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Abstract

Almkvist and Meurman showed that if h and k are integers, then so is

kn
(
Bn(h/k)−Bn

)
,

where Bn(u) is the Bernoulli polynomial. We give here a new and simpler proof

of the Almkvist–Meurman theorem using generating functions. We describe some

properties of these numbers and prove a common generalization of the Almkvist–

Meurman theorem and a result of Gy on Bernoulli–Stirling numbers. We then give a

simple generating function proof of an analogue of the Almkvist–Meurman theorem

for Euler polynomials, due to Fox.

1. The Almkvist–Meurman Theorem

1.1. Introduction

Let Bn(u) denote the nth Bernoulli polynomial, defined by

∞∑
n=0

Bn(u)
xn

n!
=

xeux

ex − 1
. (1)

Then Bn(0) is the nth Bernoulli number Bn, defined by

∞∑
n=0

Bn
xn

n!
=

x

ex − 1
.

These generating functions may be viewed as formal power series or as convergent

series for |x| < 2π.
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For k 6= 0, let

Mn(h, k) = kn
(
Bn(h/k)−Bn

)
=

n−1∑
i=0

(
n

i

)
Bih

ikn−i. (2)

Almkvist and Meurman [1] showed in 1991 that if h and k are integers then Mn(h, k)

is an integer. Other proofs were given by Sury [9], Bartz and Rutkowski [2], and

Clarke and Slavutskii [4].

We give here a simple new proof, using generating functions, of the Almkvist–

Meurman theorem, and we discuss some of the properties of these integers. We also

prove a common generalization of the Almkvist–Meurman theorem and a theorem

of Gy [6] on “Bernoulli-Stirling numbers,” and we give a simple generating function

proof of an analogue of the Almkvist–Meurman theorem for Euler polynomials due

to Fox [5].

1.2. Vandiver’s Theorem

A closely related result, from which Almkvist and Meurman’s result follows easily,

was proved by Vandiver much earlier. (Previous authors on the Almkvist–Meurman

theorem seem to be unaware of Vandiver’s work.) Vandiver stated his result and

gave a brief indication of the proof in 1937 [11] and gave a complete proof using a

different approach in 1941 [12, Theorem III]. Carlitz [3, Theorem 2] gave another

proof of Vandiver’s theorem. We state Vandiver’s theorem here and explain how

the Almkvist–Meurman theorem follows from it.

Theorem (Vandiver). Let h and k be integers with k 6= 0. If n is even and positive

then

knBn(h/k) = Gn −
∑
p

1

p
(3)

where Gn is an integer and the sum is over all primes p such that p − 1 | n but

p - k. If n is odd then knBn(h/k) is an integer unless n = 1 and k is odd, and in

this case kB1(h/k) = G1 + 1/2, where G1 is an integer.

Since Bn(0) = Bn, the case h = 0, k = 1 of Vandiver’s theorem is the well-

known von Staudt–Clausen theorem [3], which describes the fractional part of the

Bernoulli numbers. Vandiver’s theorem implies that, in all cases, the fractional

part of knBn(h/k) is independent of h and thus is equal to the fractional part of

knBn(0) = knBn. Therefore kn(Bn(h/k)−Bn) is an integer. Conversely, Vandiver’s

theorem may be derived easily from the Almkvist–Meurman theorem together with

the von Staudt–Clausen theorem. The Almkvist–Meurman theorem implies that

the fractional part of knBn(h/k) is the same as the fractional part of knBn, and the

fractional part of knBn is easily determined by the von Staudt-Clausen theorem.

Vandiver’s theorem was rediscovered by Bartz and Rutkowski [2], who derived the

Almkvist–Meurman theorem from it.
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1.3. A Generating Function Proof of the Almkvist–Meurman Theorem

A Hurwitz series is a power series
∑∞

n=0 rnx
n/n! for which each rn is an integer;

i.e., it is the exponential generating function for a sequence of integers. It is well

known that Hurwitz series are closed under addition and multiplication, and that

if f(x) is a Hurwitz series with constant term 0 then f(x)k/k! is a Hurwitz series.

In particular, the Stirling numbers of the second kind S(n, k), defined by

(ex − 1)k

k!
=

∞∑
n=k

S(n, k)
xn

n!
,

are integers.

Since all of the generating function we will be concerned with are exponential, by

the “coefficients” of a generating function we mean its coefficients as an exponential

generating function.

It follows from Equation (1) and Equation (2) that

∞∑
n=0

Mn(h, k)
xn

n!
=

∞∑
n=0

kn
(
Bn(h/k)−Bn

)xn
n!

= kx
ehx − 1

ekx − 1
. (4)

We present here a new proof of the Almkvist–Meurman theorem using the gener-

ating function of Equation (4) and basic facts about Hurwitz series.

Theorem 1 (Almkvist–Meurman). For all integers h and k, with k 6= 0, Mn(h, k)

is an integer.

Proof. From Equation (4) we have

∞∑
n=0

Mn(h, k)
xn

n!
= kx

ehx − 1

ekx − 1
= kx

ex − 1

ekx − 1
· e

hx − 1

ex − 1
.

If h ≥ 0 then (ehx − 1)/(ex − 1) is a Hurwitz series, since

ehx − 1

ex − 1
= 1 + ex + · · ·+ e(h−1).

If h < 0 then
ehx − 1

ex − 1
= −ehx e

−hx − 1

ex − 1
,

so (ehx − 1)/(ex − 1) is also a Hurwitz series in this case. Thus it is sufficient to

show that kx(ex − 1)/(ekx − 1) is a Hurwitz series.
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We have

kx
ex − 1

ekx − 1
=

ex − 1

ekx − 1
log
(
1 + (ekx − 1)

)
=

ex − 1

ekx − 1

∞∑
j=1

(−1)j−1
(ekx − 1)j

j

=

∞∑
j=1

(−1)j−1
(ex − 1)j

j

(
ekx − 1

ex − 1

)j−1

=

∞∑
j=1

(−1)j−1(j − 1)!
(ex − 1)j

j!

(
ekx − 1

ex − 1

)j−1

. (5)

Since (ex−1)j/j! and (ekx−1)/(ex−1) are Hurwitz series, so is the sum in Equation

(5).

1.4. The Almkvist–Meurman Numbers

In this section we discuss the Almkvist–Meurman numbers Mn(h, k).

Proposition 2. The numbers Mn(h, k) have the following properties:

(a) For h > 0 we have

Mn(h, 1) = n(0n−1 + 1n−1 + · · ·+ (h− 1)n−1).

(b) As a polynomial in h and k, Mn(h, k) is homogeneous of degree n.

(c) We have

Mn(k − h, k) = (−1)nMn(h, k) for n 6= 1, (6)

Mn(h+ k, k) = Mn(h, k) + nkhn−1 for all n. (7)

Proof.

(a) By Equation (4) we have
∑∞

n=0Mn(h, 1)xn/n! = x(1 + ex + · · ·+ e(h−1)x).

(b) This follows immediately from Equation (2).

(c) By the identity Bn(1− u) = (−1)nBn(u) for Bernoulli polynomials, we have

kn
(
Bn

(k − h
k

)
−Bn

)
= (−1)nkn

(
Bn

(h
k

)
− (−1)nBn

)
.

Then Equation (6) follows since Bn = 0 if n is odd and not equal to 1. Equation

(7) follows similarly from the identity Bn(u+ 1) = Bn(u) + nun−1.
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The first few values of Mn(h, k) as polynomials in h and k are

M0(h, k) = 0,

M1(h, k) = h,

M2(h, k) = h2 − hk = −h(k − h),

M3(h, k) = h3 − 3
2h

2k + 1
2hk

2 = 1
2h(k − h)(k − 2h),

M4(h, k) = h4 − 2h3k + h2k2 = h2(k − h)2,

M5(h, k) = h5 − 5
2h

4k + 5
3h

3k2 − 1
6hk

4 = − 1
6h(k − h)(k − 2h)(k2 + 3hk − 3h2),

M6(h, k) = h6 − 3h5k + 5
2h

4k2 − 1
2h

2k4 = 1
2h

2(k − h)2(k2 + 2hk − 2h2).

Proposition 3. As a polynomial in h and k, Mn(h, k) has the following divisibility

properties:

(a) Mn(h, k) is divisible by h for all n.

(b) Mn(h, k)− hn is divisible by hk for n ≥ 1.

(c) Mn(h, k) is divisible by k − h for n > 1.

(d) Mn(h, k) is divisible by k − 2h for n odd and greater than 1.

(e) Mn(h, k) is divisible by h2(k − h)2 for n even and greater than 2.

Proof. The proofs of (a), (b), (c), and (d) are straightforward. For example, (a) is

equivalent to Mn(0, k) = 0, which is clear either from the generating function or

from Equation (2) and Bn(0) = Bn.

For (e), it is enough to show that for n even and greater than 2, Bn(u)− Bn is

divisible by u2(1− u)2. Suppose that n is even and greater than 2. Since Bn(u) =

Bn + nBn−1u + · · · + un and Bn−1 = 0, it follows that Bn(u) − Bn is divisible by

u2. Since Bn(u) = Bn(1− u), Bn(u)−Bn is also divisible by (1− u)2.

We note that by (b), as a polynomial in h and k, Mn(h, 0) = hn for n > 0.

Empirically, it seems that for n even, (−1)n/2Mn(a, a + b) is a polynomial in a

and b with positive coefficients, but the coefficients are not all integers.

Let An(k) = Mn(1, k), so

∞∑
n=0

An(k)
xn

n!
= kx

ex − 1

ekx − 1
=

kx

1 + ex + · · ·+ e(k−1)x
. (8)

Some values of An(k) are given in Table 1.4. The rows in this table are sequences

A083007 through A083014 in the On-Line Encyclopedia of Integer Sequences [8].

In particular, the numbers An(2) are the well-known Genocchi numbers (A036968;

see also A001469 and A110501) with exponential generating function 2x/(ex + 1).

The numbers (−1)n+1A2n+1(3) are Glaisher’s G-numbers (A002111).

http://oeis.org/A083007
http://oeis.org/A083014
http://oeis.org/A036968
http://oeis.org/A001469
http://oeis.org/A110501
http://oeis.org/A002111
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k\n 1 2 3 4 5 6 7 8 9 10
2 1 −1 0 1 0 −3 0 17 0 −155
3 1 −2 1 4 −5 −26 49 328 −809 −6710
4 1 −3 3 9 −25 −99 427 2193 −12465 −79515
5 1 −4 6 16 −74 −264 1946 9056 −88434 −512024
6 1 −5 10 25 −170 −575 6370 28225 −415826 −2294975

Table 1: Values of An(k)

It is apparent from the table that (−1)dn/2eAn(k) is positive for n > 1. We

will prove this in Theorem 6 below. To do this we use properties of Bernoulli

polynomials. These properties are known (see Nörlund [7, pp. 22–23]), but we

include proofs for completeness.

Lemma 4.

(a) For m ≥ 1, (−1)mB2m(u) is increasing on [0, 1/2].

(b) For m ≥ 1, (−1)mB2m−1(u) is positive and (−1)m+1B′′2m+1(u) is negative on

(0, 1/2).

Proof. From the definition of the Bernoulli polynomials in Equation (1) it follows

that

B′n(u) = nBn−1(u). (9)

We will also use the well-known facts that Bn = 0 for n odd and greater than 1 and

Bn(1/2) = 0 for all odd n.

We proceed by induction on m. We have −B1(u) = 1/2 − u, so −B1(u) is

positive on (0, 1/2). Now suppose that m ≥ 1 and that (−1)mB2m−1(u) is positive

on (0, 1/2). It follows from Equation (9) that (−1)mB2m(u) is increasing on [0, 1/2].

Setting p(u) = (−1)m+1B2m+1(u), we have p(0) = p(1/2) = 0 and

p′′(u) = (−1)m+1(2m+ 1)(2m)B2m−1(u),

which is negative on (0, 1/2). So p(u) is strictly concave on [0, 1/2], and therefore

takes on its minimum values only at the endpoints of this interval. Thus p(u) is

positive on (0, 1/2).

Lemma 5. Let B̃n(u) = Bn(u)−Bn.

(a) If n is odd and greater than 1 then (−1)dn/2eB̃n(u) is positive for 0 < u < 1/2.

(b) If n is even then (−1)dn/2eB̃n(u) is positive for 0 < u < 1.
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(c) If n is divisible by 4 then B̃n(u) is nonnegative for all u.

Proof. Part (a) follows immediately from (b) of Lemma 4, since for n odd and

greater than 1, B̃n(u) = B(u). Part (b) follows from (a) of Lemma 4 together with

the facts that B̃n(0) = 0 and Bn(1− u) = (−1)nBn(u). Part (c) follows from part

(b) and the formula Bn(u+ 1) = Bn(u) + nun−1.

Lemma 5 implies the following positivity results for Mn(h, k).

Theorem 6. Let k be a positive integer.

(a) If n is odd and greater than 1, and 0 < h < k/2, then (−1)dn/2eMn(h, k) is

positive.

(b) If n is even and 0 < h < k then (−1)dn/2eMn(h, k) is positive.

(c) If n is divisible by 4 then Mn(h, k) is nonnegative for all h.

2. A Generalization of Gy’s Theorem

Gy [6, Theorems 6.1 and 6.2] has studied the numbers with exponential generating

function
(ex − 1)k

k!

kx

ekx − 1

and has shown that they are integers. Comparison with the Almkvist–Meurman

theorem suggests that we look at the more general exponential generating function

(ehx − 1)j

j!

kx

ekx − 1
, (10)

which reduces to Gy’s generating function for h = 1, j = k and to the Almkvist–

Meurman generating function for j = 1. The coefficient of xn/n! in (10) is

n−j∑
i=0

(
n

i

)
hn−iS(n− i, j)kiBi. (11)

It is not true that these numbers are always integers. However, in Theorem 7 below

we give a sufficient condition for (10) to be a Hurwitz series, and in Theorem 8 we

show that this condition is necessary. In particular, Theorem 7 implies that (10) is

a Hurwitz series for j = 1 and for j = k, so it is a common generalization of Gy’s

theorem and the Almkvist–Meurman theorem. However, our proof of Theorem 7

is more complicated than the proof of the Almkvist–Meurman theorem given in

Section 1.3, and requires the von Staudt–Clausen theorem.
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Theorem 7. Let j be a positive integer, and let h and k integers. Suppose that

every prime divisor of j also divides h or k. Then

(ehx − 1)j

j!

kx

ekx − 1
(12)

is a Hurwitz series.

Proof. Our proof is based on Gy’s proof for the case h = 1, j = k.

Let p be a prime. A rational number is called p-integral if its denominator is not

divisible by p. We call an exponential generating function a p-Hurwitz series if its

coefficients are p-integral. Every Hurwitz series is p-Hurwitz, and p-Hurwitz series

are closed under multiplication. It is clear that a power series is a Hurwitz series if

and only if it is a p-Hurwitz series for every prime p.

Let B(x) = x/(ex − 1) be the Bernoulli number generating function. We will

use two consequences of the von Staudt–Clausen theorem: (i) the denominator of

Bn is square-free, and (ii) for any prime p, Bn is p-integral unless p − 1 | n. The

first consequence implies that for any integer k, pB(kx) is p-Hurwitz and that if p

divides k then B(kx) is p-Hurwitz. The second, together with Fermat’s theorem,

implies that if neither h nor k is divisible by p then (kn − hn)Bn is p-integral for

all n, and thus B(kx)−B(hx) is p-Hurwitz.

To prove the theorem it is sufficient to show that for every prime p, (12) is p-

Hurwitz. We consider three cases (with some overlap): (a) p | h, (b) p | k, and (c)

p - k and p - h.

(a) Suppose that p | h. Then since (ex − 1)j/j! is a Hurwitz series with no

constant term, every coefficient of (ehx−1)j/j! is divisible by p. Thus we may write

(12) as
(ehx − 1)j

j! p
· pB(kx)

and both factors are p-Hurwitz.

(b) Suppose that p | k. Then B(kx) is p-Hurwitz, so (12) is p-Hurwitz.

(c) Suppose that p - h and p - k. Then p - j. We write (12) as

(ehx − 1)j

j!

(
B(kx)−B(hx)

)
+

(ehx − 1)j

j!
B(hx). (13)

Since B(kx)−B(hx) is p-Hurwitz, so is the first term in (13). The second term in

(13) may be written
hx

j

(ehx − 1)j−1

(j − 1)!
. (14)

Since p - j, (14) is also p-Hurwitz.

The condition in Theorem 7 that every prime divisor of j also divides h or k is

necessary, as shown by the following result.
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Theorem 8. Let j be a positive integer, and let h and k be integers. Let p be a prime

divisor of j that divides neither h nor k. Then the coefficient of xj+p−1/(j+ p− 1)!

in (12) is not p-integral.

Proof. From (11), the coefficient of xj+p−1/(j + p− 1)! is

p−1∑
i=0

(
j + p− 1

i

)
hj+p−1−iS(j + p− 1− i, j)kiBi. (15)

By the von Staudt–Clausen theorem, Bi is p-integral for i < p − 1, but not for

i = p − 1. Thus the terms of (15) with i < p − 1 are all p-integral, so it is

sufficient to show that the i = p − 1 term is not p-integral. Since S(j, j) = 1, the

i = p − 1 term is
(
j+p−1

j

)
hjkp−1Bp−1. Neither h nor k is divisible by p, so it is

enough to show that
(
j+p−1

j

)
is not divisible by p. To do this we apply Lucas’s

congruence for binomial coefficients: since p divides j we may set j = pr, and then(
j+p−1

j

)
=
(
pr+p−1

pr

)
≡
(
r
r

)(
p−1
0

)
≡ 1 (mod p).

3. Fox’s Theorem on Euler Polynomials

There is an analogue of the Almkvist–Meurman theorem for Euler polynomials due

to Fox [5]. The Euler polynomials En(u) are defined by

∞∑
n=0

En(u)
xn

n!
=

2eux

ex + 1
. (16)

Fox showed that if r and s are integers then sn
(
En(r/s)−(−1)rsEn(0)

)
is an integer.

Another proof of Fox’s theorem was given by Sury [10]. We give here a simple proof

of a slight strengthening of Fox’s theorem using generating functions.

Theorem 9. Let r and s be integers, with s 6= 0. If s is even then snEn(r/s) is an

integer, and if s is odd then 1
2s

n
(
En(r/s)− (−1)rEn(0)

)
is an integer.

Proof. We first note that if f(x) is a Hurwitz series with constant term 1 then

1/f(x) is also a Hurwitz series.

By Equation (16) we have the generating function

∞∑
n=0

snEn(r/s)
xn

n!
=

2erx

esx + 1
. (17)

If s is even then 2/(esx + 1) has integer coefficients since its reciprocal is

1
2 (esx + 1) = 1 +

∞∑
n=1

1
2s

nx
n

n!
,
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which has integer coefficients and constant term 1. Thus the series in Equation (17)

is a Hurwitz series, and in particular, snEn(0) is an integer.

Now suppose that s is odd. We have

∞∑
n=0

1
2s

n
(
En(r/s)− (−1)rEn(0)

)xn
n!

=
erx − (−1)r

esx + 1

=
erx − (−1)r

ex + 1
· e

x + 1

esx + 1

=
e(r−1)x − e(r−2)x + · · ·+ (−1)r−1

e(s−1)x − e(s−2)x + · · ·+ 1
.

The denominator has constant term 1, so the quotient is a Hurwitz series.
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