PRIME DIVISORS OF $a^{n}-b^{n}$

Pradipto Banerjee
Department of Mathematics, IIT Hyderabad, Kandi, Telangana, India
pradipto@math.iith.ac.in

Received: 2/3/23, Accepted: 4/19/23, Published: 6/2/23

Abstract

Let $P(m)$ denote the greatest prime factor of an integer $m>1$. It has been known since the 1900s that $P_{n}:=P\left(a^{n}-b^{n}\right)>n+1$ for integers $a>b>0$ and $n>2$. A conjecture of Stewart (1977) states that $P_{n} \gg \phi(n)^{2}$ where the implied constant is absolute. He (2013) later proved that $P_{n} \gg_{a, b} n^{1+\frac{1}{104 \log \log n}}$. Earlier, Murty and Wong (2002) had shown that the usual abc-conjecture implies that $P_{n} \gg_{a, b, \varepsilon} n^{2-\varepsilon}$. Recently, Murty and Séguin (2019) formulated a conjecture concerning the p-adic valuation of $a^{f}-1$ where $p \nmid a$, and f is the order of a in the multiplicative group $(\mathbb{Z} / p \mathbb{Z})^{\times}$. Conditional on their conjecture, they confirmed the conjecture of Stewart in the case that $b=1$ with the implied constant depending on a. We prove that a milder $a b c$-conjecture implies that $P_{n} \gg(n / \tau(n))^{2}$ where $\tau(n)$ is the number of distinct positive divisors of n, and crucially, the implied constant is independent of a and b. This is an improvement over the result of Murty and Wong. Furthermore, as a simple consequence, Stewart's conjecture follows in the case that n is prime, thereby refining the result of Murty and Séguin. Additionally, we obtain a distribution result for the prime factors of $\operatorname{gcd}\left(n, \Phi_{n}(a, b)\right)$, generalizing a similar result of Murty and Séguin.

1. Introduction

Let a, b be integers with $a>b>0$. Consider the sequence $\left(u_{n}\right)_{n \in \mathbb{N}}$ of positive integers defined by

$$
\begin{equation*}
u_{n}=u_{n}(a, b):=a^{n}-b^{n} \tag{1}
\end{equation*}
$$

and its associated sequence $\left(P\left(u_{n}\right)\right)_{n \in \mathbb{N}}$, where $P(m)$ denotes the greatest prime factor of an integer $m>1$. It has long been known that $P\left(u_{n}\right) \rightarrow \infty$ with n. However, it is generally believed that $P\left(u_{n}\right)$ grows rapidly with n. Erdős [2] conjectured that $P\left(u_{n}\right) / n \rightarrow \infty$ with n in the case that $a=2$ and $b=1$. In the same spirit, one is naturally led to conjecture that $P\left(u_{n}\right) / n \rightarrow \infty$ with n for arbitrary integers a, b with $a>b>0$. Stewart [10] confirmed the conjecture for the set of
integers n having at most $\kappa \log \log n$ distinct prime factors for a given κ satisfying $0<\kappa<1 / \log 2$. Subsequently, he [11] extended his results to general Lucas and Lehmer sequences and proposed the following conjecture.

Conjecture 1. There is an effectively computable absolute positive constant C such that

$$
\begin{equation*}
P\left(u_{n}\right)>C \phi(n)^{2} \tag{2}
\end{equation*}
$$

for every $n>2$, where ϕ denotes the Euler totient function.
Murty and Wong [8] proved that the abc-conjecture of Masser and Oesterlé implies that for a given $\varepsilon>0$, one has

$$
P\left(u_{n}\right) \gg n^{2-\varepsilon},
$$

where the implied constant depends on a, b and ε. Murata and Pomerance [6] proved that subject to the generalized Riemann hypothesis, for almost all integers n, one has

$$
P\left(2^{n}-1\right)>\frac{n^{4 / 3}}{\log \log n}
$$

Stewart [12] provided the first unconditional result in this direction by proving that there is a constant $N_{0}>0$ depending only on $\omega(a b)$, where $\omega(m)$ denotes the number of distinct prime factors of an integer $m>1$, such that for every $n>N_{0}$, one has

$$
P\left(u_{n}\right)>n^{1+\frac{1}{104 \log \log n}},
$$

thereby completely resolving the conjecture of Erdős.
For a positive integer m and a prime p, let $\nu_{p}(m)$ denote the largest exponent of p such that $p^{\nu_{p}(m)} \mid m$. Further, for an integer a with $p \nmid a$, let $f_{p}(a)$ denote the order of a in the multiplicative group $(\mathbb{Z} / p \mathbb{Z})^{\times}$. In a recent article, Murty and Séguin [9] formulated the conjecture that given an integer $a>1$, there is a constant $\kappa>1$ (depending on a) such that

$$
\nu_{p}\left(a^{f_{p}(a)}-1\right) \leq \kappa
$$

for every prime $p \nmid a$. Conditional on their conjecture, Murty and Séguin resolved Conjecture 1 in the particular case that $b=1$, with the constant C in Equation (2) depending on a.

The present article aims to prove that a weaker $a b c$-hypothesis implies that $P\left(u_{n}\right) \gg n^{2} / \tau(n)^{2}$, where $\tau(n)$ denotes the number of distinct positive divisors of a positive integer n and where the implied constant is absolute. For a given positive integer $m>1$, its radical $\operatorname{rad}(m)$ is defined as

$$
\operatorname{rad}(m):=\prod_{\substack{p \mid m \\ p-\text { prime }}} p .
$$

Conjecture 2. (The quasi $a b c$-conjecture) There is an absolute constant $\kappa>1$ such that if a, b and c are pairwise relatively prime positive integers satisfying $a+b=c$, then

$$
c<(\operatorname{rad}(a b c))^{\kappa}
$$

A conjecture of Granville and Tucker [3] suggests that $\kappa=2$. We note that for our purposes, a weaker hypothesis than the one in Conjecture 2 would suffice. We will discuss this next. Let $k>1$ be a given integer. By the fundamental theorem of arithmetic, there are unique positive integers U and V such that

$$
\begin{equation*}
u_{n}=U V^{k+1} \tag{3}
\end{equation*}
$$

where, every prime divisor p of U satisfies $\nu_{p}(U) \leq k$. We refer to U as the $(k+1)$-free part of u_{n}. Observe that if $k \geq \kappa$ where κ is the constant appearing in Conjecture 2, then Conjecture 2 implies that

$$
U V^{k+1}=u_{n}<a^{n}<(\operatorname{rad}(a b U V))^{\kappa}<a^{2 \kappa} U^{\kappa} V^{\kappa}
$$

It follows that

$$
\begin{equation*}
V \leq V^{k-\kappa+1}<a^{2 \kappa} U^{\kappa-1} \leq(a U)^{2 \kappa} \tag{4}
\end{equation*}
$$

The estimate in Equation (4) is all that is required to prove our main result (Theorem 1 below). We record the inequality in Equation (4) for ease of future reference.

Hypothesis 1. There is an absolute constant $\lambda>2$ such that for every integer $k \geq \lambda$ if u_{n} is given by Equation (3), then $V<(a U)^{\lambda}$.

Our main result is the following.
Theorem 1. Let λ be the constant appearing in Hypothesis 1. For arbitrary integers a and b with $a>b>0$, let u_{n} be as defined in Equation (1). Then subject to Hypothesis 1, there is an effectively computable absolute constant $n_{0}>1$ such that for every integer $n>n_{0}$, one has

$$
\begin{equation*}
P\left(u_{n}\right)>C \frac{n^{2}}{\tau(n)^{2}} \tag{5}
\end{equation*}
$$

where C can be taken to be $C=0.002 \lambda^{-5}$.
Set $c_{0}=\max \left\{n^{2} / \tau(n)^{2}: n \leq n_{0}\right\}$ where n_{0} is the constant appearing in Theorem 1. Then trivially, one has

$$
P\left(u_{n}\right)>c_{0}^{-1} \frac{n^{2}}{\tau(n)^{2}}
$$

for all $n \leq n_{0}$. Thus, setting $C_{0}=\min \left\{C, 1 / c_{0}\right\}$ where C is as stated in Theorem 1, we have

Corollary 1. For arbitrary integers a and b with $a>b>0$, let u_{n} be as defined in Equation (1). Then subject to Hypothesis 1, there is an effectively computable absolute constant $C_{0}>0$ such that for every integer $n>2$, one has

$$
P\left(u_{n}\right)>C_{0} \frac{n^{2}}{\tau(n)^{2}} .
$$

Consequently, Conjecture 1 follows whenever n is prime.
Corollary 2. Let $p>2$ be a prime, and for arbitrary integers a and b with $a>$ $b>0$, let u_{p} be as defined in Equation (1). Then subject to Hypothesis 1, there is an effectively computable absolute constant $C^{\prime}>0$ such that

$$
P\left(u_{p}\right)>C^{\prime} p^{2} .
$$

It is well-known (Theorem 317, [4]) that for every $\delta>0$, one has

$$
\tau(n)<2^{(1+\delta) \log n / \log \log n}
$$

for $n \gg_{\delta} 1$. Accordingly, we have the following.
Corollary 3. For arbitrary integers a and b with $a>b>0$, let u_{n} be as defined in Equation (1). Then subject to Hypothesis 1, for every $\delta>0$, there is an effectively computable constant $C_{\delta}>0$ such that for every integer $n>2$, one has

$$
\begin{equation*}
P\left(u_{n}\right)>C_{\delta} \frac{n^{2}}{4^{(1+\delta)} \log n / \log \log n} . \tag{6}
\end{equation*}
$$

Perhaps it is worth highlighting the key aspects where our results improve upon the best-known conditional lower bound to date on $P\left(u_{n}\right)$ due to Murty and Wong [8] mentioned earlier. To begin with, the underlying hypothesis (Conjecture 2) of Theorem 1 is weaker than the usual $a b c$-conjecture. Secondly, since for every $\varepsilon>0$ and $\delta>0$,

$$
4^{(1+\delta) \log n / \log \log n}=o\left(n^{\varepsilon}\right),
$$

the lower bound on $P\left(u_{n}\right)$ in Equation (6) is considerably sharper than the one due to Murty and Wong. Thirdly, the implied constant C_{δ} appearing in Corollary 1 , is independent of the integers a and b. The last condition is an essential requirement in Conjecture 1. If n is prime, the constant C^{\prime} appearing in Corollary 2 is absolute.

For a positive integer n, set $\zeta_{n}:=e^{2 \pi i / n}$. The nth cyclotomic polynomial $\Phi_{n}(x)$ is defined as

$$
\Phi_{n}(x)=\prod_{\substack{0<j<n \\ \operatorname{gcd}(j, n)=1}}\left(x-\zeta_{n}^{j}\right) .
$$

It is well known that $\Phi_{n}(x) \in \mathbb{Z}[x]$ is a monic polynomial with $\operatorname{deg} \Phi_{n}=\phi(n)$. The nth homogenized cyclotomic polynomial $\Phi_{n}(x, y)$ is defined by

$$
\Phi_{n}(x, y)=y^{\phi(n)} \Phi_{n}\left(\frac{x}{y}\right) .
$$

By a standard result on the factorization of $x^{n}-y^{n}$, one has

$$
a^{n}-b^{n}=\prod_{d \mid n} \Phi_{d}(a, b)
$$

For $d \mid n$, set

$$
\begin{equation*}
v_{d}=\left|\Phi_{d}(a, b)\right| . \tag{7}
\end{equation*}
$$

Observe that $v_{n} \mid u_{n}$ for all n, so that $P\left(u_{n}\right) \geq P\left(v_{n}\right)$. In most of the past work cited thus far, the authors have obtained a lower bound on $P\left(v_{n}\right)$, which is trivially a lower bound on $P\left(u_{n}\right)$. We shall adopt a slightly different strategy in that we consider the prime factors of $v_{d_{n}}$ for a certain large divisor d_{n} of n. These details are discussed in the next section.

In proving Theorem 1, we will need information on the prime factors of v_{d} for $d \mid n$. These are summarized in the following.

Lemma 1 ([11]). Let a and b be integers with $a>b>0$ and $\operatorname{gcd}(a, b)=1$, and let v_{d} be defined as in Equation (7). Then

$$
\begin{equation*}
v_{d}=p_{d}^{\delta_{d}} N \tag{8}
\end{equation*}
$$

where $p_{1}=1, \delta_{1}=1$, and for every $d>1$,

$$
p_{d}=P\left(\frac{d}{\operatorname{gcd}(3, d)}\right), \quad \delta_{d} \in\{0,1\},
$$

and either $N=1$, or every prime factor p of N satisfies $p \equiv 1(\bmod d)$.
In the special case that $b=1$, Murty and Séguin (see Theorem 1.2, [9]) established that for some $\theta \in(0,1)$,

$$
\sum_{n \leq x} \delta_{n} \log p_{n}=O\left(x^{\theta}\right)
$$

The last estimate implies that $\delta_{n}=0$ more often than not. By Abel's summation formula, one readily deduces from the last estimate above that

$$
\sum_{n=1}^{\infty} \frac{\delta_{n} \log p_{n}}{n} \ll 1
$$

We will prove that the last result holds in general.
Theorem 2. We have

$$
\sum_{n=1}^{\infty} \frac{\delta_{n} \log p_{n}}{n} \ll 1
$$

where δ_{n} and p_{n} are defined as in Lemma 1.

2. Proofs

Throughout, we will assume that $n>2$. Further, we will assume without loss of any generality that $\operatorname{gcd}(a, b)=1$. Let $\lambda>2$ be as defined in Hypothesis 1. We may and do further suppose that λ is an integer. Let integers U and V be as defined in Equation (3) with $k=\lambda$. For each $d \mid n$, let U_{d} denote the $(\lambda+1)$-free part of v_{d}, and let V_{d} be the positive integer such that

$$
v_{d}=U_{d} V_{d}^{\lambda+1}
$$

where v_{d} is as defined in Equation (7). From $u_{n}=\prod_{d \mid n} v_{d}$, we have that

$$
U V^{\lambda+1}=\prod_{d \mid n} U_{d} \prod_{d \mid n} V_{d}^{\lambda+1}
$$

Since

$$
U \leq \prod_{d \mid n} U_{d}
$$

and hence,

$$
V \geq \prod_{d \mid n} V_{d}
$$

Let $d_{n} \mid n$ be such that $U_{d_{n}}$ is maximal. That is, $U_{d} \leq U_{d_{n}}$ for every $d \mid n$. Thus,

$$
\begin{equation*}
U \leq U_{d_{n}}^{\tau(n)} \tag{9}
\end{equation*}
$$

We have the following estimate on the size of d_{n} conditional on Hypothesis 1 .
Lemma 2. Subject to Hypothesis 1, we have for $n>1$ that

$$
\begin{equation*}
\phi\left(d_{n}\right)>C_{1} \frac{n}{\tau(n)}, \tag{10}
\end{equation*}
$$

where C_{1} can be taken to be $C_{1}=1 / 6\left(\lambda^{2}+\lambda+1\right)$.
Proof. By an easy induction argument, we have

$$
\begin{equation*}
\log u_{n}>\frac{n}{2} \log a . \tag{11}
\end{equation*}
$$

On the other hand,

$$
\begin{equation*}
\log u_{n}=\log U+(\lambda+1) \log V \tag{12}
\end{equation*}
$$

Now, Hypothesis 1 implies that $V<(a U)^{\lambda}$. So, from Equation (9) and Equation (12), we deduce that

$$
\begin{align*}
\log u_{n} & <\lambda(\lambda+1) \log a+\left(\lambda^{2}+\lambda+1\right) \log U \tag{13}\\
& \leq \lambda(\lambda+1) \log a+\tau(n)\left(\lambda^{2}+\lambda+1\right) \log U_{d_{n}}
\end{align*}
$$

Next, by the triangle inequality, for every $x>0$, one has

$$
\left|\Phi_{d_{n}}(x)\right| \leq(1+x)^{\phi\left(d_{n}\right)}
$$

Setting $x=a / b$ above, we get

$$
U_{d_{n}} \leq\left|\Phi_{d_{n}}(a, b)\right| \leq(a+b)^{\phi\left(d_{n}\right)}<a^{2 \phi\left(d_{n}\right)}
$$

We now deduce from Equation (13) that

$$
\begin{equation*}
\log u_{n}<3\left(\lambda^{2}+\lambda+1\right) \tau(n) \phi\left(d_{n}\right) \log a \tag{14}
\end{equation*}
$$

Finally, comparing Equation (11) and Equation (14), we obtain

$$
\frac{n}{2}<3\left(\lambda^{2}+\lambda+1\right) \tau(n) \phi\left(d_{n}\right)
$$

The lemma follows.
In proving Theorem 1, we will need an upper bound on $\log U_{d_{n}}$ in terms of $P\left(u_{n}\right)$. For this purpose, we will appeal to the following version of the Brun-Titchmarsh inequality due to Montgomery and Vaughan (see Theorem 2, [5]). For $x>0$ and positive integers ℓ and r with $\operatorname{gcd}(\ell, r)=1$, let $\pi(x, \ell, r)$ denote the number of primes $p \leq x$ satisfying $p \equiv r(\bmod \ell)$.

Lemma 3 ([5]). For $0<\ell<x$, one has

$$
\pi(x, \ell, r)<\frac{2 x}{\phi(\ell) \log (x / \ell)}
$$

Proof of Theorem 1. From Hypothesis 1 and Equation (9), we have

$$
\begin{align*}
\frac{n}{2} \log a<\log u_{n} & =\log U+(\lambda+1) \log V \tag{15}\\
& <\log U+\lambda(\lambda+1) \log a U \\
& =\lambda(\lambda+1) \log a+\tau(n)\left(\lambda^{2}+\lambda+1\right) \log U_{d_{n}}
\end{align*}
$$

Using Lemma 1,

$$
\begin{equation*}
\log U_{d_{n}}<\log n+\lambda \sum_{p \equiv 1} \log p \tag{16}
\end{equation*}
$$

where $P_{n}=\max \left\{e n, P\left(u_{n}\right)\right\}$. Moreover, from Lemma 3 and the trivial bound $d_{n} \leq n$, one has

$$
\begin{equation*}
\sum_{\substack{p \leq P_{n} \\ p \equiv 1 \\\left(\bmod d_{n}\right)}} \log p \leq \frac{2 P_{n} \log P_{n}}{\phi\left(d_{n}\right) \log \left(P_{n} / d_{n}\right)} \leq \frac{2 P_{n} \log P_{n}}{\phi\left(d_{n}\right) \log \left(P_{n} / n\right)} \tag{17}
\end{equation*}
$$

From Equation (15), Equation (16) and Equation (17), we obtain

$$
\begin{equation*}
\frac{n}{2} \log a<C_{2} \log a+C_{2} \tau(n) \log n+\frac{2 C_{2} \tau(n) P_{n} \log P_{n}}{\phi\left(d_{n}\right) \log \left(P_{n} / n\right)} \tag{18}
\end{equation*}
$$

where $C_{2}=\lambda\left(\lambda^{2}+\lambda+1\right)$. Since $a \geq 2$, using the well-known estimate that $\tau(n) \leq 2 \sqrt{n}$, we have from Equation (10) and Equation (18) that

$$
\begin{equation*}
\frac{n}{3}<\frac{2 C_{2} \tau(n) P_{n} \log P_{n}}{\phi\left(d_{n}\right) \log \left(P_{n} / n\right)}<\frac{2 C_{3} \tau(n)^{2} P_{n} \log P_{n}}{n \log \left(P_{n} / n\right)} \tag{19}
\end{equation*}
$$

for $n \gg 1$, and where $C_{3}=C_{2} / C_{1}$. Since $P_{n} \geq e n$, we get from Equation (19) that

$$
\begin{equation*}
\frac{n^{2}}{6 C_{3} \tau(n)^{2}}<P_{n} \log P_{n} \tag{20}
\end{equation*}
$$

Thus, for $n \gg 1$, one has

$$
P_{n}>\frac{n^{2}}{12 C_{3} \tau(n)^{2} \log \left(\frac{n^{2}}{6 C_{3} \tau(n)^{2}}\right)}>n^{3 / 2}
$$

It follows that $\log P_{n}<3 \log \left(P_{n} / n\right)$. Using this estimate in Equation (19), we obtain

$$
P_{n}>\frac{1}{18 C_{3}} \frac{n^{2}}{\tau(n)^{2}}
$$

The expression on the right-hand side above is $>e n$ for $n \gg 1$. So, $P_{n}=P\left(u_{n}\right)$ for $n \gg 1$. The theorem now follows by observing that

$$
C_{3}=6 \lambda\left(\lambda^{2}+\lambda+1\right)^{2}<24 \lambda^{5}
$$

since $\lambda>1$.
We next turn to the proof of Theorem 2 . We begin by recalling a well-known result concerning the resultant of cyclotomic polynomials.

Lemma 4 ([1]). Let m and n be integers with $m>n>1$. If m / n is not a power of a prime, then there are polynomials $u(x)$ and $v(x)$ in $\mathbb{Z}[x]$ such that

$$
u(x) \Phi_{m}(x)+v(x) \Phi_{n}(x)=1
$$

On the other hand, if $m=p^{k} n$ where p is a prime, then there are polynomials $u(x)$ and $v(x)$ in $\mathbb{Z}[x]$ such that

$$
u(x) \Phi_{m}(x)+v(x) \Phi_{n}(x)=p^{\phi(n)}
$$

In particular, Lemma 4 implies that if there is a prime p such that

$$
p \mid \operatorname{gcd}\left(\Phi_{m}(c), \Phi_{n}(c)\right)
$$

for some integer c, then $m=p^{k} n$ for some positive integer k.
To prove Theorem 2, we need a precise description of positive integers n for which $\delta_{n}=1$. This is the content of the next result.

Proposition 1. For a positive integer $n>1$, let p_{n} and δ_{n} be as in Lemma 1. Further, let $m=n / p_{n}^{\nu_{p_{n}}(n)}$. If $\delta_{n}=1$, then $p_{n} \equiv 1(\bmod m)$.

Proof. We let p denote p_{n} for brevity. Suppose that $\delta_{n}=1$ for some $n>1$. Since $\operatorname{gcd}(a, b)=1$, there is a unique $c \in(\mathbb{Z} / p \mathbb{Z})^{\times}$such that $a b^{-1} \equiv c(\bmod p)$. Let $f=f_{p}(c)$ so that p is a primitive divisor of $\Phi_{f}(c)$ (that is, $p \nmid \Phi_{d}(c)$ for every $d<f)$. Thus,

$$
\begin{equation*}
p \mid \Phi_{f}(c), \quad p \equiv 1 \quad(\bmod f) \tag{21}
\end{equation*}
$$

Also, $p \mid \Phi_{n}(a, b)$ implies that $p \mid \Phi_{n}(c)$. That is,

$$
p \mid \operatorname{gcd}\left(\Phi_{f}(c), \Phi_{n}(c)\right)
$$

From the remark following Lemma 4, we deduce that $f=n / p^{k}$ for some positive integer k. Next, observe that $c^{n} \equiv 1(\bmod p)$ since $p \mid \Phi_{n}(c)$. Now, using Fermat's little theorem, we deduce that

$$
c^{m} \equiv c^{n} \equiv 1 \quad(\bmod p)
$$

So, $f \mid m$. It follows that $k=\nu_{p}(n)$, and as such, $f=m$. The proposition follows by observing from Equation (21) that $p \equiv 1(\bmod f)$.

For a pair of relatively prime integers a and b with $a>b>0$, and a prime $p \nmid a b$, let f_{p} denote the smallest positive integer such that

$$
\begin{equation*}
a^{f_{p}} \equiv b^{f_{p}} \quad(\bmod p) \tag{22}
\end{equation*}
$$

The proof of Theorem 2 rests upon the following result, which is an adaptation of a result of similar flavour from [7] (see Inequality (3), [7]).
Proposition 2. For f_{p} defined above, we have

$$
\sum_{p \nmid a b} \frac{\log p}{(p-1) f_{p}} \ll 1
$$

We need the following lemma to prove Proposition 2.
Lemma 5. For $n \gg 1$, one has

$$
\sum_{p \mid n} \frac{\log p}{p-1} \leq 4 \log \log n
$$

Proof. By Corollary 2.3, Inequality (14) in [7], for $n \gg 1$, one has

$$
\sum_{p \mid n} \frac{\log p}{p} \leq 2 \log \log n
$$

Therefore, for $n \gg 1$,

$$
\sum_{p \mid n} \frac{\log p}{p-1}=\sum_{p \mid n} \frac{p}{p-1} \frac{\log p}{p} \leq 2 \sum_{p \mid n} \frac{\log p}{p} \leq 4 \log \log n
$$

Proof of Proposition 2. For $x>0$, define

$$
A(x):=\prod_{f \leq x}\left(a^{f}-b^{f}\right)
$$

It is easily seen that

$$
A(x)<\prod_{f \leq x} a^{f}<a^{x^{2}}
$$

Thus,

$$
\begin{equation*}
\log \log A(x)<2 \log x+\log \log a<3 \log x \tag{23}
\end{equation*}
$$

for $x \gg 1$. For an integer $f>0$, let

$$
\delta(f):=\sum_{f_{p}=f} \frac{\log p}{p-1}
$$

and for $x>0$, let

$$
\Delta(x):=\sum_{f \leq x} \delta(f)
$$

Observe that for $f \leq x$, the fact that $f_{p}=f$ implies that $p \mid A(x)$. Thus, from Lemma 5 and Equation (23), we obtain

$$
\begin{equation*}
\Delta(x) \leq \sum_{p \mid A(x)} \frac{\log p}{p-1} \leq 12 \log x \tag{24}
\end{equation*}
$$

Noting that $p \equiv 1\left(\bmod f_{p}\right)$, we have by the Abel summation formula that

$$
\begin{aligned}
\sum_{\substack{p \leq x \\
p \nmid a b}} \frac{\log p}{(p-1) f_{p}} & \leq \sum_{f \leq x} \frac{\delta(f)}{f} \\
& =\frac{\Delta(x)}{x}+\int_{1}^{x} \frac{\Delta(t)}{t^{2}} d t+O(1) \\
& \leq \frac{12 \log x}{x}+12 \int_{1}^{x} \frac{\log t}{t^{2}} d t+O(1)=O(1)
\end{aligned}
$$

for $x \gg 1$. The proposition follows.

Proof of Theorem 2. Let

$$
S:=\sum_{n=1}^{\infty} \frac{\delta_{n} \log p_{n}}{n}
$$

where δ_{n} and p_{n} are as stated in the theorem. For a positive integer n, let $k_{n}=$ $\nu_{p_{n}}(n)$, and let $m_{n}=n / p_{n}^{k_{n}}$. From Proposition $1, \delta_{n}=1$ implies that $p_{n} \equiv 1$ $\left(\bmod m_{n}\right)$. Furthermore, m_{n} is the smallest positive integer such that

$$
a^{m_{n}} \equiv b^{m_{n}} \quad\left(\bmod p_{n}\right) .
$$

We deduce that $\delta_{n}=1$ implies that $f_{p_{n}}=m_{n}$. Also, since $\operatorname{gcd}(a, b)=1$, we have $p_{n} \nmid a b$ if $\delta_{n}=1$. Thus,

$$
\begin{equation*}
S \leq \sum_{p \nmid a b} \sum_{k=1}^{\infty} \frac{\log p}{p^{k} f_{p}}=\sum_{p \nmid a b} \frac{\log p}{(p-1) f_{p}} \ll 1 \tag{25}
\end{equation*}
$$

by Proposition 2, thereby proving the theorem.

Acknowledgement. The author thanks the anonymous referee for their valuable comments and corrections.

References

[1] T. Apostol, Resultants of cyclotomic polynomials, Proc. Amer. Math. Soc. 24 (1970), 457-462.
[2] P. Erdős, Some recent advances and current problems in number theory, in: Lectures on Modern Mathematics, Vol. III, Wiley, New York, 1965, pp. 196-244.
[3] A. Granville and T. J. Tucker, It's as easy as abc, Notices Amer. Math. Soc. 49 (2002), 1224-1231.
[4] G. H. Hardy and E. M. Wright, An introduction to the theory of numbers, Sixth edition. Revised by D. R. Heath-Brown and J. H. Silverman. With a foreword by Andrew Wiles. Oxford University Press, Oxford, 2008.
[5] H. L. Montgomery and R. C. Vaughan, The large sieve, Mathematika 20 (1973), 119-134.
[6] L. Murata and C. Pomerance, On the largest prime factor of a Mersenne number, in: Number Theory, in: CRM Proc. Lecture Notes, Vol. 36, Amer. Math. Soc., Providence, RI, 2004, pp. 209-218.
[7] M. R. Murty, M. Rosen and J. H. Silverman, Variations on a theme of Romanoff, Internat. J. Math. 7 (1996), 373-391.
[8] M. R. Murty and S. Wong, The $A B C$ conjecture and prime divisors of the Lucas and Lehmer sequences, in: Number Theory for the Millennium, III, Urbana, IL, 2000, A K Peters, Natick, MA, 2002, pp. 43-54.
[9] M. R. Murty and F. Séguin, Prime divisors of sparse values of cyclotomic polynomials and Wieferich primes, J. Number Theory 201 (2019), 1-22.
[10] C. L. Stewart, The greatest prime factor of $a^{n}-b^{n}$, Acta Arith. 26 (1975), 427-433.
[11] C. L. Stewart, On divisors of Fermat, Fibonacci, Lucas and Lehmer numbers, Proc. Lond. Math. Soc. (3) 35 (1977), 425-447.
[12] C. L. Stewart, On divisors of Lucas and Lehmer numbers, Acta Math. 211 (2013), 291-394.

