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Abstract

Wang and Sun proved a certain summatory formula involving derangements and
primitive roots of unity. This study establishes such a formula but for the particular

case of the set of affine derangements in
Ð→

GL(Z/2kZ) and its subset of involutive
affine derangements in particular; in this last case its value is relatively simple and
it is related to even unitary divisors of k.

1. Introduction

In [6], for n > 1 an odd integer and ζ a n-th primitive root of unity, Wang and Sun

proved that

∑

π∈D(n−1)

sign(π)
n−1

∏

j=1

1 + ζj−π(j)

1 − ζj−π(j)
= (−1)

n−1
2

((n − 2)!!)2

n
,

where D(n − 1) is the set of all derangements within Sn−1.

Here the viewpoint of mathematical music theory is adopted, with a focus on the

general affine linear group

Ð→

GL(Z/2kZ) ∶= {eu.v}u∈Z/2kZ,v∈Z/2kZ× ,

where an element eu.v ∈
Ð→

GL(Z/2kZ) maps x ∈ Z/2kZ to

eu.v(x) ∶= vx + u.

The present author is interested not only in plain derangements, but in those de-

rangements which are involutive. Affine involutive derangements are called quasipo-

larities, and its set within
Ð→

GL(Z/2kZ) is denoted by Qk. These derangements are

important because they relate consonances (K) and dissonances (D) in 2k-tone
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equal temperaments. More precisely, if Z/2kZ = K ⊔D, q is a quasipolarity and

q(K) = D, then q is the unique affine automorphism with that property and it is

called the polarity of the dichotomy (K/D) (see [3] for details).

The structure of the article is as follows. Section 2 establishes formulas for

the sum of quasipolarities. Then, using code in Maxima, some values of the sum

for derangements in
Ð→

GL(Z/2kZ) are calculated in Section 3. Finally, Section 4

mentions some important remarks.

Notation from [4] for the divisibility relation (/), coprimality (⊥), as well as

Iverson brackets (if P is a predicate, then [P ] = 1 whenever P is true, and [P ] = 0

otherwise), are used throughout the paper.

2. The Case of Quasipolarities

First, note that all quasipolarities have the same sign as permutations, so we can

disregard it in the original Wang–Sun formula.

Theorem 1. If k is odd and ζ is a 2k-th primitive root of unity, then

∑

π∈Qk

n−1

∏

j=0

1 + ζj−π(j)

1 − ζj−π(j)
= 0.

Proof. Whenever j − π(j) = k, we have

1 + ζj−π(j) = 1 + ζk = 1 − 1 = 0,

and thus it suffices to prove that this happens for any quasipolarity π = eu.v ∈ Qk
for some 0 ≤ j ≤ 2k − 1. From [1, Theorem 3.1], we know that

u = σ(v)q +
2k

τ(v)
, (1)

where σ(v) = gcd(v − 1,2k), τ(v) = gcd(v + 1,2k) and q is any integer. Now, we

want to show that there is a j such that

j − π(j) = j − eu.v(j) = (1 − v)j − u ≡ k (mod 2k),

which is possible if and only if gcd(1 − v,2k)/(k + u). In other words, if and only if

σ(v)/(k + u). Using Equation (1), this can be rewritten as

σ(v)/(k + σ(v)q +
2k

τ(v)
)

for some integer q. Thus, if the congruence

σ(v)x ≡ k −
2k

τ(v)
(mod 2k)
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is shown to have a solution for x, then it is done. Indeed, σ(v) = 2I1 and τ(v) = 2I2
for some I1, I2 odd and coprime divisors of k. The linear Diophantine equation

2x + 2(

k

I1
) y = (

k

I1
−

k

I1I2
)

has a solution since the greatest common divisor of the coefficients on the left is 2

and the number on the right is even. Hence, if (x, y) is a solution of the preceding

equation, then

2I1x +
k

I2
− k = σ(v)x +

2k

τ(v)
− k = −2ky,

which shows that x is the required solution.

k 3 4 5 6 7 8 9 10 11 12
S 0 4 0 8 0 8 0 12 0 16

Table 1: Results of the evaluation of the sum S of Theorem 1 for some values of k
(not only odd values).

While this result was relatively easy to conjecture considering a few values of the

sum for some k (as they can be seen in Table 1), it is less easy to make a guess for

the sum when k is even, but the following seems reasonable.

Conjecture 1. If ζ is a 2k-th primitive root of unity, then

∑

π∈Qk

n−1

∏

j=0

1 + ζj−π(j)

1 − ζj−π(j)
= ∑

π∈Qk

n−1

∏

j=0

[j − π(j) ≠ k].

The search of the sequence 4,8,8,12 in the On-Line Encyclopedia of Integer

Sequences (OEIS) [5] yields among its first results A054785, which is the difference

of the sum of divisors of 2n and n. The values match up to k = 16, but they differ

at k = 18, where the former1 is 20 and the later is 26. Nonetheless, the results from

[2] lead us in the right direction. We need some definitions first.

Definition 1. A divisor d of n is said to be unitary if d ⊥ n/d. If d is a unitary

divisor of n then, in symbol, we write d //n. Moreover, the sum of unitary divisors

function is denoted by

s∗1(n) = ∑
d //n

d.

In [2] it is proved that

∣Qk ∣ = s
∗

1(k).

The following theorem states Conjecture 1 more precisely.

1This is the sequence of the sums of even unitary divisors of 2n and it was added by Amiram
Eldar to the OEIS on 28 January 2023 as entry A360156 [5].
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Theorem 2. If ζ is a 2k-th primitive root of unity, then

∑

π∈Qk

n−1

∏

j=0

1 + ζj−π(j)

1 − ζj−π(j)
= [2/k](∣Q2k ∣ − ∣Qk ∣) = [2/k](s∗1(2k) − s

∗

1(k)).

Proof. The proof for the case when k is odd has been considered already. Now,

suppose k is even. If π = eu.v ∈ Qk and j−π(j) ≢ k (mod 2k), so that the summand

associated to π is not 0, then it is necessary for the congruence

(v − 1)j ≡ k − u (mod 2k) (2)

to have no solutions for j; this happens if and only if σ(v)∕/(k −u). Again, because

of [1, Theorem 3.1], we have σ(v) = 4k
τ(v)

and u = σ(v)q + 2k
τ(v)

. Hence Equation (2)

has no solutions if and only if

σ(v) ∕/ (
σ(v)τ(v)

4
+ σ(v)q +

σ(v)

2
) . (3)

It is known that σ(v) = 2I1 and τ(v) = 2I2 where I1 ⊥ I2. Moreover

2k =
σ(v)τ(v)

2
=

4I1I2
2

= 2I1I2

thus I1 and I2 are unitary divisors of k. By [2, Proposition 2.3], both I1 and I2
represent involutions of Z/2kZ. If I1 is odd, then I2 > 0 is even and the associated

involution defines 2k
σ(v)

= I2 quasipolarities. In particular, 2I1 = σ(v) divides k.

Furthermore, τ(v) is divisible by 4 and σ(v) does not divide σ(v)/2, thus Equation

(3) holds. Conversely, if Equation (3) is true, then I2 has to be even, otherwise

1
4
σ(v)τ(v) + 1

2
σ(v) = 1

2
σ(v)I2 +

1
2
σ(v)

=

1

2
σ(v)(2s + 1) + 1

2
σ(v)

= σ(v)(s + 1)

for some integer s, which contradicts Equation (3).

For every π = eu.v with its linear part v represented by an even unitary divisor

of k and every 0 ≤ j ≤ 2k − 1, there is an ` such that (j − π(j)) − (` − π(`)) ≡ k

(mod 2k), for this is equivalent to

(v − 1)` ≡ k − (v − 1)j (mod 2k).

Since σ(v)/k and σ(v)/(1−v), there exists a solution `. Therefore, for a summand

indexed by π such that j−π(j) ≠ k for every 0 ≤ j ≤ 2k−1 and has a factor 1+ζj−π(j)

in the denominator, it also has a factor

1 − ζ`−π(`) = 1 − ζj−π(j)+k = 1 − ζj−π(j)ζk = 1 + ζj−π(j)
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in the numerator. It follows that all the factors cancel out and the summand equals

1. Thus, summing up the number of even unitary divisors of k yields s∗1(2k)−s
∗

1(k)

because

s∗1(2k) − s
∗

1(k) = ∑

d //2k,d even

d + ∑

d //2k,d odd

d − ∑

d //k,d even

d − ∑

d //k,d odd

d

= 2 ∑

d //k,d even

d + ∑

d //k,d odd

d − ∑

d //k,d even

d − ∑

d //k,d odd

d

= ∑

d //k,d even

d.

3. The Case of the Derangements of the General Affine Group

Let us denote the derangements within
Ð→

GL(Z/2kZ) with ∆k. The following code

in Maxima calculates

S = ∑

π∈∆k

sign(π)
n−1

∏

j=0

1 + ζj−π(j)

1 − ζj−π(j)

for the particular case of k = 4.

load("combinatorics");

S:0; kk:4;

zeta: exp(%pi*%i/kk); ZZ:[]; L:[];

for k1:0 thru (2*kk-1) do ZZ:append(ZZ,[k1]);

for u:0 thru (2*kk-1) do

(for v:1 thru (2*kk-1) step 2 do

(if (gcd(v^2,2*kk)=1) then

(

M:mod(v*ZZ+u-ZZ,2*kk),

if(not(product(M[l],l,1,2*kk)=0)) then

L:append(L,[[u,v]])

)

)

)$

for k1:1 thru length(L) do

(P: (-1)^perm_parity(mod(L[k1][2]*ZZ+L[k1][1],2*kk)+1),

for k2:0 thru (2*kk-1) do

P: trigrat(P*(1+zeta^(k2-mod(L[k1][2]*k2+L[k1][1],2*kk)))

/(1-zeta^(k2-mod(L[k1][2]*k2+L[k1][1],2*kk)))),

S:ratsimp(S+P)

)$
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As far as the author’s computer and simplification capacity of Maxima allow,

the values of S are calculated for k = 3, . . . ,9 mutatis mutandis. The results are

contained in Table 2. Except for the sign and the prime factors of k in the denom-

inator, no other pattern is evident and searches in the OEIS do not point yet in a

meaningful direction.

k S
6 1456/27
8 −2300
10 762256/5
12 −10643506432/729
14 13444304416/7
16 −332995177452
18 1450048309488389824/19683

Table 2: Results of the execution of the code.

4. Some Final Remarks

An interesting outcome of Theorem 1, from the musicological viewpoint, is that for

2k-tone equal temperaments with k odd and any of its quasipolarities there is pair

of a consonance and a dissonance which are separated by a tritone (which always

corresponds to k).

When k is even, the proof of Theorem 2 tells us that the Wang–Sun sum counts

quasipolarities represented by even unitary divisors along the direction of [2], so

it suggests that the relationship between the two concepts and its musicological

implications should be explored more deeply.

For the Wang–Sun sum over all affine derangements we could not prove or con-

jecture a general formula, and thus we stress the non-triviality of studying it for

derangements within subgroups.

Acknowledgment. The author deeply thanks José Hernández Santiago at Uni-

versidad Autónoma de Guerrero for his help in completing the proof of Theorem
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