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Abstract

We define the N × N single variable cyclemaster matrix, and use its determinant
to construct a necessary and sufficient test for N to be prime.

1. Introduction

We begin by defining the single variable cyclemaster matrix. At first, it may seem

to be entirely irrelevant to any discussion of primality testing. However, we shall

eventually see that it is actually essential in the exposition to follow. Three examples

illustrate the formal definition below.

If N = 2, then the 2× 2 single variable cyclemaster matrix is defined as

C2(e1, e2;x) =

(
1 1
xe1 xe2

)
.

If N = 3, then the 3× 3 single variable cyclemaster matrix is defined as

C3(e1, e2, e3;x) =

 1 1 1
xe1 xe2 xe3

xe1+e2 xe2+e3 xe3+e1

 .

If N = 4, then the 4× 4 single variable cyclemaster matrix is defined as

C4(e1, e2, e3, e4;x) =


1 1 1 1
xe1 xe2 xe3 xe4

xe1+e2 xe2+e3 xe3+e4 xe4+e1

xe1+e2+e3 xe2+e3+e4 xe3+e4+e1 xe4+e1+e2

 .
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These three matrices were defined explicitly here in order to highlight the pattern

evidenced by the exponents ei in the formal definition.

Definition 1. Given a sequence e1, . . . , eN of real numbers, the partial sum mij ,

with 1 ≤ i, j ≤ N , is the sum of j consecutive elements of our sequence starting

with ei, and is defined formally as

mij = ei + · · ·+ ei+j−1 =

j−1∑
k=0

ei+k,

with the convention that mi,0 = 0 and, when i+k > N , then ei+k = ei+k−N . Thus,

m33 = e3 + e4 + e5; but if N = 4, then m33 = e3 + e4 + e1, as e5 = e1 in this case.

Rephrased, if i+ k > N , then the sum “wraps around” to the beginning.

The single variable cyclemaster matrix CN (e1, . . . , eN ;x) is the N × N matrix

whose ijth entry is equal to xmj,i−1 . Specifically,

CN (e1, . . . , eN ;x) =


1 1 1 · · · 1

xm1,1 xm2,1 xm3,1 · · · xmN,1

xm1,2 xm2,2 xm3,2 · · · xmN,2

...
...

...
. . .

...
xm1,N−1 xm2,N−1 xm3,N−1 · · · xmN,N−1

 .

Matrices of this type (with x = 2) have previously appeared in the literature [4],

where they were defined as cyclemaster matrices, due to their role in providing a

necessary condition for the existence of N -cycles in the “3x+ 1” problem and their

value as a common feature in all “ax+ 1” problems. When the sequence e1, . . . , eN
consists of positive integers, the cyclemaster matrix is defined for any real number

x; otherwise we assume that x > 0.

After computing the determinant of a single variable cyclemaster matrix for the

first few values of N , an interesting observation was made by the second named

author. If N is a prime number (2, 3, 5, 7), then the polynomial determinant

vanishes identically for all x if and only if e1 = · · · = eN . On the other hand,

if N is composite (4, 6), then the polynomial determinant could vanish even if

the exponents were not all equal. For example, det C4(e1, e2, e1, e2;x) = 0 and

det C6(e1, e2, e3, e1, e2, e3;x) = 0 for all x. In this paper, we show that these obser-

vations remain valid for all positive integers N , thus providing a primality test.

Most primality tests are stated in terms of congruences. For example, Wilson’s

Theorem states that N is a prime number if and only if (N − 1)! ≡ −1 (mod N).

This is a simply stated test which becomes computationally difficult for large values

of N – a common characteristic of primality tests. Other tests involve the use of

primitive roots, factoring N±1, or employing sieve methods. See [1, 2] for examples.

Some of the other tests for primality are probabilistic in nature in the sense that

the test returns the result that N is probably a prime.
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Our main result provides a characterization of prime numbers in the sense that it

provides a necessary and sufficient condition for a number to be prime. Specifically,

we prove the following theorem.

Theorem 1. Let N ≥ 2 be an integer. Then the following statements are

equivalent:

(1) N is a prime number.

(2) If the determinant det CN (e1, . . . , eN ;x) = 0 for all x > 0, then e1 = · · · = eN .

(3) If e1, . . . , eN are taken from the set {0, 1} and the determinant

det CN (e1, . . . , eN ;x) = 0 for all x, then e1 = · · · = eN .

Note that the primality test provided by Theorem 1 is not computationally prac-

tical due to the numerical difficulties encountered when evaluating determinants. It

does not involve congruences or primitive roots and it is not probabilistic in nature.

Rather, the primality of the integer N depends upon the equality of N completely

unrelated parameters, and in this sense it represents a unique approach to primality

testing.

We will derive Theorem 1 from the following result, which is of independent

interest.

Theorem 2. Let cN (e1, . . . , eN ;x) = det CN (e1, . . . , eN ;x). Then cN (e1, . . . , eN ;x)

has a zero of multiplicity at least N − 1 at x = 1 and the (N − 1)st derivative of

cN (e1, . . . , eN ;x) at x = 1 is equal to

c
(N−1)
N (e1, . . . , eN ; 1)

= (−1)bN/2c(N − 1)!

N−1∏
j=1

(
e1 + e2ω

j + e3ω
2j + . . .+ eNω

j(N−1)
)
,

where ω is a primitive N th root of unity.

2. Proofs of the Theorems

We start with Theorem 2. Our proof of this theorem is based on the following

lemma.

Lemma 1. Let M(e1, . . . , eN ) denote the matrix
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

1 1 . . . 1
e1 e2 . . . eN

e1 + e2 e2 + e3 . . . eN + e1
e1 + e2 + e3 e2 + e3 + e4 . . . eN + e1 + e2

...
...

...
...

e1 + e2 + . . .+ eN−1 e2 + e3 + . . .+ eN . . . eN + e1 + . . .+ eN−2


.

Then

detM(e1, . . . , eN ) = (−1)bN/2c
N−1∏
j=1

(
e1 + e2ω

j + e3ω
2j + . . .+ eNω

j(N−1)
)
,

where ω is a primitive N th root of unity.

Proof. Subtracting row N − 1 from row N , then row N − 2 from row N − 1, . . . ,

and finally row 2 from row 3, we see that

detM(e1, . . . , eN ) = det



1 1 1 . . . 1
e1 e2 e3 . . . eN
e2 e3 e4 . . . e1
e3 e4 e5 . . . e2
...

...
...

...
...

eN−1 eN e1 . . . eN−2


.

Moving the first row down to be the last and multiplying it by the sum E =

e1 + · · ·+ eN , we see that

E · detM(e1, . . . , eN ) = (−1)N−1 det



e1 e2 e3 . . . eN
e2 e3 e4 . . . e1
e3 e4 e5 . . . e2
...

...
...

...
...

eN−1 eN e1 . . . eN−2
E E E . . . E


.

Subtracting from the last row the sum of all the other rows, we get that

E · detM(e1, . . . , eN ) = (−1)N−1 det



e1 e2 e3 . . . eN
e2 e3 e4 . . . e1
e3 e4 e5 . . . e2
...

...
...

...
...

eN−1 eN e1 . . . eN−2
eN e1 e2 . . . eN−1


.
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Permuting the rows according to the permutation

(
1 2 3 . . . N
1 N N − 1 . . . 2

)
, which

is a product of b(N − 1)/2c transpositions, we get that

E · detM(e1, . . . , eN ) = (−1)N−1(−1)b(N−1)/2c det



e1 e2 e3 . . . eN
eN e1 e2 . . . eN−1
eN−1 eN e1 . . . eN−2

...
...

...
...

...
e3 e4 e5 . . . e2
e2 e3 e4 . . . e1


.

The matrix on the right is the circulant matrix. Its determinant is given by the

following formula [3, page 75]:

E

N−1∏
j=1

(
e1 + e2ω

j + e3ω
2j + . . .+ eNω

j(N−1)
)
.

This easily implies the assertion of Lemma 1 when E 6= 0. The case E = 0 follows

by a straightforward continuity argument.

Proof of Theorem 2. Subtracting the first row of CN (e1, . . . , eN ;x) from each of the

other rows and then dividing each row except the first one by (x− 1) we see that

cN (e1, . . . , eN ;x)

(x− 1)N−1

= det



1 1 1 . . . 1
xe1−1
x−1

xe2−1
x−1

xe3−1
x−1 . . . xeN−1

x−1
xe1+e2−1
x−1

xe2+e3−1
x−1

xe3+e4−1
x−1 . . . xeN+e1−1

x−1
...

...
...

...
...

xe1+e2+...+eN−1−1
x−1

xe2+e3+...+eN−1
x−1

xe3+...+eN+e1−1
x−1 . . . xeN+e1+...+eN−2−1

x−1

 .

Recall that for any real number k we have limx→1(xk − 1)/(x − 1) = k. It fol-

lows that when x tends to 1, the matrix on the right side converges to the matrix

M(e1, . . . , eN ). Thus

lim
x→1

cN (e1, . . . , eN ;x)

(x− 1)N−1
= detM(e1, . . . , eN ).

Recall now a simple result from calculus: if R(x) is a function of class Ck and

limx→1
R(x)

(x−1)k = L exists then R(i)(1) = 0 for i < k and R(k)(1) = k!L. Applying

this to R(x) = cN (e1, . . . , eN ;x) and k = N − 1 we see that c
(i)
N (e1, . . . , eN ; 1) = 0

for 0 ≤ i < N − 1 and

c
(N−1)
N (e1, . . . , eN ; 1) = (N − 1)! detM(e1, . . . , eN ).

Theorem 2 follows now from Lemma 1.
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For our proof of Theorem 1 we need the following simple lemma.

Lemma 2. If u1 < . . . < un and a1, . . . , an are real numbers such that∑n
k=1 akx

uk = 0 for all x > 0, then ak = 0 for all k.

Proof. We use induction on n. The case n = 1 is clear. Assume that n > 1 and the

result holds for n−1. By taking the derivative with respect to x and then multiplying

by x we get
∑n
k=1 akukx

uk = 0. It follows that
∑n−1
k=1 ak(uk − un)xuk = 0. By the

inductive assumption we conclude that ak = 0 for k = 1, . . . , n− 1. This also forces

an = 0.

We will use the following straightforward consequence of Lemma 2.

Corollary 1. If
∑K
i=1 x

ki =
∑M
i=1 x

mi for all x > 0 and some (not necessarily

distinct) real numbers k1, . . . , kK and m1, . . . ,mM , then K = M and there is a

permutation f of 1, 2, . . . ,K such that ki = mf(i) for i = 1, . . . ,K.

Proof of Theorem 1. Note that for any integer N > 1, if e1 = · · · = eN , then

det CN (e1, . . . , eN ;x) = 0 for all x, since the second row of CN (e1, . . . , eN ;x) is a

multiple of the first row.

It is obvious that (2) implies (3).

If N is composite and D > 1 is a proper divisor of N then det CN (e1, . . . , eN ;x)

vanishes as a function of x for any sequence e1, . . . , eN which has period D (i.e.

ei+D = ei for all i). Indeed, in this case the (D + 1)st row of the matrix

CN (e1, . . . , eD, eD+1, . . . , eN ;x) is a scalar multiple of the first row, since every entry

in the (D+ 1)st row is equal to xSD , where SD = e1 + · · ·+ eD. This, in particular,

shows that statement (3) implies statement (1).

It remains to prove that (1) implies (2), which is the hard part of our result. We

proceed by contradiction. Assume that N is prime and cN (e1, . . . , eN ;x) = 0 for

all x > 0 and some non-constant sequence e1, . . . , eN of real numbers. Using the

Leibniz formula for the determinant det CN (e1, . . . , eN ;x) we see that∑
σ∈SN

(−1)sign(σ)xLσ(e1,...,eN ) = 0,

where SN is the set of all permutations of {1, 2, . . . , N} and each Lσ is a linear

homogeneous form in e1, . . . , eN with integer coefficients. In other words,∑
σodd

xLσ(e1,...,eN ) =
∑
σeven

xLσ(e1,...,eN ).

Corollary 1 implies that there is a bijection f from odd permutations to even per-

mutations such that Lσ(e1, . . . , eN ) = Lf(σ)(e1, . . . , eN ) for every odd permuta-

tion σ. We can view the equalities Lσ(e1, . . . , eN ) = Lf(σ)(e1, . . . , eN ) as a sys-

tem of homogeneous linear equations in e1, . . . , eN with integer coefficients which
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has a non-constant real solution. But then it also has a non-constant integral

solution. Thus there is a non-constant sequence e′1, . . . , e
′
N of integers such that

cn(e′1, . . . , e
′
N ;x) = 0 for all x > 0. By Theorem 2, we have

N−1∏
j=1

(
e′1 + e′2ω

j + e′3ω
2j + . . .+ e′Nω

j(N−1)
)

= 0,

where ω is a primitive N -th root of unity. Thus one of the factors in the product

must be 0. Now since N is a prime, ωj is also a primitive N th root of unity for

1 ≤ j < N . Thus we have e′1 + e′2τ + . . .+ e′Nτ
N−1 = 0 for a primitive N th root of

unity τ . Note that 1 + τ + . . .+ τN−1 = 0, so we have (e′1− e′N ) + (e′2− e′N )τ + . . .+

(e′N−1 − e′N )τN−2 = 0. Moreover, 1 + x + . . . + xN−1 is the minimal polynomial

for τ , so e′i − e′N = 0 for i = 1, . . . , N − 1. In other words, e′1 = . . . = e′N , a

contradiction.
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