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Abstract

Let H
(s)
n (s ≥ 0) be the nth generalized harmonic number. In this note, we provide

a probabilistic proof for the familiar sum identity
∑n

j=1 H
(s)
j = (n+1)H

(s)
n −H(s−1)

n .

1. Introduction

The harmonic number Hn is defined to be the partial sum of the harmonic series,

i.e.,

Hn =

n∑
k=1

1

k
.

The first 10 terms of the sequence of harmonic numbers are
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Since the harmonic series diverges, it is clear that Hn can get arbitrarily large,

although it does so quite slowly. For instance, some large harmonic numbers are

H1000000 ≈ 14.3927,

H2000000 ≈ 15.0858,

H3000000 ≈ 15.4913,

H4000000 ≈ 15.7790.

Harmonic numbers are also defined in a more generalized form. The generalized

harmonic numbers H
(s)
n of order s are defined by

H(s)
n =

n∑
k=1

1

ks
(s ≥ 0).
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Generalized harmonic numbers are also denoted by Hn,s. In the special case of

s = 0 we have H
(0)
n = n, and the special case of s = 1 gives H

(1)
n = Hn.

Harmonic numbers satisfy many interesting properties. Greene and Knuth [2,

p.10] listed some commonly used identities. One of them is the following well-known

sum identity:
n∑

j=1

Hj = (n + 1)Hn − n. (1)

In general, this identity can be defined for generalized harmonic numbers as follows

(see, e.g., [4, p. 853 and 856]):

n∑
j=1

H
(s)
j = (n + 1)H(s)

n −H(s−1)
n (s ≥ 1). (2)

Since H
(1)
n = Hn and H

(0)
n = n, the Identity (2) gives Identity (1) when s = 1.

In this note, we will give a probabilistic proof of Identity (2). To this end, in

subsequent sections, the following notation will be used: N denotes the set of all

natural numbers; Pr(X = x) denotes the probability mass function of a discrete

random variable X; and E[X] denotes the expected value of the random variable

X.

2. Zipfian Distribution (Zipf’s law)

A random variable X has the Zipfian distribution with parameters s ≥ 0 and n ∈ N,

if its probability mass function is given by

Pr(X = x) =

{
1

xsH
(s)
n

if x ∈ {1, 2, . . . , n},
0 otherwise,

(3)

where H
(s)
n is the nth generalized harmonic number of order s.

Usually, the shorthand X ∼ Zipf(s, n) is used to indicate that the random

variable X has Zipfian distribution with parameters s and n. In simple terms, the

Zipfian distribution predicts that out of a population of n elements, the frequency

of rank x is given by (3), where s is the value of the exponent characterizing the

distribution. This prediction is called Zipf’s law. For more details, see, for example,

[1, p. 373].

3. Probabilistic Proof of Identity (2)

Proof of Identity (2). Let X be a random variable taking values among the non-

negative integers. We recall the well-known tail sum formula for the expectation of
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X (see, e.g., [3]), namely,

E[X] =

∞∑
x=0

Pr(X > x).

Since we have E[X] =
∑

x xPr(X = x), the above identity may be written as

∞∑
x=0

xPr(X = x) =

∞∑
x=0

(
1−

x∑
y=0

Pr(X = y)

)
. (4)

If X has support in {0, 1, . . . , n}, then Equation (4) gives

n + 1 =

n∑
x=0

xPr(X = x) +

n∑
x=0

x∑
y=0

Pr(X = y)

=

n∑
x=1

xPr(X = x) +

n∑
x=0

x∑
y=0

Pr(X = y). (5)

Now, suppose that X is a Zipfian random variable with parameters n ∈ N and

s ≥ 0. By using the probability mass function of X (see (3)) and applying (5), we

have (note that Pr(X = 0) = 0)

n + 1 =

n∑
x=1

x

xsH
(s)
n

+

n∑
x=1

x∑
y=1

1

ysH
(s)
n

=
1

H
(s)
n

(
n∑

x=1

1

xs−1 +

n∑
x=1

x∑
y=1

1

ys

)
;

that is,

(n + 1)H(s)
n =

n∑
x=1

1

xs−1 +

n∑
x=1

x∑
y=1

1

ys
= H(s−1)

n +

n∑
x=1

H(s)
x .

This completes the proof.
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