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Abstract

For any prime p and t|(p − 1), let A be the multiplicative subgroup of Z∗p of order
t, and 2A = A+ A, a union of λA cosets of A, together with {0} in case t is even.
For fixed n, we characterize all A for which λA = n. For n = 1, 2, 3, 4 we provide,
with proof, a complete list of all such groups, while for n = 5 to 10 we make a
conjecture based on our data. A has maximal doubling if λA = min(k, dt/2e). We
show A has maximal doubling if t < log3 p. Finally, we find all groups A contained
in an arithmetic progression of length at most 3

2 |A|, generalizing a result of Chowla,
Mann and Straus.

1. Introduction

Let p be a prime, Zp = Z/Zp, Z∗p = Zp \ {0}, and A be the multiplicative subgroup

of Z∗p of order t = |A|. Put k := (p− 1)/t, so that A is the group of k-th powers in

Z∗p. For convenience, we identify A with the ordered triple (k, t, p), and write

A ∼ (k, t, p), to mean A ⊆ Z∗p, |A| = t, k = (p− 1)/t.

Define

2A = A+A := {a1 + a2 : a1, a2 ∈ A},

and for any x ∈ Z∗p, define xA to be the coset xA := {xa : a ∈ A}. Throughout

the paper, 2A always denotes the sum set A + A, not the coset where 2 is viewed
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as an element of Z∗p. Note that 2A is invariant under multiplication by elements of

A, and so it is a union of cosets of A together possibly with 0. Since −1 ∈ A if

and only if t is even, we have 0 ∈ 2A if and only if t is even. Thus, letting λ = λA
denote the number of distinct cosets in 2A,

|2A| =

{
λ|A|, if t is odd;

λ|A|+ 1, if t is even.
(1.1)

The doubling constant for A is the ratio |2A|
|A| = λ or λ + 1

t , for t odd or even

respectively.

The first objective of this paper is to determine all groups A for which λA = n,

where n is a fixed natural number. The results were largely discovered by analyzing

the computer generated data presented in Section 8, part of which can be found in

the first author’s thesis [5].

The problem of describing subsets S of additive groups with small doubling,

|2S| ≤ K|S| with K a fixed constant, has received much attention. Freiman [9]

gave a description of such sets in Z in terms of general arithmetic progressions.

Ruzsa [18, 19], and Green and Ruzsa [11] generalized Freiman’s Theorem to abelian

groups while Breuillard, Green and Tao [3] addressed the problem for the case of

non-abelian groups. In Section 11 we make use of quantitative results of Freiman

[8], and Hamoudine and Rodseth [12] on small doubling, for the problem at hand.

Heath-Brown and Konyagin [14], Cochrane and Pinner [7], Shkredov [20] and

Hart [13] established the following lower bounds on |2A|:

|2A| � |A| 32 , for |A| < p2/3 [14];

|2A| ≥ 1
4 |A|

3
2 , for |A| < p2/3 [7];

|2A| �ε |A|
8
5−ε, for |A| < p

5
9−ε [20] and [13].

It is elementary that |2A| ≤ t(t+1)
2 since there are

(
t
2

)
ways of adding distinct

elements of A, and an additional t ways of adding an element to itself. If t is even,

there are t
2 sums with a1 + a2 = 0, and so |2A| ≤ t(t+1)

2 − ( t2 − 1) = t2

2 + 1. We

say that the group A has maximal doubling if this upper bound is attained, or if

2A ⊇ Z∗p, that is,

|2A| =

{
min( t(t+1)

2 , p− 1), for odd t;

min( t
2

2 + 1, p), for even t.

Thus, A has maximal doubling if and only if

λA = min (k, dt/2e) . (1.2)

The second objective of this paper is to characterize when a subgroup A has

maximal doubling. To do this, for fixed t we define the set of primes

Pt := {p ∈ P : p ≡ 1 mod t and p|R(f(x),Φt(x)) for some f(x)}, (1.3)
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where P is the set of primes, Φt(x) the t-th cyclotomic polynomial and f(x) runs

through all polynomials of the form f(x) = xk1 +xk2−xl1−xl2 , 0 ≤ k1, k2, l1, l2 < t,

such that the resultant R(f(x),Φt(x)) is nonzero. In particular, Pt is a finite set.

Groups A ∼ (k, t, p) for which p ∈ Pt, fail to have maximal combinatorial doubling,

that is, λA < dt/2e; see Lemma 3.

For groups of small size, maximal doubling can be characterized as follows.

Theorem 1. Let A ∼ (k, t, p) be a group with t ≤
√

2(p− 1). Then A has maximal

doubling if and only if p /∈ Pt.

If t >
√

2(p− 1) , then necessarily p ∈ Pt, and maximal doubling is equivalent to

the statement 2A ⊇ Z∗p.
A subgroup always has maximal doubling if t is sufficiently large or sufficiently

small relative to p, as the next theorem indicates.

Theorem 2. The following hold:

(i) If A ∼ (k, t, p) is a group with t > p3/4 then 2A ⊇ Z∗p.

(ii) If A ∼ (k, t, p) is a group with t < log3 p, then λA = dt/2e.

Part (i) of the theorem can be deduced from results of Weil [22], and Hua and

Vandiver [15] on the number of solutions to the equation xk + yk = c over Zp. We

provide another proof here. Most likely, the size p3/4 can be substantially reduced.

Question 1.1. Does there exist an absolute constant c1 such that if t > c1
√
p log p,

then 2A ⊇ Z∗p?

The size
√
p log p is motivated by the comment after (1.4). We have shown that one

can take c1 = 2 for any group with p < 2.5 ·106, except for A ∼ (115, 6532, 751181),

which requires c1 = 2.049; see Table 6. In part (ii) of Theorem 2, the log3 p can

likely be improved to log2 p; see Conjecture 5.1.

Maximal doubling is very common for multiplicative subgroups. Even when it

does not occur, it is reasonable to ask the following.

Question 1.2. Does there exist an absolute constant c2 such that uniformly

|2A| ≥ c2 ·min
( t2

2
, p− 1

)
,

for any subgroup A?

Our computations have shown that for p < 2.5 ·106 we can take c2 = 1/2 for all but

six groups, the worst case requiring c2 = .458; see Table 5. We know of no example

of a group with p > 246241 requiring a value of c2 < 1/2.
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An ideal exponential sum bound of the sort conjectured in [16], say∣∣∣∣∣∑
x∈A

ep(ax)

∣∣∣∣∣ ≤ c′√t log p,

for all a with p - a, where c′ is a constant and ep(ax) = e
2πiax
p , together with (9.2)

and (9.5), yields the slightly weaker result

|2A| ≥ min

(
t2

c′ log p
,
p

2

)
. (1.4)

This implies in particular that |2A| > p/2 for t > (c′/2)
1
2

√
p log p.

2. Solving |2A| = n|A| for a Fixed Value of n

We now fix a positive integer n, and determine the subgroups A such that λA = n,

that is, |2A| = n|A| or n|A| + 1. To get our feet wet, consider the cases n = 1

and n = 2. It is easy to see that λA = 1 if and only if t = 1, 2 or p − 1, that is,

A = {1}, {1,−1} or Z∗p. These happen to be the only subgroups that are arithmetic

progressions [4]. Next, for n = 2 we obtain

Theorem 3. Let A be a multiplicative subgroup of Z∗p with p > 5. Then:

(i) |2A| = 2|A| if and only if t = 3, or t is odd and k = 2;

(ii) |2A| = 2|A|+ 1 if and only if t = 4, or t is even and k = 2.

Let us examine the cases where n = 2, identified by the theorem. If k = 2, then

A is the group of squares mod p, t = p−1
2 and by the Cauchy-Davenport Theorem,

|2A| ≥ |A| + |A| − 1 = p − 2. Thus for p > 5, |2A| = 2t = p − 1, if t is odd;

|2A| = 2t+ 1 = p, if t is even. If t = 3, say A = 〈ω〉 = {1, ω, ω2}, then

2A = {2, 2ω, 2ω2, 1 + ω, 1 + ω2, ω + ω2}, |2A| = 6;

while if t = 4, say A = 〈ω〉 = {±1,±ω}, then

2A = {0,±2,±2ω,±(1 + ω),±(1− ω)}, |2A| = 9.

It is routine to verify that the elements listed in the displayed sets above are distinct.

For general n it is convenient to classify groups into one of three types.

Type-1 groups: p /∈ Pt. For such groups, we have λA = dt/2e.

Type-2 groups: p ∈ Pt and 2A ⊇ Z∗p. In this case, λA = k.
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Type-3 groups: p ∈ Pt and 2A 6⊇ Z∗p. In this case, λA < k.

Type-1 and Type-2 groups have maximal doubling, while Type-3 groups do not.

For Type-3 groups we define

Sn := {A : λA = n and A does not have maximal doubling}.

Here, A is a subgroup of an arbitrary Z∗p. The following proposition is immediate.

Proposition 1. A subgroup A ∼ (k, t, p) has λA = n if and only if

(i) t = 2n or 2n− 1 and p /∈ Pt (Type 1),

(ii) k = n, p ∈ Pt and 2A ⊇ Z∗p (Type 2), or

(iii) A ∈ Sn (Type 3).

Types 1 and 2 provide three infinite families of subgroups with λA = n. On the

other hand, there are at most finitely many Type-3 groups with λA = n.

Theorem 4. For any positive integer n, Sn is a finite set. Indeed, for any A ∈ Sn
we must have p ∈ Pt and either

n+ 1 ≤ k ≤ 4n− 3 and 2n+ 1 ≤ t < nk2/(k − n), or

2n+ 1 ≤ t ≤ 8n(2n− 1)− 1.

As noted above, S1 = ∅, and Theorem 3 gives S2 = ∅, that is, λA = 2 if and only

if dt/2e = 2 or k = 2 (p > 5). For n = 3, 4 we have (see Section 10)

S3 = {(4, 7, 29), (4, 10, 41), (5, 8, 41), (6, 7, 43)}, (2.1)

S4 = {(5, 12, 61), (5, 14, 71), (5, 20, 101), (6, 10, 61), (12, 9, 109), (14, 9, 127)}.

For 5 ≤ n ≤ 10 we have also, almost certainly, determined Sn (see Table 4), but

the technology/run-time required to verify that the sets we found are complete is

presently outside of our reach. From Proposition 1, Theorem 2 (i), and the data in

Tables 1 and 2, we can now completely classify all groups with |2A| = 3|A|, 3|A|+1,

4|A| or 4|A|+ 1.

Corollary 1. Let A be a multiplicative subgroup of Z∗p of order t, k = (p−1)/t and

λA be as defined in (1.1). The following hold:

(i) λA = 3 if and only if t = 5 or 6 and p > 13 (Type 1), k = 3 and p ≥ 31 (Type

2), or A ∈ S3 (Type 3);

(ii) λA = 4 if and only if t = 7 or 8 and p > 43 (Type 1), k = 4 and p ≥ 37 (Type

2), or A ∈ S4 (Type 3).
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3. Solving |2A| ≥ n|A| and Arithmetic Progressions

Consider the related problem of determining all subgroups A with |2A| ≥ n|A| for

a given positive integer n. If |2A| ≥ n|A| then necessarily

2n− 1 ≤ |A| ≤ p− 1

n
, (3.1)

that is, t ≥ 2n − 1 and k ≥ n, since |2A| ≤ min( t(t+1)
2 , p). Conversely, if A is a

subgroup with maximal doubling, then (3.1) is sufficient for |2A| ≥ n|A|. Thus (3.1)

is necessary and sufficient for |2A| ≥ n|A| for all but a finite number of subgroups

belonging to ∪n−1i=1 Si.
Since S1 = S2 = ∅ we have |2A| ≥ 3|A| if and only if

5 ≤ |A| ≤ p− 1

3
.

An interesting consequence of this fact is the following corollary. Chowla, Mann

and Straus [4] established that the only multiplicative subgroups of Z∗p that are

arithmetic progressions are the trivial cases where t = 1, 2 or p − 1. Recall, an

almost arithmetic progression is an arithmetic progression with one element deleted,

but not itself an arithmetic progression.

Corollary 2. Let A be a multiplicative subgroup of Z∗p of order t. Then A is

contained in an arithmetic progression of length at most 3
2 t if and only if

(i) t = 1, 2 or p− 1, whence A is an arithmetic progression; or

(ii) (k, t, p) = (2, 3, 7), A = {1, 2, 4}, whence A is an almost arithmetic progres-

sion; or

(iii) (k, t, p) = (2, 6, 13), (2, 8, 17), (3, 4, 13) or (4, 4, 17), whence A is contained in

a progression of length exactly 3
2 t, but not contained in any shorter length

progression.

4. Proof of Theorem 1

Lemma 1. Let z be a complex number of modulus 1 such that za + zb = zc + zd

for some integers a, b, c, d. Then za + zb = 0 or {za, zb} = {zc, zd} (as multi-sets).

Proof. Conjugating the given equation and inserting z = z−1 yields za+zb

za+b
= zc+zd

zc+d
.

Thus either za + zb = 0 or za+b = zc+d. In the latter case, (x − za)(x − zb) =

(x − zc)(x − zd) (with x an indeterminate) and so by uniqueness of factorization,

{za, zb} = {zc, zd}.
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Let Φt(x) be the t-th cyclotomic polynomial, of degree φ(t), and f(x) a polyno-

mial of the form

f(x) := xk1 + xk2 − xl1 − xl2 , 0 ≤ k1, k2, l1, l2 < t. (4.1)

Lemma 2. Suppose that f(x) is a polynomial of the type (4.1) with {k1, k2} 6=
{l1, l2}, so that f(x) is not identically zero. Suppose further that for even t, we do

not have |k2 − k1| = |l2 − l1| = t/2. Then (Φt(x), f(x)) = 1.

Proof. Let α be a primitive t-th root of unity in C. Since Φt(x) is irreducible, it

suffices to show that f(α) 6= 0. Suppose to the contrary that f(α) = 0. Then

αk1 +αk2 = αl1 +αl2 , and so by Lemma 1, either {k1, k2} = {l1, l2}, or αk1 +αk2 =

αl1 + αl2 = 0, whence αk1−k2 = αl1−l2 = −1. The latter implies that t is even and

|k1 − k2| = |l1 − l2| = t/2.

Lemma 3. For any group A ∼ (k, t, p), λA = dt/2e if and only if p /∈ Pt, where Pt
is the set of primes in (1.3).

Proof. First note that the generators of A are just the zeros of Φt(x) in Zp. Let ω

be a generator of A and consider solving the equation

ωk1 + ωk2 = ωl1 + ωl2 , (4.2)

with 0 ≤ k1, k2, l1, l2 < t, {k1, k2} 6= {l1, l2}. If t is even, we have a trivial class of

solutions

ωk1 + ωk1+t/2 = ωl1 + ωl1+t/2 = 0.

Otherwise, with f(x) := xk1 +xk2 −xl1 −xl2 , we have (f(x),Φt(x)) = 1 by Lemma

2, and so the resultant R = R(f,Φt) is a nonzero integer. If ω is a solution of (4.2),

that is, a zero of f mod p, then ω is a common zero of f and Φt mod p, and so

R = 0 in the field Zp, that is, p|R. In particular, if p - R(f,Φt) for all such f(x),

then all of the distinct looking sums ωk1 + ωk2 actually give distinct values mod p,

with the exception of the sums equalling 0 with k1 = k2 ± t
2 . Thus, if p /∈ Pt, then

λA = dt/2e.
Conversely, if λA = dt/2e, then (4.2) can only have trivial solutions for any

generator ω of A. Thus, for any f(x) = xk1 + xk2 − xl1 − xl2 , with R(f,Φt) 6= 0 in

Z, we must also have R(f,Φt) 6= 0 in Zp. Therefore, p /∈ Pt.

Proof of Theorem 1. Suppose that A ∼ (k, t, p) is a group with t ≤
√

2(p− 1).

Then t
2 ≤ k, that is, dt/2e ≤ k, and so by (1.2) A has maximal doubling if and only

if λA = dt/2e. By Lemma 3, such is the case if and only if p /∈ Pt.
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5. Proof of Theorem 2

Let Pt be the set of primes in (1.3) and put

Pt = max{p : p ∈ Pt}.

For t = 1, 2, 3, Pt = ∅, and so Pt is undefined. We can estimate Pt by bounding

|R(f,Φt)| where f is any polynomial of the type (4.1). Since Φt(x) =
∏

(i,t)=1(x−
αi), where α is a primitive t-th root of unity, we have

R := R(f,Φt) =

t∏
i=1

(i,t)=1

f(αi) =

t∏
i=1

(i,t)=1

(
αik1 + αik2 − αil1 − αil2

)
,

and so trivially |R| ≤ 4φ(t). The next lemma sharpens this estimate.

Lemma 4. Let t be a positive integer with t ≥ 4.

(i) If t is odd then Pt < 3φ(t).

(ii) If t is even then Pt ≤ 3φ(t)+1−1
2 , with equality if t = 2q for some prime q such

that 3q−1
2 is a prime.

The case of equality in part (ii) is easy to see. If t = 2q with q a prime, p = 3q−1
2

and A is the group of t-th powers in Z∗p, then 1,−1 and 3 ∈ A and we have the

nontrivial collision 3+(−1) = 1+1, meaning p ∈ Pt. The first few cases of equality

occur when q = 7, 13, 71 and 103. We believe that the upper bound for odd t can

be improved.

Conjecture 5.1. For all t ≥ 4 we have Pt ≤ (2t + 1)/3, with equality if and only

if t is an odd prime and (2t + 1)/3 is a prime.

For even t ≥ 10, the upper bound on Pt in Lemma 4 (ii) is stronger than the

bound in the conjecture. Again, the case of equality in the conjecture is easy to

see. If t is an odd prime, p = (2t + 1)/3 and A is the group of t-th powers, then

1,−2, 4 ∈ A, and we have the nontrivial collision 4 + (−2) = 1 + 1, meaning p ∈ Pt;
see also Example 6.1. Conversely, if Pt = (2t + 1)/3, then (2t + 1)/3 is a prime,

and this implies in turn that t is an odd prime. We have verified the conjecture on

a computer for t ≤ 223.

Proof of Theorem 2. Part (i) actually requires Lemma 6, proven later, but we will

include it here for convenience. By (9.1), if

t ≥
(
(p− 1− t)(p− 1)2

)1/4
,

then 2A ⊇ Z∗p. This is slightly stronger than the statement in part (i). Part (ii) is

immediate from Lemma 4. Indeed, if t < log3 p, then p > 3t > 3
23φ(t). Therefore

p /∈ Pt, and so A has maximal doubling, that is, λA = d t2e.
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Proof of Lemma 4. To establish the upper bounds in parts (i) and (ii), we must

show that any prime factor p of a nonzero resultant of the form R(f,Φt), with f as

in (4.1), is bounded above by 3φ(t) for odd t > 3, 3
23φ(t) for even t > 2. Equivalently,

if (4.2) has a nontrivial solution, then p is bounded as such. The trivial solutions

to (4.2) are {k1, k2} = {l1, l2}, and in the case t is even, |k1 − k2| = |l1 − l2| = t/2.

For a nontrivial solution, either k1 6= k2 or l1 6= l2, say without loss of generality

that k1 < k2. Dividing by ωk1 yields a nontrivial solution to (4.2) of the type

1 + ωd = ωa + ωb, (5.1)

for some integers a, b, d with 1 ≤ d < t, d 6= t/2, 0 < a ≤ b < t, and a, b 6= d.

Replacing ω with ωi, for an appropriate i with (i, t) = 1, we may assume that d|t.
Thus we may assume

d|t, d < t/2, 0 < a ≤ b < t, |a− b| 6= t/2, a 6= d, b 6= d. (5.2)

Suppose now that (a, b, d) is a triple satisfying (5.2), for which (5.1) holds true,

and consider the following cases.

(i) If a = b = t/2, (5.1) becomes −3 = ωd, which implies that ordp(−3) = t/d, and

thus p|Φt/d(−3).

(ii) If a = t/2 and b 6= t/2 or vice versa, then (5.1) becomes

2 = ωb − ωd, d|t, d < t/2, b 6= t/2, b 6= d, |d− b| 6= t/2. (5.3)

We may restrict our attention to the case where (b, d) = 1. Indeed, if (b, d) = e > 1

then (5.3) represents a nontrivial collision for elements of a subgroup of A of order

t/e, and so we can appeal to the bound on p for groups of size t/e. Set f(x) :=

xb − xd − 2. Then,

f(αi)f(α−i) = 6 + 2αdi + 2α−di − 2αbi − 2α−bi − α(b−d)i − α(d−b)i. (5.4)

By the arithmetic-geometric mean inequality,

R2 =
∏

(i,t)=1

f(αi)f(α−i) ≤

 1

φ(t)

∑
(i,t)=1

f(αi)f(α−i)

φ(t)

. (5.5)

Using the Ramanujan sum formula,

1

φ(t)

∑
(i,t)=1

αai =
µ(t/(t, a))

φ(t/(t, a))
,

we get from (5.4),

1

φ(t)

∑
(i,t)=1

f(αi)f(α−i) = Σ1 := 6 + 4
µ(t/d)

φ(t/d)
− 4

µ(t/(t, b))

φ(t/(t, b))
− 2

µ(t/(t, d− b))
φ(t/(t, d− b))

.
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We claim that for t 6= 30, Σ1 ≤ 9, whence we conclude from (5.5), that R ≤ 3φ(t)

as desired. For t = 30, we can have Σ1 = 9.25, for example when (d, b) = (3, 10),

but one can check numerically that the prime factors of R never exceed 3φ(t).

To prove the claim, we begin with a computer computation verifying the claim

for t ≤ 72. Henceforth, we assume that t > 72. By the constraint in (5.3), all

three values t
d ,

t
(t,b) ,

t
(t,d−b) are at least 3. Furthermore, since (b, d) = 1, the values

d, (t, b) and (t, d − b) are pairwise relatively prime, implying that d(t, b)(t, d − b)|t.
In particular,

d(t, b)(t, d− b) ≤ t. (5.6)

If t/(t, b) = 3 then by (5.6) and t > 72,

t/(t, d− b) ≥ (t, b) = t/3 > 24, and t/d ≥ (t, b) > 24,

and thus since φ(n) ≥ 8 for n > 24, Σ1 ≤ 6 + 1
2 + 2 + 1

4 = 8.75. If t/(t, d − b) = 3

then in the same manner t/(t, b) > 24, t/d > 24, and Σ1 ≤ 6 + 1
2 + 1

2 + 1 = 8. If

t/(t, b) = 4, then t/d, t/(t, d− b) ≥ (t, b) = t/4 > 18 and since φ(n) ≥ 8 for n > 18,

Σ1 ≤ 6 + 1
2 + 0 + 1

4 = 6.75. Similarly, if t/(t, d− b) = 4, then Σ1 ≤ 6 + 1
2 + 1

2 = 7.

If t/(t, b) = 5, then t/d > 14 and t/(t, d − b) > 14 whence their totient values are

at least 6, and Σ1 ≤ 6 + 2
3 + 1 + 1

3 = 8, while if t/(t, d − b) = 5, then t/d > 14,

t/(t, b) > 14 and Σ1 ≤ 6 + 2
3 + 2

3 + 1
2 < 7.84.

We are left with considering the case where both t/(t, b) ≥ 6 and t/(t, d− b) ≥ 6.

Since −µ(n)φ(n) ≤
1
6 for n ≥ 6, we get Σ1 ≤ 6 + 2 + 2

3 + 1
3 = 9, establishing the claim.

(iii) Suppose next that we have (5.1) with a−d = ±t/2, so that it becomes 1+ωd =

−ωd + ωb, or 2 = ωb−d − ω−d, an equation of the type already considered in case

(ii), upon replacing ω with ω−1.

(iv) Suppose finally that we have (5.1) with

d|t, d < t/2, 0 < a ≤ b < t, a, b /∈ {d, t/2}, |a− d| 6= t/2. (5.7)

Let f(x) = 1 + xd − xa − xb, with a, b and d satisfying (5.7). As in case (ii) we

obtain

1

φ(t)

∑
(i,t)=1

f(αi)f(α−i) = 4 + 2
µ(t/d)

φ(t/d)
+ 2

µ(t/(t, a− b))
φ(t/(t, a− b))

− 2
µ(t/(t, a))

φ(t/(t, a))

− 2
µ(t/(t, a− d))

φ(t/(t, a− d))
− 2

µ(t/(t, b))

φ(t/(t, b))
− 2

µ(t/(t, b− d))

φ(t/(t, b− d))
.

Plainly, the maximum possible value of the third term 2µ(t/(t,a−b))φ(t/(t,a−b)) occurs when

a = b. Thus by replacing a with b in the case where

−2
µ(t/(t, a))

φ(t/(t, a))
− 2

µ(t/(t, a− d))

φ(t/(t, a− d))
< −2

µ(t/(t, b))

φ(t/(t, b))
− 2

µ(t/(t, b− d))

φ(t/(t, b− d))
,
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or b with a in the opposite case, we obtain a larger value for the sum. Hence, we

may assume that a = b in determining an upper bound, whence the sum simplifies

to

1

φ(t)

∑
(i,t)=1

f(αi)f(α−i) = Σ2 := 6 + 2
µ(t/d)

φ(t/d)
− 4

µ(t/(t, b))

φ(t/(t, b))
− 4

µ(t/(t, d− b))
φ(t/(t, d− b))

.

Again, by (5.7), t
d ,

t
(t,b) ,

t
(t,d−b) are all at least 3, and we may assume that (d, b) =

1 so that (5.6) holds. We claim that for t 6= 15, Σ2 ≤ 9. For t = 15, Σ2 can be

as large as 9.25, for example when (d, b) = (1, 6), but its prime divisors are all less

than 3φ(t).

The proof of the claim follows the argument of case (ii). A computer is used to

verify the claim for t ≤ 72. Assume now that t > 72. If t/(t, b) = 3 or t/(t, d−b) = 3

then the other two ratios exceed 24 and we get Σ2 ≤ 6 + 1
4 + 2 + 1

2 = 8.75. If

t/(t, b) = 4 or t/(t, d − b) = 4, then the other two ratios exceed 18 and Σ2 ≤
6 + 1

4 + 0 + 1
2 = 6.75. If t/(t, b) = 5 or t/(t, d − b) = 5, then the other two ratios

exceed 14 and Σ2 ≤ 6+ 1
3 +1+ 2

3 = 8. Finally, if both t/(t, b) ≥ 6 and t/(t, d−b) ≥ 6,

then using −µ(n)φ(n) ≤
1
6 for n ≥ 6, Σ2 ≤ 6 + 1 + 2

3 + 2
3 < 8.34, establishing the claim.

For odd t, only case (iv) can hold, and we get Pt ≤ R ≤ 3φ(t) establishing part

(i) of the lemma. For even t we conclude that either Pt ≤ Φt/d(−3) for some divisor

d|t, or Pt ≤ R ≤ 3φ(t). The upper bound in part (ii) now follows from the upper

bound on Φt(−3) in Lemma 12.

6. Examples of Resultants

Example 6.1. Let t > 2 and f(x) = 1 + x− 2x2 = (1− x)(1 + 2x). Then

R(f,Φt) =
∏

(i,t)=1

(1− αi)(1 + 2αi)

=
∏

(i,t)=1

(1− αi)(−αi)(−2− α−i) = Φt(1)Φt(0)Φt(−2).

Now Φt(0) = 1,

Φt(1) =

{
q, if t = ql for some prime q;

1, if t is not a prime power.

Thus for any prime p ≡ 1 mod t, p|R if and only if p|Φt(−2). In this case, −2, 4 ∈ A,

and we have the nontrivial collision 1 + 1 = −2 + 4 of elements in A. By the upper

bound on Φt(−2) in Lemma 12,

p ≤

{
3
2 2φ(t), if t is odd;

2φ(t)+1, if t is even.
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If Φt(−2) is itself a prime p with p ≡ 1 mod t, then Pt ≥ Φt(−2). If t is a prime,

then Φt(−2) = 2t+1
3 , the value in Conjecture 5.1. The first few such (t, p) prime

pairs are

(t, p) = (3, 3), (5, 11), (7, 43), (11, 683), (13, 2731), (17, 43691),

(19, 174763), (23, 2796203), (31, 715827883).

In each case, p = Pt; see Table 1.

Example 6.2. Suppose that t = 3q, with q a prime, q ≡ 1 mod 3, f(x) = 1+x−2xq.

Put α = e2πi/t, α3 = αq = − 1
2 +

√
3
2 i. Then

R = R(f,Φt) =
∏

(j,t)=1

(
1 + αj − 2αqj

)
=

∏
(j,t)=1

j≡1 (mod 3)

(
1− 2α3 + αj

) ∏
(j,t)=1

j≡2 (mod 3)

(
1− 2α3 + αj

)
.

Plainly, the two products have the same absolute value. Setting

P (x) :=
xq − α3

x− α3
=

∏
(j,t)=1

j≡1 (mod 3)

(x− αj),

we see that with z = −2 +
√

3 i,

|R| =
∏

(j,t)=1
j≡1 (mod 3)

∣∣1− 2α3 + αj
∣∣2 = |P (−1 + 2α3)|2 = |P (−2 +

√
3 i)|2

=
|zq − α3|2

|z − α3|2
=

7q − 2R(α3z
q) + 1

| − 3
2 −

√
3
2 i|2

=
7q − 2R(α3z

q) + 1

3
≈ 7

3
7φ(t)/2.

7. Computing |2A|

Lemma 5. If A = 〈ω〉 is a subgroup of Z∗p of order t, then

A+A =

t−1
2⋃
i=0

(1 + ωi)A, for odd t;

A+A =

t
2−1⋃
i=0

(1 + ωi)A ∪ {0}, for even t.

Note, the i = 0 term in the union is the coset (1 + 1)A, not to be confused with

the sum set 2A. The cosets listed in this decomposition are all nonzero, that is,

1 + ωi 6= 0, but they need not be distinct. If the cosets are distinct, then A has

maximal doubling.
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Proof. Let ωj + ωl, with 0 ≤ j ≤ l < t, be a typical element of A+ A. Then, with

i = l − j,
ωj + ωl = ωj(1 + ωi) ∈ (1 + ωi)A.

If i > t/2 we can replace i with t − i, noting that (1 + ωi)A = (1 + ωt−i)A. The

lemma now follows from the fact that 0 ∈ A+A if and only if t is even.

To compute |2A|, let η : Z∗p/A → Z∗p be the mapping η(xA) = xt. Since η is

one-to-one, it follows from Lemma 5 that

λA = #{(1 + ωi)t : 0 ≤ i ≤ b t−12 c}, (7.1)

where ω is any generator of A.

8. Data for Small Values of t and p

Computers were used to generate data for all groups with p < 2.5 · 106 and for all

groups with t ≤ 223. Only partial data is displayed here due to the excessive length

of the full data set. The value 223 was chosen as the stopping point for t in order to

prove that our determination of S4 was complete. Recall the definition of Type-1,

Type-2 and Type-3 groups given in Section 2.

8.1. Table 1

For a fixed t, we computed all possible resultants R(f(x),Φt(x)), where f(x) =

1 + xd− xa− xb, with d|t, and 1 ≤ a ≤ b < t; see (5.2). For each nonzero resultant,

we determined the prime divisors p with p ≡ 1 mod t, thus forming the set Pt. The

primes are listed in Table 1 for 4 ≤ t ≤ 18. The extended table (not displayed)

gives Pt for 4 ≤ t ≤ 223.

8.2. Table 2

For each p ∈ Pt and subgroup A of Z∗p of order t, we computed λA using (7.1).

Table 2 provides a list of all such λA, for groups with k > 2. Parentheses have been

placed around primes for which 2A ⊇ Z∗p, that is, λA = k (Type-2 group). The

extended table gives all λA values for groups with t ≤ 223.

8.3. Table 3

Table 3 gives all possible values of λA for a fixed t for Type-1, Type-2 and Type-3

groups respectively. Recall, Type-1 means λA = dt/2e, Type-2 means λA = k,

p ∈ Pt, and Type-3 means λA < k, p ∈ Pt.
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t Pt

2 ∅
3 ∅
4 5
5 11
6 7, 13
7 29, 43
8 17, 41
9 19, 37, 109, 127
10 11, 31, 41, 61
11 23, 67, 89, 199, 397, 683
12 13, 37, 61, 73
13 53, 79, 131, 157, 313, 521, 1613, 2003, 2731
14 29, 43, 71, 113, 127, 239, 547, 1093
15 31, 61, 151, 181, 211, 241, 271, 331, 421, 541, 1321, 1381
16 17, 97, 113, 193, 257, 337
17 103, 137, 239, 307, 409, 443, 613, 647, 919, 953, 1021, 1429, 2857, 3571,

15641, 17783, 25229, 26317, 43691
18 19, 37, 73, 109, 127, 163, 199, 307, 757

Table 1: Pt sets for t ≤ 18

t p |2A|
5 none
6 none
7 29, 43 3|A|
8 41 3|A| + 1
9 (37),109,127 4|A|
10 (31), 41 3|A| + 1
10 61 4|A| + 1
11 67, 89, 199, 397, 683 5|A|
12 (37) 3|A| + 1
12 61 4|A| + 1
12 73 5|A| + 1
13 (53) 4|A|
13 79 5|A|
13 131, 157, 313, 521, 1613, 2003, 2731 6|A|
14 (43) 3|A| + 1
14 71 4|A| + 1
14 113,127,239 5|A| + 1
14 547,1093 6|A| + 1
15 (61) 4|A|
15 181,211,331 6|A|
15 151,241,271,421,541,751,1321,1381 7|A|
16 97,113 5|A| + 1
16 257,337 6|A| + 1
16 193 7|A| + 1

Table 2: Doubling constants for Type-2 and Type-3 groups, k > 2
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t Type-1 λA Type-2 λA Type-3 λA

2 1 - -
3 2 - -
4 2 1 -
5 3 2 -
6 3 1,2 -
7 4 - 3
8 4 2 3
9 5 2,4 4
10 5 1,3 3,4
11 6 2 5
12 6 1,3 4,5
13 7 4 5,6
14 7 2,3 4-6
15 8 2,4 6,7
16 8 1 5-7
17 9 6 5-8
18 9 1,2,4 5-8
19 10 - 6-9
20 10 2,3 4,7-9
21 11 2,6 8,9,10
22 11 1,3,4 6-10
23 12 2 5,8-11
24 12 3,4,8 7,9-11
25 13 4,6 8-12
26 13 2,3,5 5,8-12
27 14 4,6 9,11-13
28 14 1,4,7 8-13
29 15 2 7,9,11-14
30 15 1,2,5-8 7,10-14
31 16 - 8,9,12-15
32 16 3,6 7,9,11-15
33 17 2,6 8,10,11,13-16
34 17 3,4,7 8,10,12-16
35 18 2,6,8 10,12,14-17
36 18 1-3,5,11 10,11,13-17
37 19 4 5,13,15-18
38 19 5,6 10-12,14-18
39 20 2,4,8 11,14-19
40 20 1,6,7 8,10-15,17-19
41 21 2 14,16,18-20
42 21 1,3,5,9 7,9,10-14,16-20
43 22 4 8,15-21
44 22 2,8,9 12,13,15-21
45 23 4,6 11,14,16-22
46 23 1,3 5,9,10,13,14,16-22
47 24 6 12,14,16-23

Table 3: Possible values of λA for given t
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n |Sn| k-range t-range p-range

2 0 - - -
3 4 4-6 7-10 29-43
4 6 5-14 9-20 61-127
5 18 6-62 11-46 67-683
6 19 7-210 13-70 127-2731
7 27 8-92 15-95 151-1381
8 40 9-2570 17-64 211-43691
9 56 10-9198 19-118 271-174763
10 61 11-4358 21-128 331-91309

Table 4: Description of Sn sets

8.4. Table 4

Recall, Sn is the set of all Type-3 groups having λA = n. In Table 4 we describe the

sets Sn for n ≤ 10. For n = 2, 3 and 4, the sets are given explicitly in (2.1), and we

prove that these are the full sets in Section 10. For 5 ≤ n ≤ 10, we have determined

what we believe to be the full set based on computations up to p = 2.5 · 106. In

Table 4 we just display the cardinality of each of the sets, as well as the range of k,

t and p values for the groups in the set.

Conjecture 8.1. For n ≤ 10 there are no elements of Sn with p > 174763.

8.5. Table 5

Next, we seek an optimal constant c such that uniformly

λA ≥ c ·min (dt/2e, k) . (8.1)

To do this, we define for any group A, the value

CA := max

(
λA
dt/2e

,
λA
k

)
,

so that

λA = CA min (dt/2e, k) ,

and

|2A| ≥ CA min

(
|A|2

2
, p− 1

)
.

For groups with maximal doubling, CA = 1. In general, CA represents the fraction

of maximum possible doubling for the group A.

Table 5 contains a list of all groups A with p < 2.5 · 106 having CA ≤ .5, as well

as groups with p < 3361 having record breaking small values of CA. The values
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p k t λA λA/dt/2e λA/k CA

29 4 7 3 3/4 3/4 .750
113 7 16 5 5/8 5/7 .714
113 8 14 5 5/7 5/8 .714
137 8 17 5 5/9 5/8 .625
229 12 19 6 3/5 1/2 .600
577 18 32 9 9/16 1/2 .562
757 21 36 10 5/9 10/21 .555
1151 23 50 12 12/25 12/23 .521
3361 40 84 20 10/21 1/2 .500
3511 39 90 19 19/45 19/39 .487
4051 45 90 22 22/45 22/45 .488
5857 61 96 22 11/24 22/61 .458
10303 101 102 25 25/51 25/101 .490
12301 82 150 35 7/15 35/82 .466
16111 90 179 45 1/2 1/2 .500
246241 456 540 125 25/54 125/456 .462

Table 5: Minimal values of CA.

of CA have been rounded down to three places. Thus for all groups in this range,

we can take c = .458 in (8.1), and for all but six groups we can take c = 1/2. In

particular, for all but these six groups we have

|2A| ≥ 1

2
·min

(
|A|2

2
, p− 1

)
.

8.6. Table 6

Finally we determine the largest subgroup A of Z∗p such that 2A fails to contain

Z∗p. If t <
√

2(p− 1) then we are guaranteed that 2A 6⊇ Z∗p. Also, by Theorem 2, if

t > p3/4 then 2A ⊇ Z∗p. Thus, it is enough to consider groups of size
√

2(p− 1) ≤
t ≤ p3/4. For each prime p we determined the maximal t, denoted tmax, such that

2A 6⊇ Z∗p. In Table 6 we list all p and tmax such that the ratio

rmax :=
tmax√
p log p

is greater than 1.7, with p running from 2 to 2.5 · 106. The ratio was rounded up to

three decimal places. Thus, for instance, for any subgroup A with p < 2.5 · 106 we

have 2A ⊇ Z∗p provided that

|A| > 1.89
√
p log p,
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p tmax k λA rmax

10781 539 20 19 1.704
29581 986 30 29 1.787
33791 1090 31 30 1.837
93809 1804 52 51 1.741
171673 2488 69 68 1.730
240007 3077 78 77 1.785
450077 4246 106 105 1.755
461801 4618 100 99 1.882
473971 4270 111 110 1.716
751181 6532 115 114 2.049
931537 6469 144 143 1.808
942049 6542 144 143 1.818
962921 6335 152 151 1.740
1105171 6698 165 164 1.708
1318553 7666 172 171 1.779
1630927 8237 198 197 1.706
1852621 8822 210 209 1.707
1879049 9736 193 192 1.869
2101051 10150 207 206 1.836
2161829 10102 214 213 1.800
2189153 9773 224 223 1.729

Table 6: Largest A with 2A 6⊇ Z∗p

with the one exception A ∼ (115, 6532, 751181). We have included in the table the

associated k and λA values for these groups. As expected, all of these groups have

almost maximal doubling, that is, λA = k − 1.

9. Proof of Theorem 4

We start with two lemmas that provide sufficient conditions for |2A| ≥ n|A|.

Lemma 6. For any multiplicative subgroup A of Z∗p, with |A| = t, k = (p − 1)/t,

and any positive integer n ≤ k, we have |2A| ≥ n|A| provided that

t ≥ (n− 1)k2

k − (n− 1)
.

Taking n = k we see that |2A| ≥ p− 1 provided that

t ≥ (k − 1)k2, or equivalently, p ≥ (k − 1)k3 + 1. (9.1)
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Similarly, taking n = dk/2e, we see that |2A| ≥ p−1
2 provided that

p ≥


(
k−2
k+2

)
k3 + 1, if k is even;(

k−1
k+1

)
k3 + 1, if k is odd.

In particular, |2A| ≥ p− 1 if t > p3/4, and |2A| ≥ p−1
2 if t > p2/3.

Proof. It is well known that

|2A| ≥ t4/EA, (9.2)

where EA is the additive energy of A,

EA := #{(x1, x2, x3, x4) : xi ∈ A, 1 ≤ i ≤ 4, x1 + x2 = x3 + x4}.

For even t we can do slightly better. For 0 ≤ c < p − 1, let nc denote the number

of (x1, x2) ∈ A×A with x1 + x2 = c. Then

EA = t2 +

p−1∑
c=1

n2c , and

p−1∑
c=1

nc = t2 − t.

By the Cauchy-Schwarz inequality,

t2 − t ≤ (|2A| − 1)1/2

(
p−1∑
c=1

n2c

)1/2

= (|2A| − 1)1/2(EA − t2)1/2,

and so for even t,

|2A| ≥ t2(t− 1)2

EA − t2
+ 1. (9.3)

Letting λ = λA, the number of cosets in 2A, we have by (9.2) and (9.3),

λA ≥

{
t3/EA, if t is odd;

t(t− 1)2/(EA − t2), if t is even.
(9.4)

Define

ΦA = max
p-a

∣∣∣∣∣∑
x∈A

ep(ax)

∣∣∣∣∣ ,
where ep(ax) = e2πiax/p. The following estimate is well known; see eg. [6, Equation

(11)]:

EA ≤
|A|4

p
+ |A|Φ2

A. (9.5)

Using the Gauss sum bound ΦA ≤
√
p− 1 and tk = p− 1, we have

EA ≤
t4

p
+ t(p− 1) <

t3

k
+ t2k. (9.6)
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In order to have λA ≥ n, it is enough to have λA > n − 1. For odd t, by (9.4)

and (9.6), it suffices to have
t3

t3

k + t2k
≥ n− 1, (9.7)

which simplifies to the statement of the lemma. Similarly, for even t it suffices to

have
t(t− 1)2

t3

k + t2k − t2
≥ n− 1. (9.8)

For n ≥ 3, we claim this is implied by the inequality in (9.7). Indeed, for n ≥ 3,

(9.7) implies

tk ≥ 2(t+ k2). (9.9)

The left-hand side of (9.8) is greater than or equal to the left-hand side of (9.7) if(
1− 1

t

)2

≥ 1− k

t+ k2
.

Dropping the 1
t2 term on the left-hand side, we see that it suffices to have 2

t ≤
k

t+k2 ,

the condition in (9.9). The statement of the lemma is trivial if n = 1 or 2.

We also need the following result of Cochrane and Pinner [7].

Lemma 7 ([7], Theorem 5.2). Let n be a positive integer, and A a subgroup of Z∗p
with t ≥ 8(n− 1)(2n− 3) and k ≥ 4n− 6. Then |2A| ≥ n|A|.

Proof of Theorem 4. Let n be a fixed positive integer and A a subgroup of Z∗p not

having maximal doubling, with λA = n. We may assume n ≥ 2. Since A does not

have maximal doubling, t > 2n and k > n. Applying Lemma 7 with n replaced by

n+ 1, we deduce from |2A| < (n+ 1)|A| that either

n+ 1 ≤ k ≤ 4n− 3, or 2n+ 1 ≤ t ≤ 8n(2n− 1)− 1.

By Lemma 6, applied with n replaced by n+ 1, for each value of k in the range

n+ 1 ≤ k ≤ 4n− 3, we must have t < nk2

k−n . Finally, since A does not have maximal

doubling, we have p ∈ Pt by Lemma 3.

10. Determination of the Sets Sn for n = 2, 3 and 4

Consider first the case n = 2, and let A be a Type-3 group with λA = 2. By

Theorem 4, either 3 ≤ k ≤ 5 and 5 ≤ t < 2k2/(k − 2), or 5 ≤ t ≤ 47. In the first

case, if k = 3, 4 or 5, then t ≤ 17, 15, 16 respectively. Thus in both cases we must

have 5 ≤ t ≤ 47. Table 3 reveals that there are no Type-3 groups in this range with

λA = 2. Thus S2 = ∅.
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Next consider n = 3. Then by Theorem 4, either 4 ≤ k ≤ 9 and 7 ≤ t ≤
3k2/(k−3), or 7 ≤ t ≤ 119. The first case implies that t ≤ 48, and so in both cases,

7 ≤ t ≤ 119. Again, the extended Table 3 reveals that the only Type-3 groups with

λA = 3 occur when t = 7, 8 or 10. The specific groups can then be read from Table

2:

S3 = {(4, 7, 29), (4, 10, 41), (5, 8, 41), (6, 7, 43)}.

For n = 4, we have either 5 ≤ k ≤ 13 and t < 4k2/(k − 4), or 9 ≤ t ≤ 223. In

both case we get t ≤ 223. The extended tables reveal the six groups

S4 = {(5, 12, 61), (5, 14, 71), (5, 20, 101), (6, 10, 61), (12, 9, 109), (14, 9, 127)}.

For n = 5 we would need data for groups as large as t = 359, which would

require more computation time than we think is worthwhile. It is better to find an

improvement of Lemma 7 first.

11. Another Proof of Theorem 3

In this section, we appeal to inverse results from additive combinatorics to give a

second proof of Theorem 3 that only requires computational information for groups

with t ≤ 13 or p < 2500. This section also lays the groundwork for the proof of

Corollary 2.

Recall, a subset of Zp of the form {a, a+ d, a+ 2d, . . . , a+ (`− 1)d}, with a, d ∈
Zp, d 6= 0, is called an arithmetic progression or d-progression of length `. It is

elementary that if A and B are arithmetic progressions with the same difference,

then |A+ B| = min(|A|+ |B| − 1, p). Vosper [21] established the following inverse

result.

Theorem 5 ([21]). Suppose that A,B are subsets of Zp with |A|, |B| ≥ 2, and

|A + B| = |A| + |B| − 1 ≤ p − 2. Then A and B are arithmetic progressions with

the same difference.

A set S is called an almost arithmetic progression, or almost progression if S

is an arithmetic progression with one term removed, but not itself an arithmetic

progression. It is elementary that if A and B are almost progressions with the same

difference, then |A+ B| ≤ |A|+ |B|+ 1. Hamoudine and Rodseth [12] established

the following inverse characterization.

Theorem 6 ([12]). Suppose that A,B are subsets of Zp with |A|, |B| ≥ 3, and that

7 ≤ |A+B| = |A|+ |B| ≤ p− 4.
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Then A and B are arithmetic progressions or almost arithmetic progressions with

the same difference d.

In particular, either one of A and B is a d-progression while the other is an

almost d-progression, or

A = {a, a+ 2d, a+ 3d, . . . , a+ |A|d}, and B = {b, b+ 2d, b+ 3d, . . . , b+ |B|d}.

for some a, b, d ∈ Zp.

Freiman [8] proved the following inverse theorem (cf. [17, Theorem 2.11]).

Theorem 7 ([8]). Let A be a subset of Zp and r be an integer with 0 ≤ r ≤ 2
5 |A|−2.

If |A + A| = 2|A| − 1 + r and |A| ≤ p/35, then A is contained in an arithmetic

progression with |A|+ r elements.

We immediately deduce the following lemma, part (i) from Theorem 6, and part

(ii) from Theorem 7.

Lemma 8. Let A be a subset of Zp.

(i) If 4 ≤ |A| ≤ (p− 1)/3 and |2A| = 2|A| then A is an almost progression of the

form A = {a, a+ 2d, a+ 3d, . . . , a+ |A|d}.

(ii) If 10 ≤ |A| ≤ p/35, and |2A| = 2|A|+ 1, then A is contained in an arithmetic

progression with |A|+ 2 elements.

Proof of Theorem 3. Suppose that t ≥ 5, k ≥ 3, and λA = 2. From Table 2 we

see that t ≥ 14. Computational data also show that p > 2500. By Lemma 6, we

must have t < 2k2/(k − 2), and consequently, p = kt + 1 < 2k3/(k − 2) + 1. Since

p > 2500 we must have k ≥ 35.

Suppose now that t ≥ 14, k ≥ 35, and that |2A| = 2|A| or 2|A| + 1. Then, by

Lemma 8, A is contained in an arithmetic progression of length at most t + 2. It

follows that the set 3A−3A := A+A+A−A−A−A is contained in an arithmetic

progression of length at most 6(t+ 2)− 5 = 6t+ 7 and so |3A− 3A| ≤ 6t+ 7. On

the other hand, a result of Glibichuk and Konyagin [10, Corollary 3.6] (see also [2])

gives,

|3A− 3A| ≥ min
(
t2

2 ,
p−1
2

)
.

Thus, either 6t+7 ≥ 1
2 t

2, that is, t ≤ 13, or 6t+7 ≥ p−1
2 , that is, k ≤ 12+ 14

t ≤ 13,

contradicting t ≥ 14, k ≥ 35.

12. Proof of Corollary 2, Part I: Almost Arithmetic Progressions

Chowla, Mann and Straus [4] proved the following.
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Lemma 9 ([4]). If A is a multiplicative subgroup of Z∗p with 3 ≤ |A| < p − 1 then

A is not an arithmetic progression.

Thus, a subgroup of Z∗p is an arithmetic progression if and only if t = 1, 2 or p−1. As

the first step towards proving Corollary 2, we prove the following characterization

of almost arithmetic progressions.

Lemma 10. If p is a prime with p 6= 7, then no subgroup of Z∗p is an almost

arithmetic progression. For p = 7, the subgroup {1, 3, 4} of Z∗7 is the unique subgroup

that is an almost arithmetic progression.

We need the following.

Lemma 11. If A is a multiplicative subgroup of Z∗p that is an almost arithmetic

progression of the type

a, a+ d, . . . , a+ (r − 1)d, a+ (r + 1)d, . . . , a+ td,

for some a, d ∈ Z∗p and positive integers r, t with 1 ≤ r < t, then

p|(t3 − t2 + 12rt− 12r2).

We note that Lemma 9 is an immediate consequence of the r = 0 version of this

lemma. The proof we give here follows the argument in [4] (see also [17]) for the

proof of Lemma 9.

Proof. Since A is not an arithmetic progression we know 3 ≤ t < p − 1. It is

elementary that for any subgroup A of Z∗p with t ≥ 3,
∑
x∈A x = 0 and

∑
x∈A x

2 = 0.

Then

0 =
∑
x∈A

∑
y∈A

(x− y)2 =

t∑
i=0

t∑
j=0

((a+ id)− (a+ jd))2 − 2

t∑
i=0

((a+ id)− (a+ rd))2

= d2

 t∑
i=0

t∑
j=0

(i− j)2 − 2

t∑
i=0

(i− r)2


= d2

(
2t

t∑
i=0

i2 − 2
( t∑
i=0

i
)2

+ 4r
t∑
i=0

i− 2(t+ 1)r2

)
= d2

(
1
3 t

2(t+ 1)(2t+ 1)− 1
2 (t(t+ 1))2 + 2rt(t+ 1)− 2(t+ 1)r2

)
= 1

6d
2(t+ 1)(t3 − t2 + 12rt− 12r2).

Since p ≥ 5 and p - d2(t+ 1), the lemma follows.

Proof of Lemma 10. Suppose that A is a subgroup of Z∗p that is an almost arith-

metic progression. In particular, t ≥ 3 and p ≥ 7. Since A is contained in an

arithmetic progression of length t+ 1 we have

|2A| ≤ 2(t+ 1)− 1 < 3t = 3|A|,
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and so |2A| = 2|A| or 2|A|+ 1. By Theorem 3, t = 3 or 4, or k = 2. If t = 3, then

by Lemma 11, we have

p|6(2r2 − 6r − 3),

for some r ∈ {0, 1, 2}, implying that p = 7 and A = {1, 2, 4}. For t = 4, we get

similarly that

p|12(r2 − 4r − 4),

for some r ∈ {0, 1, 2, 3}, but there are no such primes with p ≡ 1 mod 4.

If k = 2, then the set of squares mod p is contained in an arithmetic progression

{a + dj : 0 ≤ j ≤ t} of length t + 1 = p+1
2 , for some a, d ∈ Z∗p, which implies that(

a+dj
p

)
= 1 for all but one value of j ∈ [0, (p− 1)/2]. Therefore,∣∣∣∣∣∣

(p−1)/2∑
j=0

(
a+ dj

p

)∣∣∣∣∣∣ ≥ p− 3

2
.

On the other hand, by the Polya-Vinogradov estimate (see [1, Lemma 3.1] for the

numeric version stated here), for any arithmetic progression I,∣∣∣∣∣∑
x∈I

(
x

p

)∣∣∣∣∣ ≤ 4
π2

√
p log(3p). (12.1)

Together, these inequalities imply that p ≤ 13. By Lemma 11, for p = 13, t = 6 we

must have 13|(r2 − 6r − 15) for some r with 1 ≤ r < 6, which does not occur. For

p = 11, t = 5 we must have 11|(3r2 − 15r − 25) for some r with 1 ≤ r < 5, which

also does not occur. This leaves p = 7, 5 or 3, cases we have already accounted

for.

13. Proof of Corollary 2, Part II

If p ≤ 7 then every subgroup of Z∗p is accounted for in parts (i) and (ii) of the

corollary, and so we may assume that p > 7. Suppose that A is a subgroup of

Z∗p contained in an arithmetic progression B of length b 32 tc. Then |2A| ≤ |2B| ≤
2|B| − 1 ≤ 3t − 1, and so by Theorem 3, it follows that k ≤ 2 or t ≤ 4. The cases

k = 1, t = 1 and t = 2 are trivial. We consider the remaining cases in turn.

Suppose that k = 2, that is, A is the group of squares. Since A is contained in

an arithmetic progression B with |B| = b 32 tc = b 34 (p− 1)c, the complementary set

Bc = Zp \ B is an arithmetic progression of length |Bc| = p − |B| = d 14 (p + 3)e
consisting entirely of quadratic nonresidues together possibly with zero. Let Bc =
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{a+ dj : 1 ≤ j ≤M}, with M = d 14 (p+ 3)e, for some a, d ∈ Zp, d 6= 0. Therefore,∣∣∣∣∣∣
M∑
j=1

(
a+ dj

p

)∣∣∣∣∣∣ ≥M − 1 ≥ 1

4
(p− 1). (13.1)

Combining this with the Polya-Vinogradov upper bound (12.1), we conclude that

p < 80. For p < 80, a computer is used to compute all possible sums of the type

(13.1). By factoring out d, one can assume that d = 1, saving computing time. The

only sums satisfying (13.1) with 7 < p < 80 occur when p = 13 and 17. For p = 13

we have

A = {1, 3, 4, 9, 10, 12} ⊂ {1 + 3k : 0 ≤ k ≤ 8} = {1, 4, 7, 10, 0, 3, 6, 9, 12},

while for p = 17,

A = {1, 2, 4, 8, 9, 13, 15, 16} ⊂ {9 + 3k : 0 ≤ k ≤ 11}.

If in either case, p = 13 or p = 17, A was contained in an arithmetic progression of

shorter length than the one given, then the complementary set would be a longer

progression of nonresidues than actually occurs for p = 13 or 17.

Suppose now that t = 3. Then b 32 tc = 4, and so A is contained in a progression

of length 4. Then A is either an arithmetic progression or an almost arithmetic

progression, and so by Lemmas 9 and 10, A = {1, 2, 4} in Z∗7.

Finally, suppose that t = 4. In particular, p ≡ 1 mod 4. In this case, the

assumption is that A is contained in a progression of length 6, say

a, a+ d, a+ 2d, a+ 3d, a+ 4d, a+ 5d,

for some a, d ∈ Zp, d 6= 0. Consider all possible ways of forming A by deleting

two elements from the progression. If either element is one of the extremities, a or

a+ 5d, then A is either a progression or an almost progression, cases already dealt

with. Consider in turn the other
(
4
2

)
= 6 possibilities.

(i) A = {a, a+ 3d, a+ 4d, a+ 5d}. Then forming the sum
∑
x∈A

∑
y∈A(x− y)2,

we get 0 = 56d2, implying that p = 7, contradicting p ≡ 1 mod 4.

(ii) A = {a, a + 2d, a + 4d, a + 5d}. Forming the same sum, we get 0 = 59d2,

implying that p = 59, again in violation of p ≡ 1 mod 4.

(iii) A = {a, a + 2d, a + 3d, a + 5d}. This time we get 0 = 52d2, implying that

p = 13. For p = 13, we see that

A = {1, 5, 8, 12} ⊂ {8 + 2k : 0 ≤ k ≤ 5} = {8, 10, 12, 1, 3, 5}.

A is not contained in any shorter progression, since it is not an almost arith-

metic progression, by Lemma 10.
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(iv) A = {a, a+ d, a+ 4d, a+ 5d}. Then 0 = 68d2 and so p = 17. For p = 17, we

have

A = {1, 4, 13, 16} ⊂ {1 + 3k : 0 ≤ k ≤ 5} = {1, 4, 7, 10, 13, 16}.

Again, A is not contained in any shorter progression.

(v) A = {a, a+ d, a+ 3d, a+ 5d}. Then 0 = 59d2, which as we saw above cannot

occur.

(vi) A = {a, a+ d, a+ 2d, a+ 5d}. Then 0 = 56d2, which also cannot occur.

14. Estimation of Φt(n)

Lemma 12. For any positive integers n > 1, t > 2 we have

(a) Φt(n) <
n

n− 1
nφ(t), for t odd;

Φt(n) <
n+ 1

n
nφ(t), for t even.

(b) Φt(−n) <
n+ 1

n
nφ(t), for t odd;

Φt(−n) <
n

n− 1
nφ(t), for t even.

To prove the lemma we need the following lemma.

Lemma 13. Let P be the set of primes and x a positive real with 0 < x ≤ 1
2 . Then

(i)
∏
p∈P

(1 + xp) < 1 + x;

(ii)
∏
p∈P

(1− xp) > 1− x.

Proof. (i) Noting that log(1 + x) < x− 3
8x

2 for 0 < x ≤ 1
2 , we have for 0 < x ≤ 1

2 ,∑
p∈P

log(1 + xp) < log((1 + x2)(1 + x3)) +
∑
p≥5
p∈P

(
xp − 3

8
x2p
)

< log((1 + x2)(1 + x3)) +
∑
n≥5
n odd

(
xn − 3

8
x2n
)

= log((1 + x2)(1 + x3)) +
x5

1− x2
− 3

8

x10

1− x4
< log(1 + x),
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the last inequality being verified on a calculator for 0 < x ≤ 1
2 .

(ii) For the lower bound in (ii), we first observe that log(1 − x) > −x − 2x2 for

0 < x ≤ 1
2 , and so

∑
p≥5
p∈P

log(1− xp) > −
∑
p≥5
p∈P

(
xp + 2x2p

)
> − x5

1− x2
− 2x10

1− x4
,

and ∑
p∈P

log(1− xp) > log((1− x2)(1− x3))− x5

1− x2
− 2x10

1− x4
> log(1− x),

the last inequality being verified on a calculator for 0 < x ≤ 1
2 .

Proof of Lemma 12. It suffices to prove parts (a) and (b) for the case of odd square-

free t. The inequalities for even square-free t follow from the formula

Φ2t(x) = Φt(−x),

for t odd. For a general positive integer t, we write t = t1t2 with t1 the radical of

t (the product of its distinct prime divisors), and deduce the inequalities from the

formula

Φt(x) = Φt1(xt2).

(a) Let t = q1q2 · · · qr, with the qi distinct odd primes. Suppose that r is odd. Let

ω = ω(d) denote the number of distinct prime divisors of d, and for any non-negative

integer j, set ∏
ω=j

:=
∏

d|t, ω(d)=j

.

Then

Φt(n) =
∏
d|t

(nd − 1)µ(t/d) = nφ(t)
∏
d|t

(
1− 1

nd

)µ(t/d)

= nφ(t)
∏
ω=r

(
1− 1

nd

)∏
ω=r−2

(
1− 1

nd

)
· · ·
∏
ω=1

(
1− 1

nd

)∏
ω=r−1

(
1− 1

nd

)∏
ω=r−3

(
1− 1

nd

)
· · ·
∏
ω=2

(
1− 1

nd

) (
1− 1

n

)
< nφ(t)

∏
ω=r−2

(
1− 1

nd

)∏
ω=r−1

(
1− 1

nd

) ∏ω=r−4
(
1− 1

nd

)∏
ω=r−3

(
1− 1

nd

) · · · ∏ω=1

(
1− 1

nd

)∏
ω=2

(
1− 1

nd

) 1(
1− 1

n

) .
We claim that for l = 0 to r − 1,∏

ω=l+1

(
1− 1

nd

)
>
∏
ω=l

(
1− 1

nd

)
. (14.1)
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Indeed, applying Lemma 13 (ii) with x = 1
nd

,

∏
ω=l+1

(
1− 1

nd

)
>

∏
d|t

ω(d)=l

r∏
j=1

(
1− 1

ndqj

)
>

∏
d|t

ω(d)=l

(
1− 1

nd

)
=
∏
ω=l

(
1− 1

nd

)
.

Thus, for odd r we get Φt(n) < nφ(t) n
n−1 .

Next, if r is even, we write

Φt(n) =
∏
d|t

(nd − 1)µ(t/d) = nφ(t)
∏
d|t

(
1− 1

nd

)µ(t/d)

< nφ(t)
∏
ω=r−2

(
1− 1

nd

)∏
ω=r−1

(
1− 1

nd

) · · · ∏ω=2

(
1− 1

nd

)∏
ω=3

(
1− 1

nd

) (1− 1
n )∏

ω=1

(
1− 1

nd

) ,
which, by (14.1), yields Φt(n) < nφ(t).

(b) Again, let t = q1q2 · · · qr, with the qi distinct odd primes. Suppose that r is

odd. Then

Φt(−n) =
∏
d|t

(−nd − 1)µ(t/d) = nφ(t)
∏
d|t

(
1 +

1

nd

)µ(t/d)

= nφ(t)
∏
ω=r

(
1 + 1

nd

)∏
ω=r−1

(
1 + 1

nd

) ∏ω=r−2
(
1 + 1

nd

)∏
ω=r−3

(
1 + 1

nd

) · · · ∏ω=1

(
1 + 1

nd

)(
1 + 1

n

) .

We claim that for l = 0 to r − 1,∏
ω=l+1

(
1 +

1

nd

)
<
∏
ω=l

(
1 +

1

nd

)
. (14.2)

Indeed, applying Lemma 13 with x = 1
nd

,

∏
ω=l+1

(
1 +

1

nd

)
<

∏
d|t

ω(d)=l

r∏
j=1

(
1 +

1

ndqj

)
<

∏
d|t

ω(d)=l

(
1 +

1

nd

)
=
∏
ω=l

(
1 +

1

nd

)
.

Thus, for odd r we get Φt(−n) < nφ(t).

Next, if r is even, we write

Φt(−n) =
∏
d|t

(−nd − 1)µ(t/d) = nφ(t)
∏
d|t

(
1 +

1

nd

)µ(t/d)

= nφ(t)
∏
ω=r

(
1 + 1

nd

)∏
ω=r−1

(
1 + 1

nd

) ∏ω=r−2
(
1 + 1

nd

)∏
ω=r−3

(
1 + 1

nd

) · · · ∏ω=2

(
1 + 1

nd

)∏
ω=1

(
1 + 1

nd

) (1 +
1

n

)
,

which, by (14.2), yields the inequality of the lemma.
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