A PROBABILISTIC PROOF THAT $\sum_{J=1}^{N} H_{J}^{(S)}=(N+1) H_{N}^{(S)}-H_{N}^{(S-1)}$

Reza Farhadian
Department of Statistics, Razi University, Kermanshah, Iran
farhadian.reza@yahoo.com

Received: 8/15/22, Revised: 2/23/23, Accepted: 4/6/23, Published: 4/24/23

Abstract
Let $H_{n}^{(s)}(s \geq 0)$ be the nth generalized harmonic number. In this note, we provide a probabilistic proof for the familiar sum identity $\sum_{j=1}^{n} H_{j}^{(s)}=(n+1) H_{n}^{(s)}-H_{n}^{(s-1)}$.

1. Introduction

The harmonic number H_{n} is defined to be the partial sum of the harmonic series, i.e.,

$$
H_{n}=\sum_{k=1}^{n} \frac{1}{k} .
$$

The first 10 terms of the sequence of harmonic numbers are

$$
1, \frac{3}{2}, \frac{11}{6}, \frac{25}{12}, \frac{137}{60}, \frac{49}{20}, \frac{363}{140}, \frac{761}{280}, \frac{7129}{2520}, \frac{7381}{2520}
$$

Since the harmonic series diverges, it is clear that H_{n} can get arbitrarily large, although it does so quite slowly. For instance, some large harmonic numbers are

$$
\begin{aligned}
H_{1000000} & \approx 14.3927 \\
H_{2000000} & \approx 15.0858 \\
H_{3000000} & \approx 15.4913 \\
H_{4000000} & \approx 15.7790
\end{aligned}
$$

Harmonic numbers are also defined in a more generalized form. The generalized harmonic numbers $H_{n}^{(s)}$ of order s are defined by

$$
H_{n}^{(s)}=\sum_{k=1}^{n} \frac{1}{k^{s}} \quad(s \geq 0)
$$

Generalized harmonic numbers are also denoted by $H_{n, s}$. In the special case of $s=0$ we have $H_{n}^{(0)}=n$, and the special case of $s=1$ gives $H_{n}^{(1)}=H_{n}$.

Harmonic numbers satisfy many interesting properties. Greene and Knuth [2, p.10] listed some commonly used identities. One of them is the following well-known sum identity:

$$
\begin{equation*}
\sum_{j=1}^{n} H_{j}=(n+1) H_{n}-n \tag{1}
\end{equation*}
$$

In general, this identity can be defined for generalized harmonic numbers as follows (see, e.g., [4, p. 853 and 856]):

$$
\begin{equation*}
\sum_{j=1}^{n} H_{j}^{(s)}=(n+1) H_{n}^{(s)}-H_{n}^{(s-1)} \quad(s \geq 1) \tag{2}
\end{equation*}
$$

Since $H_{n}^{(1)}=H_{n}$ and $H_{n}^{(0)}=n$, the Identity (2) gives Identity (1) when $s=1$.
In this note, we will give a probabilistic proof of Identity (2). To this end, in subsequent sections, the following notation will be used: \mathbb{N} denotes the set of all natural numbers; $\operatorname{Pr}(X=x)$ denotes the probability mass function of a discrete random variable X; and $E[X]$ denotes the expected value of the random variable X.

2. Zipfian Distribution (Zipf's law)

A random variable X has the Zipfian distribution with parameters $s \geq 0$ and $n \in \mathbb{N}$, if its probability mass function is given by

$$
\operatorname{Pr}(X=x)=\left\{\begin{array}{lr}
\frac{1}{x^{s} H_{n}^{(s)}} & \text { if } x \in\{1,2, \ldots, n\} \tag{3}\\
0 & \text { otherwise }
\end{array}\right.
$$

where $H_{n}^{(s)}$ is the nth generalized harmonic number of order s.
Usually, the shorthand $X \sim \operatorname{Zipf}(s, n)$ is used to indicate that the random variable X has Zipfian distribution with parameters s and n. In simple terms, the Zipfian distribution predicts that out of a population of n elements, the frequency of rank x is given by (3), where s is the value of the exponent characterizing the distribution. This prediction is called Zipf's law. For more details, see, for example, [1, p. 373].

3. Probabilistic Proof of Identity (2)

Proof of Identity (2). Let X be a random variable taking values among the nonnegative integers. We recall the well-known tail sum formula for the expectation of
X (see, e.g., [3]), namely,

$$
E[X]=\sum_{x=0}^{\infty} \operatorname{Pr}(X>x)
$$

Since we have $E[X]=\sum_{x} x \operatorname{Pr}(X=x)$, the above identity may be written as

$$
\begin{equation*}
\sum_{x=0}^{\infty} x \operatorname{Pr}(X=x)=\sum_{x=0}^{\infty}\left(1-\sum_{y=0}^{x} \operatorname{Pr}(X=y)\right) \tag{4}
\end{equation*}
$$

If X has support in $\{0,1, \ldots, n\}$, then Equation (4) gives

$$
\begin{align*}
n+1 & =\sum_{x=0}^{n} x \operatorname{Pr}(X=x)+\sum_{x=0}^{n} \sum_{y=0}^{x} \operatorname{Pr}(X=y) \\
& =\sum_{x=1}^{n} x \operatorname{Pr}(X=x)+\sum_{x=0}^{n} \sum_{y=0}^{x} \operatorname{Pr}(X=y) \tag{5}
\end{align*}
$$

Now, suppose that X is a Zipfian random variable with parameters $n \in \mathbb{N}$ and $s \geq 0$. By using the probability mass function of X (see (3)) and applying (5), we have (note that $\operatorname{Pr}(X=0)=0$)

$$
n+1=\sum_{x=1}^{n} \frac{x}{x^{s} H_{n}^{(s)}}+\sum_{x=1}^{n} \sum_{y=1}^{x} \frac{1}{y^{s} H_{n}^{(s)}}=\frac{1}{H_{n}^{(s)}}\left(\sum_{x=1}^{n} \frac{1}{x^{s-1}}+\sum_{x=1}^{n} \sum_{y=1}^{x} \frac{1}{y^{s}}\right) ;
$$

that is,

$$
(n+1) H_{n}^{(s)}=\sum_{x=1}^{n} \frac{1}{x^{s-1}}+\sum_{x=1}^{n} \sum_{y=1}^{x} \frac{1}{y^{s}}=H_{n}^{(s-1)}+\sum_{x=1}^{n} H_{x}^{(s)} .
$$

This completes the proof.

Acknowledgements. The author would like to thank the Editor and the anonymous reviewer for their valuable suggestions.

References

[1] K. Funatsu, New Fundamental Technologies in Data Mining, IntechOpen, Rijeka, 2011.
[2] D.H. Greene and D.E. Knuth, Mathematics for the Analysis of Algorithms, Third ed., Birkhäuser, Boston, Basel and Berlin, 1990.
[3] A. Lo, Demystifying the integrated tail probability expectation formula, Amer. Statist. 73 (2019), 367-374.
[4] J. Spiess, Some identities involving harmonic numbers, Math. Comp. 55 (1990), 839-863.

