ON THE EQUATION $\sigma^{*}(n)=1+m n$

Elchin Hasanalizade ${ }^{1}$<br>Department of Mathematics and Computer Science, University of Lethbridge, Lethbridge, Canada e.hasanalizade@uleth.ca

Received: 1/10/23, Revised: 2/6/23, Accepted: 4/2/23, Published: 4/24/23


#### Abstract

Let $M$ be a positive integer with $M \geq 3$, and let $\sigma^{*}(n)$ denote the unitary analogue of the sum of divisors function $\sigma(n)$. We strengthen considerably the lower estimations of the solutions $n$ of the equation $\sigma^{*}(n)=1+M n$.


## 1. Introduction

We say that $d$ is a unitary divisor of $n$ if $d \mid n$ and $\left(d, \frac{n}{d}\right)=1$. Let $\sigma^{*}(n)=$ $\sum_{d \mid n,\left(d, \frac{n}{d}\right)=1} d$ be the sum of all unitary divisors of $n$. If $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{r}^{\alpha_{r}}$ where $p_{i}$ are distinct primes and $\alpha_{i}>0$ for all $i$, then it is easy to see that

$$
\sigma^{*}(n)=\prod_{i=1}^{r}\left(1+p_{i}^{\alpha_{i}}\right)
$$

and that $\sigma^{*}(n)$ is a multiplicative function.
The Dedekind psi function $\psi(n)$ is a multiplicative function given by

$$
\psi(n)=n \prod_{p \mid n}\left(1+\frac{1}{p}\right)
$$

Let $M \geq 1$ be a positive integer. Subbarao [6] studied the Diophantine equations

$$
\begin{equation*}
\psi(n)=1+M n \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\sigma^{*}(n)=1+M n . \tag{2}
\end{equation*}
$$

He formulated the following conjecture.
${ }^{1}$ This research was supported by NSERC Discovery grants RGPIN-2020-06731 of Habiba Kadiri and RGPIN-2020-06032 of Nathan Ng.

Conjecture 1. The congruence $\sigma^{*}(n) \equiv 1(\bmod n)$ is possible if and only if $n$ is a prime power. In particular, for arbitrary distinct primes $p_{1}, \ldots, p_{r}, r \geq 1$,

$$
\left(p_{1}+1\right) \ldots\left(p_{r}+1\right) \equiv 1\left(\bmod p_{1} \ldots p_{r}\right) \text { if and only if } r=1
$$

Equivalently, $\psi(n) \equiv 1(\bmod n)$ if and only if $n$ is a prime.
No counterexample to Conjecture 1 is known although there are some partial results. For $M=1,2,3, \ldots$ define

$$
\begin{gathered}
T_{M}=\{n: \psi(n)=1+M n\}, \mathcal{T}=\bigcup_{M \geq 2} T_{M} \\
T_{M}^{*}=\left\{n: \sigma^{*}(n)=1+M n\right\}, \mathcal{T}^{*}=\bigcup_{M \geq 2} T_{M}^{*}
\end{gathered}
$$

Note that $T_{M} \subset T_{M}^{*}$. Subbarao's conjecture is that $\mathcal{T}$ and $\mathcal{T}^{*}$ are empty.
In the sequel we assume that $M>1$. Subbarao himself obtained the following results:
i) If $n \in T_{M}^{*}$, then $n$ is not a powerful number, $M$ is odd $\geq 3$ and $\omega(n) \geq 16$, $n>10^{20}$, where $\omega(n)$ denotes the number of distinct prime factors of $n$;
ii) If $n \in T_{M}^{*}$ with $\omega(n)=r$, then

$$
\begin{equation*}
n<(r-1)^{2^{r}-1} \tag{3}
\end{equation*}
$$

iii) If $n \in T_{M}$ and $3 \mid n$, then we have

$$
\begin{equation*}
\omega(n)>2557, n>5.9 \cdot 10^{10766} \tag{4}
\end{equation*}
$$

(stated without proof);
iv) If $n \in T_{M}$ and $3 \nmid n$, then we have

$$
\begin{equation*}
\omega(n) \geq 123 \tag{5}
\end{equation*}
$$

Our first theorem improves the upper bound in Inequality (3).
Theorem 1. If $n \in T_{M}^{*}$, then

$$
\begin{equation*}
n \leq 2^{2^{r}-1}-2^{2^{r-1}-1} \tag{6}
\end{equation*}
$$

where $r$ denotes the number of distinct prime divisors of $n$.
Using Grytczuk-Wójtowicz's techniques from the paper [3] we obtain the lower bounds for $\omega(n)$ and $n$ for $n \in T_{M}^{*}$ with $M \geq 3$, which are also valid for $n \in T_{M}$ with $M>3$; thereby improving Inequalities (4)-(5).

The main result of this paper is the following theorem.

Theorem 2. Let $M \geq 3$ and $n \in T_{M}^{*}$.
(a) If $3 \mid n$, then $\omega(n)=r>\frac{1}{2} \cdot 1578^{A M^{2} / 9}$, where $A=0.998 \ldots$.
(b) If $3 \nmid n$, then $\omega(n) \geq 51^{M / 3}-1$.

The corollary below is an immediate consequence of Theorem 2 and Robin's inequality (see [4, Théorème 6]) that for every positive integer $n$ we have

$$
\begin{equation*}
n>\left(\frac{r \log r}{3}\right)^{r} \tag{7}
\end{equation*}
$$

where $r=\omega(n)$. Note that for $M \geq 3$ we have the following rough bounds: $\frac{1}{2}$. $1578^{A M^{2} / 9}>2^{A M^{2}-1}$ and $51^{M / 3}-1>3^{M}$.

Corollary 1. Let $M \geq 3$ and $n \in T_{M}^{*}$.
(a) If $3 \mid n$, then $n>\left(c\left(A M^{2}-1\right) 2^{A M^{2}-1}\right)^{2^{A M^{2}-1}}$, where $c=0.231 \ldots=\log 2 / 3$.
(b) If $3 \nmid n$, then $n>\left(d M 3^{M}\right)^{3^{M}}$, where $d=0.366 \ldots=\log 3 / 3$.

Thus, if $3 \mid n$ and $M \geq 5$, we have that $\omega(n)>3.7 \cdot 10^{8}$ and $n>3.9 \cdot 10^{10^{8}}$ (compare with Inequality (4)). If $3 \nmid n$ and $M \geq 5$, then $\omega(n)>700$ and $n>10^{643}$ (compare with Inequality (5)).

Using Inequality (6) we obtain the following analogue of [3, Theorem 2].
Theorem 3. Let $\mathcal{P}=\left\{P_{1}, P_{2} \ldots\right\}$, where $P_{i}<P_{i+1}$ for all $i \geq 1$ denote the set of all odd prime numbers. For every integer $k \geq 2$ there exists an infinite subset $\mathcal{P}(k)$ of the set $\mathcal{P}$ such that
(a) for every pairwise distinct primes $p_{1}, p_{2}, \ldots, p_{k} \in \mathcal{P}(k)$ and $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k} \in$ $\mathbb{N}$ the number $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{k}^{\alpha_{k}}$ does not fulfill Equation (2);
(b) $\mathcal{P}(k)$ is maximal with respect to inclusion.
(Note that, since $\omega(n) \geq 16$ in general, we have $\mathcal{P}(k)=\mathcal{P}$ for $k \leq 15$.)

## 2. Preliminaries

In this section we shall collect some preliminary results.
Lemma 1. Let $n \in T_{M}^{*}, M>1$. If $p \mid n$ and $q^{\beta}+1 \equiv 0(\bmod p)$, then $q^{\beta}$ cannot be a unitary divisor of $n$. In particular, if $p \mid n, q+1 \equiv 0(\bmod p)$, and $q^{\beta}$ is a unitary divisor of $n$, then $\beta$ cannot be odd.

Proof. Given $p \mid n$ and $q^{\beta}+1 \equiv 0(\bmod p)$, if $q^{\beta} \| n$, then also $\sigma^{*}\left(q^{\beta}\right)=q^{\beta}+1 \mid \sigma^{*}(n)$, so that $p \mid \sigma^{*}(n)$. Thus, $p \mid\left(n, \sigma^{*}(n)\right)$, leading to a contradiction. Hence, the lemma is proven.

The next lemma due to Goto [2] plays an important role in the proof of the Theorem 1.

Lemma 2. Let $r, a, b$ be positive integers. If integers $x_{1}, \ldots, x_{r}$ satisfy $1 \leq x_{1}<$ $x_{2}<\ldots<x_{r}$ and

$$
\begin{equation*}
1 \leq \prod_{i=1}^{r-1}\left(1+\frac{1}{x_{i}}\right)<\frac{a}{b} \leq \prod_{i=1}^{r}\left(1+\frac{1}{x_{i}}\right) \tag{8}
\end{equation*}
$$

then it follows that

$$
\begin{equation*}
\prod_{i=1}^{r} x_{i} \leq(b+1)^{2^{r}-1}-(b+1)^{2^{r-1}-1} \tag{9}
\end{equation*}
$$

with equality if and only if $x_{i}=m_{i}$ for $1 \leq i \leq r$, where

$$
m_{i}=\left\{\begin{array}{l}
(b+1)^{2^{i-1}} i=1, \ldots, r-1 \\
(b+1)^{2^{i-1}}-1 i=r
\end{array}\right.
$$

## 3. Proofs

Proof of Theorem 1. Let $n \in T_{M}^{*}$ with $\omega(n)=r$. Write $n=N_{1} \cdots N_{r}$ where $N_{1}, \ldots, N_{r}$ denote prime powers satisfying $N_{i}<N_{j},\left(N_{i}, N_{j}\right)=1$ for $i<j$. Then

$$
\frac{\sigma^{*}(n)-1}{n}<\frac{\sigma^{*}(n)}{n}=\prod_{i=1}^{r}\left(1+\frac{1}{N_{i}}\right)
$$

Moreover,

$$
1<\prod_{i=1}^{r-1}\left(1+\frac{1}{N_{i}}\right)<\prod_{i=1}^{r}\left(1+\frac{1}{N_{i}}\right)-\frac{1}{N_{1} \cdots N_{r}}=\frac{\sigma^{*}(n)-1}{n}
$$

Thus,

$$
1<\prod_{i=1}^{r-1}\left(1+\frac{1}{N_{i}}\right)<\frac{\sigma^{*}(n)-1}{n}<\prod_{i=1}^{r}\left(1+\frac{1}{N_{i}}\right)
$$

Hence, the Inequality (8) is satisfied for $x_{i}=N_{i}, a=\frac{\sigma^{*}(n)-1}{n}, b=1$. From Inequality (9) we get $n=N_{1} \cdots N_{r} \leq 2^{2^{r}-1}-2^{2^{r-1}-1}$, and the theorem follows.

Proof of Theorem 2. From Equation (2) we get that if $n=p_{1}^{\alpha_{1}} \cdots p_{r}^{\alpha_{r}} \in T_{M}^{*}$, then

$$
M=\frac{\sigma^{*}(n)-1}{n}<\frac{\sigma^{*}(n)}{n}=\prod_{i=1}^{r}\left(1+\frac{1}{p_{i}^{\alpha_{i}}}\right)<\prod_{i=1}^{r}\left(1+\frac{1}{p_{i}}\right)
$$

and hence

$$
\begin{equation*}
\log M<\sum_{i=1}^{r} \log \left(1+\frac{1}{p_{i}}\right) . \tag{10}
\end{equation*}
$$

Part (a). From Lemma 1 it follows that $p_{i} \equiv 1(\bmod 6)$ or $\alpha_{i}$ is even for $i \geq 2$. We define the set $\mathcal{A}:=\{3\} \cup\{p \in \mathcal{P}: p \equiv 1(\bmod 6)\} \cup\left\{p^{2}: p \equiv 5(\bmod 6)\right\}=$ $\left\{a_{1}, a_{2}, \ldots\right\}$, where $a_{j}<a_{j+1}$ for $j=1,2, \ldots$.

Put

$$
\alpha(k)=\sum_{i=1}^{k} \log \left(1+\frac{1}{a_{i}}\right)
$$

where $k \geq 16$. Thus,

$$
\begin{equation*}
\log M<\alpha(r) \tag{11}
\end{equation*}
$$

Let $k_{0}$ be the least integer $k$ with $\log 3 \leq \alpha(k)$. Since $\alpha(805)=1.098538 \ldots<$ $\log 3=1.098612 \ldots<1.098613 \ldots=\alpha(806)$, we obtain that $k_{0}=806$. Now from Inequality (11) it follows that for $n \in T_{M}^{*}$ with $M \geq 3$ we have $\omega(n)=r \geq 806$.

Let $\mathcal{Q}^{\prime}=\left\{Q_{1}^{\prime}, Q_{2}^{\prime}, \ldots\right\}$ denote the set of all primes $\equiv 1(\bmod 6)$ with $Q_{i}^{\prime}<Q_{i+1}^{\prime}$ and $\mathcal{Q}^{*}=\left\{Q_{1}^{*}, Q_{2}^{*}, \ldots\right\}$ denote the set of all primes $\equiv 5(\bmod 6)$ with $Q_{i}^{*}<Q_{i+1}^{*}$ for $i=1,2, \ldots$. Since $i \geq 806$, then $a_{i} \equiv 1(\bmod 6)$ and $a_{i} \geq 13441=Q_{790}^{\prime}$ or $a_{i}=p^{2}$ with $p \equiv 5(\bmod 6)$ a prime and $p \geq 131=Q_{16}^{*}$. Hence,

$$
\begin{aligned}
\log M<\alpha(805)+\sum_{i=806}^{r} \log \left(1+\frac{1}{a_{i}}\right) & <\log 3+\sum_{i=806}^{r} \frac{1}{a_{i}} \\
& <\log 3+\sum_{j=790}^{r} \frac{1}{Q_{i}^{\prime}}+\sum_{i=16}^{\infty} \frac{1}{Q_{j}^{* 2}} .
\end{aligned}
$$

Using the estimate $Q_{n}^{\prime}, Q_{n}^{*}>2 n \log (2 n)$ for $Q_{n}^{\prime}, Q_{n}^{*}>198$, which follows from [1, Corollary 1.6], we get

$$
\begin{aligned}
\log M & <\log 3+\sum_{j=16}^{23} \frac{1}{Q_{j}^{* 2}}+\sum_{j=790}^{r} \frac{1}{2 j \log (2 j)}+\sum_{j=24}^{\infty} \frac{1}{4 j^{2} \log ^{2}(2 j)} \\
& <\log 3+0.00081+\int_{789}^{r} \frac{d x}{2 x \log (2 x)}
\end{aligned}
$$

Hence, $\log M<\log 3+0.00081+\frac{1}{2} \log \log (2 r)-\frac{1}{2} \log \log 1578$. Therefore $\omega(n)=$ $r>\frac{1}{2} \cdot 1578^{A M^{2} / 9}$ where $A=0.998 \ldots$..
Part (b). Let $\mathcal{Q}=\left\{Q_{1}, Q_{2}, \ldots\right\}$ denote the set of all primes with $Q_{i}<Q_{i+1}$ for $i=1,2, \ldots$. We have in Inequality (10) that $p_{1} \geq 5=Q_{3}$. Put

$$
\beta(k)=\sum_{i=1}^{k} \log \left(1+\frac{1}{Q_{i+2}}\right)
$$

where $k \geq 16$. Now from Inequality (10) we obtain

$$
\log M<\beta(r)
$$

Since $\beta(49)=1.09651 \ldots<\log 3<1.10069 \ldots=\beta(50)$, from Inequality ( $11^{\prime}$ ) it follows that for $n \in T_{M}^{*}$ with $M \geq 3$ we have $\omega(n)=r \geq 50$. Thus,

$$
\begin{aligned}
\log M< & \beta(49)+\sum_{i=50}^{r} \log \left(1+\frac{1}{Q_{i+2}}\right)<\log 3+\sum_{i=50}^{r} \frac{1}{Q_{i+2}} \\
& <\log 3+\int_{49}^{r} \frac{d x}{(x+2) \log (x+2)}
\end{aligned}
$$

as

$$
Q_{m}>m \log m \text { for } m \geq 1
$$

(see [5]). Hence, $\log M<\log 3+\log \log (r+2)-\log \log 51$ i.e., $\omega(n)=r \geq 51^{M / 3}-1$, as claimed.

Proof of Theorem 3. The theorem immediately follows from Theorem 1 since we can take $\mathcal{P}(k)$ to be the set of primes larger than $2^{2^{k}-1}-2^{2^{k-1}-1}$. Indeed, $n$ cannot fulfil $\sigma^{*}(n)=1+M n$ if any prime factor of $n$ is larger than $2^{2^{k}-1}-2^{2^{k-1}-1}$.

The existence of a maximal (with respect to inclusion) set $\mathcal{P}(k)$ follows from Kuratowski-Zorn's lemma.

Acknowledgement. The author is greatly indebted to the referee for his/her many constructive remarks and for his/her active help in formulating the proof of Theorem 2.

## References

[1] M. A. Bennett, G. Martin, K. O'Bryant, and A. Rechnitzer, Explicit bounds for primes in arithmetic progressions, Illinois J. Math. 62 (2018), 427-532.
[2] T. Goto, Upper bounds for unitary perfect numbers and unitary harmonic numbers, Rocky Mountain J. Math. 37 (2007), no. 5, 1557-1576.
[3] A. Grytczuk and M. Wóytowicz, On a Lehmer problem concerning Euler's totient function, Proc. Japan Acad. Ser. A 79 (2003), 136-138.
[4] G. Robin, Estimation de la fonction Tchebychef $\theta$ sur le $k$-ième nombre premier et grandes valeurs de la fonction $\omega(n)$ nombre de diviseurs premiers de $n$, Acta Arith. 42 (1983), 367-389.
[5] J. B. Rosser, The $n$-the prime is greater than $n \log n$, Proc. London Math. Soc. 45 (1938), 21-44.
[6] M. V. Subbarao, A companion to a Lehmer problem, Publ. Math. Debrecen 52 (1998), no. 3-4, 683-698.

