K1,n
(1) = 2n+1 + 3n

PSnort,K1,n
(1) = 2n+1 + 3n

PCis,K1,n(1) = 2 + 3n.
4This sequence seems to be OEIS sequence A124696. We have confirmed this for n ≤ 13.

https://oeis.org/A124696
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That the number of positions for Col and Snort on K1,n is the same is not a

surprise. It is known that this is the case for any bipartite board.

Theorem 1 ([2]). If B is a bipartite graph, then PCol,B(x) = PSnort,B(x). In

particular, PCol,B(1) = PSnort,B(1), i.e., the number of positions is the same for

Col and Snort when playing on a bipartite graph.

We have computed the number of positions on other complete bipartite graphs

for Col and Snort and these can be found in Table 3.

m/n 0 1 2 3 4 5 6 7 8 9 10 11 12 13
0 1 3 9 27 81 243 729 2187 6561 19683 59049 177147 531441 1594323
1 3 7 17 43 113 307 857 2443 7073 20707 61097 181243 539633
2 9 17 35 77 179 437 1115 2957 8099 22757 65195 189437
3 27 43 77 151 317 703 1637 3991 10157 26863 73397
4 81 113 179 317 611 1253 2699 6077 14291
5 243 307 437 703 1253 2407 4877 10303
6 729 857 1115 1637 2699 4877 9395
7 2187 2443 2957 3991 6077 10303
8 6561 7073 8099 10157 14291
9 19683 20707 22757 26863
10 59049 61097 65195 73397
11 177147 181243 189437
12 531441 539633
13 1594323

Table 3: The number of positions when playing Col or Snort on Km,n.

Based on this data, we pose the following conjecture.

Conjecture 1. The number of positions when playing Col or Snort on the com-

plete bipartite graph Km,n is recursively given by

PCol,Km,n
(1) = 5PCol,Km,n−1

(1)− 6PCol,Km,n−2
(1) + cm

with initial terms as per Table 3, and cm is given by the OEIS sequence A260217

(the first few terms are c2 = 4, c3 = 24, c4 = 100, c5 = 360, and c6 = 1204).

For Cis, similar to the situation of the star, as soon as a single vertex is colored,

only vertices in the same part of Km,n are able to be colored. Ensuring that we do

not count the empty position twice, we get the following result.

Proposition 11. The number of positions when playing Cis on the complete bi-

partite graph Km,n, m,n ≥ 1, is given by

PCis,Km,n(1) = 3m + 3n − 1.

5. Future Work

As was the case in [2] for Col, EnCol(k) appears the most complicated of the

generalizations of Col, Snort, and Cis that we considered. We are still looking

https://oeis.org/A260217
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into finding a recursion, as well as a generating function, for EnCol(k) played on

paths.

For Col and Snort played on cycles we have found recursions for the polynomial

profiles and the number of positions, but have not yet found the generating func-

tions. For complete bipartite graphs, in addition to trying to prove Conjecture 1,

we also would like to find generating functions.

Of course, this work could also be extended by considering other distance games

or looking at the generalizations when played on boards other than paths.

Finally, we are interested in the ratio of positions in purely alternating play, which

can also be found from the polynomial profile, to the total number of positions.

References

[1] E.R. Berlekamp, J.H. Conway, and R.K. Guy, Winning Ways for Your Mathematical Plays,
Vol. 1, AK Peters Ltd., Wellesley, MA, second edition, 2004.

[2] J.I. Brown, D. Cox, A. Hoefel, N. McKay, R. Milley, R.J. Nowakowski, and A.A. Siegel,
A note on polynomial profiles of placement games, in Urban Larsson, editor, Games of No
Chance 5, volume 70 of Mathematical Sciences Research Institute Publications, pages 249-265,
Cambridge University Press, 2019.

[3] K. Burke, S. Heubach, M.A. Huggan, and S. Huntemann, Keeping your distance is hard, to
appear in: Games of No Chance 6.

[4] S. Faridi, S. Huntemann, and R.J. Nowakowski, Simplicial complexes are game complexes,
Electron. J. Combin. 26(3) (2019), P3.34.

[5] G. Farr and J. Schmidt, On the number of Go positions on lattice graphs, Inform. Process.
Lett. 105(4) (2008), 124-130.

[6] G.E. Farr, The Go polynomials of a graph, Theoret. Comput. Sci. 306(1-3) (2003), 1-18.

[7] G. Hetyei, Enumeration by kernel positions, Adv. Appl. Math. 42(4) (2009), 445-470.

[8] M.A. Huggan and B. Stevens, Polynomial time graph families for Arc Kayles, Integers 16
(2016), #A86.

[9] S. Huntemann and N.A. McKay, Counting Domineering positions, J. Integer Seq. 24(4)
(2021), Art. 21.4.8.

[10] S. Huntemann and R.J. Nowakowski, Doppelgänger placement games, Recreat. Math. Mag.
1 (2014), 55-61.

[11] R.J. Nowakowski, G. Renault, E. Lamoureux, S. Mellon, and T. Miller, The game of Timber,
J. Combin. Math. Combin. Comput. 85 (2013), 213-225.

[12] S. Oh, Maximal independent sets on a grid graph, Discrete Math. 340(12) (2017), 2762-2768.

[13] S. Oh and S. Lee, Enumerating independent vertex sets in grid graphs, Linear Algebra Appl.
510 (2016), 192-204.

[14] T.J. Schaefer, On the complexity of some two-person perfect-information games, J. Comput.
System Sci. 16(2) (1978), 185-225.



INTEGERS: 22 (2022) 18

[15] A.N. Siegel, Combinatorial Game Theory, volume 146 of Graduate Studies in Mathematics,
American Mathematical Society, 2013.

[16] M. Sipser, Introduction to the Theory of Computation, Cengage, Boston, MA, third edition,
2013.
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