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Abstract

Let M be a positive integer with M ≥ 3, and let σ∗(n) denote the unitary ana-
logue of the sum of divisors function σ(n). We strengthen considerably the lower
estimations of the solutions n of the equation σ∗(n) = 1 +Mn.

1. Introduction

We say that d is a unitary divisor of n if d|n and

(
d, nd

)
= 1. Let σ∗(n) =∑

d|n, (d,nd )=1 d be the sum of all unitary divisors of n. If n = pα1
1 pα2

2 . . . pαr
r where

pi are distinct primes and αi > 0 for all i, then it is easy to see that

σ∗(n) =

r∏
i=1

(1 + pαi
i )

and that σ∗(n) is a multiplicative function.

The Dedekind psi function ψ(n) is a multiplicative function given by

ψ(n) = n
∏
p|n

(
1 +

1

p

)
.

Let M ≥ 1 be a positive integer. Subbarao [6] studied the Diophantine equations

ψ(n) = 1 +Mn (1)

and

σ∗(n) = 1 +Mn. (2)

He formulated the following conjecture.
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Conjecture 1. The congruence σ∗(n) ≡ 1 (mod n) is possible if and only if n is a

prime power. In particular, for arbitrary distinct primes p1, . . . , pr, r ≥ 1,

(p1 + 1) . . . (pr + 1) ≡ 1 (mod p1 . . . pr) if and only if r = 1.

Equivalently, ψ(n) ≡ 1 (mod n) if and only if n is a prime.

No counterexample to Conjecture 1 is known although there are some partial

results. For M = 1, 2, 3, . . . define

TM = {n : ψ(n) = 1 +Mn}, T =
⋃
M≥2

TM ,

T ∗M = {n : σ∗(n) = 1 +Mn}, T ∗ =
⋃
M≥2

T ∗M .

Note that TM ⊂ T ∗M . Subbarao’s conjecture is that T and T ∗ are empty.

In the sequel we assume that M > 1. Subbarao himself obtained the following

results:

i) If n ∈ T ∗M , then n is not a powerful number, M is odd ≥ 3 and ω(n) ≥ 16,

n > 1020, where ω(n) denotes the number of distinct prime factors of n;

ii) If n ∈ T ∗M with ω(n) = r, then

n < (r − 1)2
r−1; (3)

iii) If n ∈ TM and 3|n, then we have

ω(n) > 2557, n > 5.9 · 1010766, (4)

(stated without proof);

iv) If n ∈ TM and 3 - n, then we have

ω(n) ≥ 123. (5)

Our first theorem improves the upper bound in Inequality (3).

Theorem 1. If n ∈ T ∗M , then

n ≤ 22
r−1 − 22

r−1−1, (6)

where r denotes the number of distinct prime divisors of n.

Using Grytczuk-Wójtowicz’s techniques from the paper [3] we obtain the lower

bounds for ω(n) and n for n ∈ T ∗M with M ≥ 3, which are also valid for n ∈ TM
with M > 3; thereby improving Inequalities (4)-(5).

The main result of this paper is the following theorem.
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Theorem 2. Let M ≥ 3 and n ∈ T ∗M .

(a) If 3|n, then ω(n) = r > 1
2 · 1578AM

2/9, where A = 0.998 . . ..

(b) If 3 - n, then ω(n) ≥ 51M/3 − 1.

The corollary below is an immediate consequence of Theorem 2 and Robin’s

inequality (see [4, Théorème 6]) that for every positive integer n we have

n >

(
r log r

3

)r
, (7)

where r = ω(n). Note that for M ≥ 3 we have the following rough bounds: 1
2 ·

1578AM
2/9 > 2AM

2−1 and 51M/3 − 1 > 3M .

Corollary 1. Let M ≥ 3 and n ∈ T ∗M .

(a) If 3|n, then n > (c(AM2 − 1)2AM
2−1)2

AM2−1

, where c = 0.231 . . . = log 2/3.

(b) If 3 - n, then n > (dM3M )3
M

, where d = 0.366 . . . = log 3/3.

Thus, if 3|n and M ≥ 5, we have that ω(n) > 3.7 · 108 and n > 3.9 · 1010
8

(compare with Inequality (4)). If 3 - n and M ≥ 5, then ω(n) > 700 and n > 10643

(compare with Inequality (5)).

Using Inequality (6) we obtain the following analogue of [3, Theorem 2].

Theorem 3. Let P = {P1, P2. . . .}, where Pi < Pi+1 for all i ≥ 1 denote the set of

all odd prime numbers. For every integer k ≥ 2 there exists an infinite subset P(k)

of the set P such that

(a) for every pairwise distinct primes p1, p2, . . . , pk ∈ P(k) and α1, α2, . . . , αk ∈
N the number n = pα1

1 pα2
2 . . . pαk

k does not fulfill Equation (2);

(b) P(k) is maximal with respect to inclusion.

(Note that, since ω(n) ≥ 16 in general, we have P(k) = P for k ≤ 15.)

2. Preliminaries

In this section we shall collect some preliminary results.

Lemma 1. Let n ∈ T ∗M , M > 1. If p|n and qβ + 1 ≡ 0 (mod p), then qβ cannot be

a unitary divisor of n. In particular, if p|n, q + 1 ≡ 0 (mod p), and qβ is a unitary

divisor of n, then β cannot be odd.

Proof. Given p|n and qβ + 1 ≡ 0 (mod p), if qβ ||n, then also σ∗(qβ) = qβ + 1|σ∗(n),

so that p|σ∗(n). Thus, p|(n, σ∗(n)), leading to a contradiction. Hence, the lemma

is proven.
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The next lemma due to Goto [2] plays an important role in the proof of the

Theorem 1.

Lemma 2. Let r, a, b be positive integers. If integers x1, . . . , xr satisfy 1 ≤ x1 <

x2 < . . . < xr and

1 ≤
r−1∏
i=1

(
1 +

1

xi

)
<
a

b
≤

r∏
i=1

(
1 +

1

xi

)
, (8)

then it follows that

r∏
i=1

xi ≤ (b+ 1)2
r−1 − (b+ 1)2

r−1−1 (9)

with equality if and only if xi = mi for 1 ≤ i ≤ r, where

mi =

{
(b+ 1)2

i−1

i = 1, . . . , r − 1,

(b+ 1)2
i−1 − 1 i = r.

3. Proofs

Proof of Theorem 1. Let n ∈ T ∗M with ω(n) = r. Write n = N1 · · ·Nr where

N1, . . . , Nr denote prime powers satisfying Ni < Nj , (Ni, Nj) = 1 for i < j. Then

σ∗(n)− 1

n
<
σ∗(n)

n
=

r∏
i=1

(
1 +

1

Ni

)
.

Moreover,

1 <

r−1∏
i=1

(
1 +

1

Ni

)
<

r∏
i=1

(
1 +

1

Ni

)
− 1

N1 · · ·Nr
=
σ∗(n)− 1

n
.

Thus,

1 <

r−1∏
i=1

(
1 +

1

Ni

)
<
σ∗(n)− 1

n
<

r∏
i=1

(
1 +

1

Ni

)
.

Hence, the Inequality (8) is satisfied for xi = Ni, a = σ∗(n)−1
n , b = 1. From

Inequality (9) we get n = N1 · · ·Nr ≤ 22
r−1−22

r−1−1, and the theorem follows.

Proof of Theorem 2. From Equation (2) we get that if n = pα1
1 · · · pαr

r ∈ T ∗M , then

M =
σ∗(n)− 1

n
<
σ∗(n)

n
=

r∏
i=1

(
1 +

1

pαi
i

)
<

r∏
i=1

(
1 +

1

pi

)
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and hence

logM <

r∑
i=1

log

(
1 +

1

pi

)
. (10)

Part (a). From Lemma 1 it follows that pi ≡ 1 (mod 6) or αi is even for i ≥ 2.

We define the set A := {3} ∪ {p ∈ P : p ≡ 1 (mod 6)} ∪ {p2 : p ≡ 5 (mod 6)} =

{a1, a2, . . .}, where aj < aj+1 for j = 1, 2, . . ..

Put

α(k) =

k∑
i=1

log

(
1 +

1

ai

)
,

where k ≥ 16. Thus,

logM < α(r). (11)

Let k0 be the least integer k with log 3 ≤ α(k). Since α(805) = 1.098538 . . . <

log 3 = 1.098612 . . . < 1.098613 . . . = α(806), we obtain that k0 = 806. Now from

Inequality (11) it follows that for n ∈ T ∗M with M ≥ 3 we have ω(n) = r ≥ 806.

Let Q′ = {Q′1, Q′2, . . .} denote the set of all primes ≡ 1 (mod 6) with Q′i < Q′i+1

and Q∗ = {Q∗1, Q∗2, . . .} denote the set of all primes ≡ 5 (mod 6) with Q∗i < Q∗i+1

for i = 1, 2, . . .. Since i ≥ 806, then ai ≡ 1 (mod 6) and ai ≥ 13441 = Q′790 or

ai = p2 with p ≡ 5 (mod 6) a prime and p ≥ 131 = Q∗16. Hence,

logM < α(805) +

r∑
i=806

log

(
1 +

1

ai

)
< log 3 +

r∑
i=806

1

ai

< log 3 +

r∑
j=790

1

Q′i
+

∞∑
i=16

1

Q∗j
2 .

Using the estimate Q′n, Q
∗
n > 2n log (2n) for Q′n, Q

∗
n > 198, which follows from

[1, Corollary 1.6], we get

logM < log 3 +

23∑
j=16

1

Q∗j
2 +

r∑
j=790

1

2j log (2j)
+

∞∑
j=24

1

4j2 log2 (2j)

< log 3 + 0.00081 +

∫ r

789

dx

2x log (2x)

Hence, logM < log 3+0.00081+ 1
2 log log (2r)− 1

2 log log 1578. Therefore ω(n) =

r > 1
2 · 1578AM

2/9 where A = 0.998 . . ..

Part (b). Let Q = {Q1, Q2, . . .} denote the set of all primes with Qi < Qi+1 for

i = 1, 2, . . .. We have in Inequality (10) that p1 ≥ 5 = Q3. Put

β(k) =

k∑
i=1

log

(
1 +

1

Qi+2

)
,
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where k ≥ 16. Now from Inequality (10) we obtain

logM < β(r). (11′)

Since β(49) = 1.09651 . . . < log 3 < 1.10069 . . . = β(50), from Inequality (11′) it

follows that for n ∈ T ∗M with M ≥ 3 we have ω(n) = r ≥ 50. Thus,

logM <β(49) +

r∑
i=50

log

(
1 +

1

Qi+2

)
< log 3 +

r∑
i=50

1

Qi+2

< log 3 +

∫ r

49

dx

(x+ 2) log (x+ 2)
,

as

Qm > m logm for m ≥ 1.

(see [5]). Hence, logM < log 3+log log (r + 2)−log log 51 i.e., ω(n) = r ≥ 51M/3−1,

as claimed.

Proof of Theorem 3. The theorem immediately follows from Theorem 1 since we

can take P(k) to be the set of primes larger than 22
k−1−22

k−1−1. Indeed, n cannot

fulfil σ∗(n) = 1 +Mn if any prime factor of n is larger than 22
k−1 − 22

k−1−1.

The existence of a maximal (with respect to inclusion) set P(k) follows from

Kuratowski-Zorn’s lemma.
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