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Abstract
Let M be a positive integer with M > 3, and let 0*(n) denote the unitary ana-
logue of the sum of divisors function o(n). We strengthen considerably the lower
estimations of the solutions n of the equation o*(n) =1+ Mn.

1. Introduction

We say that d is a unitary divisor of n if d|n and <d,§> = 1. Let o*(n) =

2 din, (4,2)=1 d be the sum of all unitary divisors of n. If n = pi"py* ... p" where
p; are distinct primes and «; > 0 for all 4, then it is easy to see that

T

o*(n) = [J(1 +p)

i=1
and that o*(n) is a multiplicative function.
The Dedekind psi function v (n) is a multiplicative function given by

z/;(n)—nH(H;).

Let M > 1 be a positive integer. Subbarao [6] studied the Diophantine equations
Y(n) =1+ Mn (1)

and
o*(n) =1+ Mn. (2)

He formulated the following conjecture.
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Conjecture 1. The congruence o*(n) =1 (mod n) is possible if and only if n is a
prime power. In particular, for arbitrary distinct primes py,...,p., 7 > 1,

(pr1+1)...(pr+1)=1 (mod p; ...p,) if and only if r = 1.
Equivalently, ¢(n) = 1 (mod n) if and only if n is a prime.

No counterexample to Conjecture 1 is known although there are some partial
results. For M =1,2,3,... define

Ty={n:¢yYn)=14+Mn}, T = U T,
M>2

Ty={n:0"(n)=14+Mn}, T*= U Thr
M>2

Note that Ths C Tj;. Subbarao’s conjecture is that 7 and 7* are empty.

In the sequel we assume that M > 1. Subbarao himself obtained the following
results:

i) If n € T}, then n is not a powerful number, M is odd > 3 and w(n) > 16,
n > 10%°, where w(n) denotes the number of distinct prime factors of n;

ii) If n € Ty, with w(n) = r, then

n<(r—1)%"1 o
iii) If n € T)y and 3|n, then we have
w(n) > 2557, n > 5.9 - 1019766 @

(stated without proof);
iv) If n € Ty and 3 1 n, then we have

w(n) > 123. (5)
Our first theorem improves the upper bound in Inequality (3).

Theorem 1. Ifn € T};, then
n<92-1_ 22**1—1’ (6)
where r denotes the number of distinct prime divisors of n.

Using Grytczuk-Wéjtowicz’s techniques from the paper [3] we obtain the lower
bounds for w(n) and n for n € T, with M > 3, which are also valid for n € Ty,
with M > 3; thereby improving Inequalities (4)-(5).

The main result of this paper is the following theorem.
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Theorem 2. Let M > 3 and n € T};.
a) If 3|n, then w(n) =r > % . 1578AM2/9, where A =0.998. ...
2
(b) If 31 n, then w(n) > 51M/3 — 1,

The corollary below is an immediate consequence of Theorem 2 and Robin’s
inequality (see [4, Théoréme 6]) that for every positive integer n we have

- (rl(;gr)T’ (7)

where 7 = w(n). Note that for M > 3 we have the following rough bounds: % .
1578AM/9 5 9AM? =1 qpd 51M/3 — 1 > 3M,

Corollary 1. Let M > 3 and n € Ty;.
(a) If 3|n, then n > (c(AM? — 1)2AM2_1) , where ¢ =10.231... =log2/3.
(b) If 3t n, then n > (dM3M)3M, where d = 0.366 ... = log 3/3.

2_
2AM 1

Thus, if 3|n and M > 5, we have that w(n) > 3.7-10% and n > 3.9 - 1010°
(compare with Inequality (4)). If 3{n and M > 5, then w(n) > 700 and n > 10%43
(compare with Inequality (5)).

Using Inequality (6) we obtain the following analogue of [3, Theorem 2].

Theorem 3. Let P = {Py, Ps....}, where P; < P;11 for alli > 1 denote the set of
all odd prime numbers. For every integer k > 2 there exists an infinite subset P (k)
of the set P such that

(a) for every pairwise distinct primes p1,pe,...,px € P(k) and ay, s, ..., a €
N the number n = pi"'ps? ... pp* does not fulfill Equation (2);

(b) P(k) is mazimal with respect to inclusion.

(Note that, since w(n) > 16 in general, we have P(k) =P for k <15.)

2. Preliminaries

In this section we shall collect some preliminary results.

Lemma 1. Letn € Tj;, M > 1. If pln and ¢° +1 =0 (mod p), then ¢° cannot be
a unitary divisor of n. In particular, if pjn, ¢ +1 =0 (mod p), and ¢° is a unitary
divisor of n, then 8 cannot be odd.

Proof. Given p|n and ¢° +1 = 0 (mod p), if ¢°||n, then also o*(¢%) = ¢° 4 1|o*(n),
so that p|o*(n). Thus, p|(n,c*(n)), leading to a contradiction. Hence, the lemma
is proven. O
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The next lemma due to Goto [2] plays an important role in the proof of the
Theorem 1.

Lemma 2. Let r,a,b be positive integers. If integers x1,...,x, satisfy 1 < x1 <
To < ...<x, and

r—1 T
1 1
<1 ) <o <I(1+2), ®)
i=1 v i=1 v

then it follows that
[[ei< 0+ =@+ (9)
i=1

with equality if and only if x; = m; for 1 <i <r, where

B ICEE VL RO
T+ — 1=

3. Proofs

Proof of Theorem 1. Let n € T3, with w(n) = r. Write n = Ny--- N, where
Ni,..., N, denote prime powers satisfying N; < N;, (N;, N;) =1 for i < j. Then

o (n)

n1<g*7§n)ﬁ<1+]$i)'

=1

Moreover,

r—1 T
1 1 1 o*(n) — 1
1< Il 1+ =)< || 14— — = .

Thus,
r—1 T
1 o*(n)—1 1
1 1+ — —_— 1+—).
<1:1:[1<+Ni>< n <E(+Ni>

Hence, the Inequality (8) is satisfied for z; = N;, a = %, b =1. From
Inequality (9) we get n. = Ny -+ N, < 22"=1—22"""=1 and the theorem follows. [

Proof of Theorem 2. From Equation (2) we get that if n = p{* ---p® € T, then

M:a*(nn)—l <J*7(ln)_ﬁ<1+p}“> <Zﬁl(1+;)

. i
i=1 g
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and hence

. 1
log M < Zlog (1 + ) (10)
i=1

DPi

Part (a). From Lemma 1 it follows that p; = 1 (mod 6) or «; is even for i > 2.
We define the set A:={3}U{peP: p=1(mod 6)}U{p?: p=5 (mod 6)} =
{a1,a9,...}, where a; < a;q1 for j =1,2,....

Put

a(k) = élog (1 + ;),

where k£ > 16. Thus,

log M < a(r). (11)
Let ko be the least integer k with log3 < a(k). Since «(805) = 1.098538... <
log3 = 1.098612... < 1.098613... = «(806), we obtain that kg = 806. Now from

Inequality (11) it follows that for n € T'f; with M > 3 we have w(n) = r > 806.

Let Q' ={Q},Q5, ...} denote the set of all primes = 1 (mod 6) with Q} < @},
and Q* = {Q7,Q3,...} denote the set of all primes = 5 (mod 6) with Q} < Q7
for i = 1,2,.... Since ¢ > 806, then a; = 1 (mod 6) and a; > 13441 = Qg or
a; = p? with p =5 (mod 6) a prime and p > 131 = Qj4. Hence,

u 1 1

1 - -

0gM<a(805)+4§ log(1+ai)<log3+§ o
=806 =806

1 =1
<log3+ Z @4-2@
J=T790 ¥t =16 ¥J

Using the estimate Q/,, Q% > 2nlog(2n) for Q),,QF > 198, which follows from
[1, Corollary 1.6], we get

23 T e}
1 1 1
log M <log3 + — + oA T T 3o
J;G Qy? j;;() 2jlog (27) ;;4 4j2log” (24)

" dx
<log 3 + 0.00081 + / —_—
& 789 2z log (2x)

Hence, log M < log 3+ 0.00081 + § log log (2r) — 5 loglog 1578. Therefore w(n) =
r> 1.15784M%/9 where A = 0.998.. ..

Part (b). Let Q = {Q1,Q2,...} denote the set of all primes with @Q; < @Q;41 for
i=1,2,.... We have in Inequality (10) that p; > 5 = Q3. Put

B(k)—izk;log (1+ ),

1
Qit2
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where k > 16. Now from Inequality (10) we obtain
log M < B(r). (11")

Since (49) = 1.09651... < log3 < 1.10069...

= B(50), from Inequality (11’) it
follows that for n € T}, with M > 3 we have w(n) =

r > 50. Thus,

i 1 T
log M <5(49) + Z log (1 + > < log3 + Z

=50 Qit2 i=50

< lo 3+/T dx
52T Jio (@ 2)log (v + 2)°

1
Qi+2

as
@ > mlogm for m > 1.

(see [5]). Hence, log M < log 3+loglog (r + 2)—loglog 51 i.e., w(n) = r > 51M/3 -1,
as claimed. O

Proof of Theorem 3. The theorem immediately follows from Theorem 1 since we
can take P (k) to be the set of primes larger than 92*-1_92* 7' -1, Indeed, n cannot
fulfil o*(n) = 1 + Mn if any prime factor of n is larger than 92t -1 _ g2¢ 711,

The existence of a maximal (with respect to inclusion) set P(k) follows from
Kuratowski-Zorn’s lemma. O
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