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Abstract
Almkvist and Meurman showed that if h and k& are integers, then so is

k™ (Bn(h/k) — Bn),

where B, (u) is the Bernoulli polynomial. We give here a new and simpler proof
of the Almkvist—-Meurman theorem using generating functions. We describe some
properties of these numbers and prove a common generalization of the Almkvist—
Meurman theorem and a result of Gy on Bernoulli-Stirling numbers. We then give a
simple generating function proof of an analogue of the Almkvist—-Meurman theorem
for Euler polynomials, due to Fox.

1. The Almkvist—Meurman Theorem

1.1. Introduction
Let B,,(u) denote the nth Bernoulli polynomial, defined by

uxr

= " xe
n=0
Then B, (0) is the nth Bernoulli number B,,, defined by
= ™ x
n=0

These generating functions may be viewed as formal power series or as convergent
series for |z| < 2.
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For k #£ 0, let
n—1
M, (h, k) = k" (Bn(h/k) = Bn) = (’;) B;hik" (2)
1=0

Almkvist and Meurman [1] showed in 1991 that if & and k are integers then M, (h, k)
is an integer. Other proofs were given by Sury [9], Bartz and Rutkowski [2], and
Clarke and Slavutskii [4].

We give here a simple new proof, using generating functions, of the Almkvist—
Meurman theorem, and we discuss some of the properties of these integers. We also
prove a common generalization of the Almkvist—Meurman theorem and a theorem
of Gy [6] on “Bernoulli-Stirling numbers,” and we give a simple generating function
proof of an analogue of the Almkvist-Meurman theorem for Euler polynomials due
to Fox [5].

1.2. Vandiver’s Theorem

A closely related result, from which Almkvist and Meurman’s result follows easily,
was proved by Vandiver much earlier. (Previous authors on the Almkvist—-Meurman
theorem seem to be unaware of Vandiver’s work.) Vandiver stated his result and
gave a brief indication of the proof in 1937 [11] and gave a complete proof using a
different approach in 1941 [12, Theorem III]. Carlitz [3, Theorem 2] gave another
proof of Vandiver’s theorem. We state Vandiver’s theorem here and explain how
the Almkvist—-Meurman theorem follows from it.

Theorem (Vandiver). Let h and k be integers with k # 0. If n is even and positive
then

k"B, (h/k) = G, — Z% 3)

where G, is an integer and the sum is over all primes p such that p — 1 | n but
ptk. If nis odd then k"B, (h/k) is an integer unless n = 1 and k is odd, and in
this case kBy(h/k) = G1 + 1/2, where Gy is an integer.

Since B, (0) = B,, the case h = 0,k = 1 of Vandiver’s theorem is the well-
known von Staudt—Clausen theorem [3], which describes the fractional part of the
Bernoulli numbers. Vandiver’s theorem implies that, in all cases, the fractional
part of k"B, (h/k) is independent of h and thus is equal to the fractional part of
k™ By (0) = k™ B,,. Therefore k™ (B,,(h/k)—By,) is an integer. Conversely, Vandiver’s
theorem may be derived easily from the Almkvist-Meurman theorem together with
the von Staudt—Clausen theorem. The Almkvist—-Meurman theorem implies that
the fractional part of k" B,,(h/k) is the same as the fractional part of k" B,,, and the
fractional part of k" B,, is easily determined by the von Staudt-Clausen theorem.
Vandiver’s theorem was rediscovered by Bartz and Rutkowski [2], who derived the
Almkvist—-Meurman theorem from it.
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1.3. A Generating Function Proof of the Almkvist—Meurman Theorem

A Hurwitz series is a power series ZZO:O rpa™/n! for which each r, is an integer;
i.e., it is the exponential generating function for a sequence of integers. It is well
known that Hurwitz series are closed under addition and multiplication, and that
if f(x) is a Hurwitz series with constant term 0 then f(x)¥/k! is a Hurwitz series.
In particular, the Stirling numbers of the second kind S(n, k), defined by

(e —1)F > ™

are integers.

Since all of the generating function we will be concerned with are exponential, by
the “coefficients” of a generating function we mean its coefficients as an exponential
generating function.

It follows from Equation (1) and Equation (2) that

00 " o0 . " ehm -1
T;Mn(h, B = nz:%k (Bn(h/k) — Bn)H =k (4)

We present here a new proof of the Almkvist—-Meurman theorem using the gener-
ating function of Equation (4) and basic facts about Hurwitz series.

Theorem 1 (Almkvist-Meurman). For all integers h and k, with k # 0, M, (h, k)
18 an integer.

Proof. From Equation (4) we have

& n hx T hx
-1 -1 -1

E:Mn(h,k)%:kxe = ka— <

n=0 ’

ekr —1 ehr —1 er—1°
If h > 0 then (e —1)/(e® — 1) is a Hurwitz series, since

1
=14e 4. 4D,

If h < 0 then

ehw -1 ha e—ha: -1
= —e —_—
er —1 et —1 "’

so (" —1)/(e® — 1) is also a Hurwitz series in this case. Thus it is sufficient to
show that kz(e® —1)/(e** — 1) is a Hurwitz series.
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We have
e’ —1 e’ —1 .
b = e T log(1+ (e* — 1))
¥ —1 & (e —1)7
= ek:c 1 Z(i )J ]
Jj=1

Il
(7]
=
S~—
<
|
—_
—
(9]
8
|
—
S~—
.
7 N
(9]
g
8| &
N
==
~_
o
|
—_

=1 J
o0 et — j ekm _ Jj—1
=Y ()

Since (e®—1)7/5! and (ek* —1)/(e® —1) are Hurwitz series, so is the sum in Equation
(5). O
1.4. The Almkvist—Meurman Numbers

In this section we discuss the Almkvist—-Meurman numbers M, (h, k).
Proposition 2. The numbers M, (h,k) have the following properties:

(a) For h >0 we have

M, (h,1) = n(()nfl I L T (h — 1)7171)'

(b) As a polynomial in h and k, M, (h,k) is homogeneous of degree n.
(¢c) We have

M, (k — h,k) = (=1)"M,,(h,k) forn #1, (6)
My (h+ &, k) = Moy (h, k) + nkh™ " for all n. (7)
Proof.
(a) By Equation (4) we have > 2 M, (h,1)z"/n! = z(1+¢e” 4+ --- + elh=Dz),

(b) This follows immediately from Equation (2).
(¢) By the identity B, (1 — u) = (—1)"B,(u) for Bernoulli polynomials, we have

K <Bn(k_kh) - Bn) = (—1)"k" (BH<Z) - (—1)"Bn> .

Then Equation (6) follows since B,, = 0 if n is odd and not equal to 1. Equation
(7) follows similarly from the identity B, (u+ 1) = B, (u) + nu™"*. O
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The first few values of M,,(h, k) as polynomials in h and k are

Moy(h,k) =0
M (h,k)=h
My (h, k) = h? — hk = —h(k — h),

Ms(h, k) = h* — 3h%k + hk? = Sh(k — h)(k — 2h),
My(h, k) = h* — 203k + h2Ek* = h%(k — h)?,

Ms(h, k) = h® — 2h*k + 3h%k* — Lhk* = —Lh(k — h)(k — 2h)(K® + 3hk — 3h?),
Mg(h, k) = h

= L1n*(k — h)?(k* + 2hk — 2h%).

Proposition 3. As a polynomial in h and k, M, (h, k) has the following divisibility
properties:

(a) My, (h,k) is divisible by h for all n.

(b) M, (h,k) — h™ is divisible by hk for n > 1.

(¢) My(h,k) is divisible by k — h for n > 1.

(d) M, (h,k) is divisible by k — 2h for n odd and greater than 1.

(e) M, (h,k) is divisible by h*(k — h)? for n even and greater than 2.

Proof. The proofs of (a), (b), (c), and (d) are straightforward. For example, (a) is
equivalent to M, (0,k) = 0, which is clear either from the generating function or
from Equation (2) and B,(0) = B,.

For (e), it is enough to show that for n even and greater than 2, B,,(u) — B,, is
divisible by u?(1 — u)2. Suppose that n is even and greater than 2. Since B, (u) =
B, +nB,_ju+---+u" and B,_; = 0, it follows that B,,(u) — B,, is divisible by
u?. Since By, (u) = B,(1 — u), B,(u) — B, is also divisible by (1 — u)2. O

We note that by (b), as a polynomial in h and k, M,(h,0) = h™ for n > 0.
Empirically, it seems that for n even, (—1)"/2M,(a,a + b) is a polynomial in a
and b with positive coefficients, but the coefficients are not all integers.

Let A, (k) = M, (1,k), so

e’ —1 kx

ek _ 1 = 1+ez+,,,+e(k71)z'

(®)

o0 {L’n
Z()An(/g)H = ka

Some values of A, (k) are given in Table 1.4. The rows in this table are sequences
A083007 through A083014 in the On-Line Encyclopedia of Integer Sequences [8].
In particular, the numbers A4,,(2) are the well-known Genocchi numbers (A036968;
see also A001469 and A110501) with exponential generating function 2z/(e® + 1).
The numbers (—1)""1 Ay, ,1(3) are Glaisher’s G-numbers (A002111).


http://oeis.org/A083007
http://oeis.org/A083014
http://oeis.org/A036968
http://oeis.org/A001469
http://oeis.org/A110501
http://oeis.org/A002111
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k\n |1 2 3 4 5 6 7 8 9 10
2 /1 -1 0 1 0 -3 0 17 0 —155
3 |1 -2 1 4 -5 —26 49 328 —809 —6710
4 11 -3 3 9 =25 =99 427 2193 —12465 —79515
5 |1 -4 6 16 —74 —264 1946 9056 —88434 —512024
6 [1 -5 10 25 —170 =575 6370 28225 —415826 —2294975

Table 1: Values of A, (k)

It is apparent from the table that (—1)/"/21 A, (k) is positive for n > 1. We
will prove this in Theorem 6 below. To do this we use properties of Bernoulli
polynomials. These properties are known (see Norlund [7, pp. 22-23]), but we
include proofs for completeness.

Lemma 4.
(a) Form > 1, (—1)™Bay,(u) is increasing on [0,1/2].

b) Form > 1, (=1)™Bam_1(u) is positive and (—1)™*+1BY u) is negative on
2m—+1

(0,1/2).

Proof. From the definition of the Bernoulli polynomials in Equation (1) it follows
that
B! (u) = nBy_1(u). (9)

We will also use the well-known facts that B,, = 0 for n odd and greater than 1 and
B, (1/2) = 0 for all odd n.

We proceed by induction on m. We have —Bj(u) = 1/2 — u, so —Bj(u) is
positive on (0,1/2). Now suppose that m > 1 and that (—1)™ Ba,,—1(u) is positive
on (0,1/2). It follows from Equation (9) that (—1)™ Ba,, (u) is increasing on [0, 1/2].

Setting p(u) = (=1)™"1 By, 11(u), we have p(0) = p(1/2) = 0 and

P’ (u) = (1)1 (2m + 1)(2m) Bam—1(w),

which is negative on (0,1/2). So p(u) is strictly concave on [0,1/2], and therefore
takes on its minimum values only at the endpoints of this interval. Thus p(u) is
positive on (0,1/2). O

Lemma 5. Let B, (u) = B, (u) — B,,.
(a) Ifn is odd and greater than 1 then (—1)["/?1 B, (u) is positive for 0 < u < 1/2.

(b) If n is even then (—1)["/21B,,(u) is positive for 0 < u < 1.
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(¢) If n is divisible by 4 then B,,(u) is nonnegative for all u.

Proof. Part (a) follows immediately from (b) of Lemma 4, since for n odd and
greater than 1, B, (u) = B(u). Part (b) follows from (a) of Lemma 4 together with
the facts that B, (0) = 0 and B, (1 — u) = (=1)"B,(u). Part (c) follows from part
(b) and the formula B,,(u + 1) = B, (u) + nu™~*. O

Lemma 5 implies the following positivity results for M, (h, k).
Theorem 6. Let k be a positive integer.

(a) If n is odd and greater than 1, and 0 < h < k/2, then (—=1)"/21M,,(h, k) is
positive.

(b) If n is even and 0 < h < k then (—1)I"/21 M, (h, k) is positive.

(¢c) If n is divisible by 4 then M, (h,k) is nonnegative for all h.

2. A Generalization of Gy’s Theorem

Gy [6, Theorems 6.1 and 6.2] has studied the numbers with exponential generating

function
(e —1)F  kz

k! ekr — 1

and has shown that they are integers. Comparison with the Almkvist—-Meurman

theorem suggests that we look at the more general exponential generating function

(10)

which reduces to Gy’s generating function for h = 1,j = k and to the Almkvist—
Meurman generating function for j = 1. The coefficient of ™ /n! in (10) is

n—j

3 (7;) K"~ S(n — i, )k B;. (11)

=0

It is not true that these numbers are always integers. However, in Theorem 7 below
we give a sufficient condition for (10) to be a Hurwitz series, and in Theorem 8 we
show that this condition is necessary. In particular, Theorem 7 implies that (10) is
a Hurwitz series for j = 1 and for j = k, so it is a common generalization of Gy’s
theorem and the Almkvist—-Meurman theorem. However, our proof of Theorem 7
is more complicated than the proof of the Almkvist—-Meurman theorem given in
Section 1.3, and requires the von Staudt—Clausen theorem.
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Theorem 7. Let j be a positive integer, and let h and k integers. Suppose that

every prime divisor of j also divides h or k. Then
(eh* —1)  kx

J! ekr — 1

(12)
is a Hurwitz series.

Proof. Our proof is based on Gy’s proof for the case h =1,j7 = k.

Let p be a prime. A rational number is called p-integral if its denominator is not
divisible by p. We call an exponential generating function a p-Hurwitz series if its
coefficients are p-integral. Every Hurwitz series is p-Hurwitz, and p-Hurwitz series
are closed under multiplication. It is clear that a power series is a Hurwitz series if
and only if it is a p-Hurwitz series for every prime p.

Let B(z) = x/(e® — 1) be the Bernoulli number generating function. We will
use two consequences of the von Staudt—Clausen theorem: (i) the denominator of
B, is square-free, and (ii) for any prime p, B, is p-integral unless p — 1 | n. The
first consequence implies that for any integer k, pB(kx) is p-Hurwitz and that if p
divides k then B(kx) is p-Hurwitz. The second, together with Fermat’s theorem,
implies that if neither h nor k is divisible by p then (k™ — h™)B,, is p-integral for
all n, and thus B(kz) — B(hz) is p-Hurwitz.

To prove the theorem it is sufficient to show that for every prime p, (12) is p-
Hurwitz. We consider three cases (with some overlap): (a) p | h, (b) p | k, and (c)
ptkand pth.

(a) Suppose that p | h. Then since (e* — 1)7/5! is a Hurwitz series with no
constant term, every coefficient of (e"* —1)7 /5! is divisible by p. Thus we may write
(12) as

hx _ 1\J
(s |
J:p
and both factors are p-Hurwitz.
(b) Suppose that p | k. Then B(kx) is p-Hurwitz, so (12) is p-Hurwitz.
(c) Suppose that p{h and ptk. Then ptj. We write (12) as

(ehr _ 1)] (ehz _ 1)]
J! J!
Since B(kx) — B(hx) is p-Hurwitz, so is the first term in (13). The second term in
(13) may be written

(B(kxz) — B(hx)) + B(hx). (13)

ha (ehr —1)3-1

Since p 1 j, (14) is also p-Hurwitz. O

The condition in Theorem 7 that every prime divisor of j also divides h or k is
necessary, as shown by the following result.



INTEGERS: 23 (2023) 9

Theorem 8. Let j be a positive integer, and let h and k be integers. Let p be a prime
divisor of j that divides neither h nor k. Then the coefficient of z7P~1/(j +p—1)!
in (12) is not p-integral.

Proof. From (11), the coefficient of 27 7P~ /(j +p —1)!is

p—1
(J tp- )hf+1’—1—i5(j+p— 1—1i,§)kiB;. (15)
=0
By the von Staudt—Clausen theorem, B; is p-integral for i < p — 1, but not for
= p — 1. Thus the terms of (15) with i < p — 1 are all p-integral, so it is
sufficient to show that the ¢ = p — 1 term is not p-integral. Since S(j,7) = 1, the
1 =p—1 term is (j+§f—1)hjkp_13p71. Neither h nor k is divisible by p, so it is
enough to show that (jﬂ;l) is not divisible by p. To do this we apply Lucas’s
congruence for binomial coefficients: since p divides j we may set j = pr, and then

(j“’fl) = (m“’*l) = (:) (pal) =1 (mod p). O

J pr

3. Fox’s Theorem on Euler Polynomials

There is an analogue of the Almkvist—-Meurman theorem for Euler polynomials due
to Fox [5]. The Euler polynomials F,,(u) are defined by

n' et +1

Fox showed that if r and s are integers then s™ (E, (r/s)—(—1)"*E,(0)) is an integer.
Another proof of Fox’s theorem was given by Sury [10]. We give here a simple proof
of a slight strengthening of Fox’s theorem using generating functions.

Theorem 9. Let r and s be integers, with s # 0. If s is even then s"E,(r/s) is an
integer, and if s is odd then 3s"(E,(r/s) — (=1)"E,(0)) is an integer.

Proof. We first note that if f(z) is a Hurwitz series with constant term 1 then
1/f(x) is also a Hurwitz series.
By Equation (16) we have the generating function

2 rxr
Zs E,.( r/s i (17)

If s is even then 2/(e** 4 1) has integer coefficients since its reciprocal is
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which has integer coefficients and constant term 1. Thus the series in Equation (17)
is a Hurwitz series, and in particular, s"E,,(0) is an integer.

Now suppose that s is odd. We have

o0

> 45" (Balr/s) = (1) Eq(0))

n=0

xn _ eT‘,’.U _ (_1)7‘

n! es® 41
erT (_1)r e 4+ 1

et +1 es®+1

e(r—l)a: _ e(r—2)z N (_1)r—1
- e(s—Dz _ o(s—2)x 441

The denominator has constant term 1, so the quotient is a Hurwitz series. O
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