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Abstract

Based on the method of generating functions of the sequence of Fibonacci k-step

and Lucas k-step polynomials, or on a crucial identity relating Fibonacci k-step

and Lucas k-step polynomials, extensions of Sury’s relation and the alternating

Sury’s relation involving Fibonacci k-step and Lucas k-step polynomials are derived,

respectively. Extensions of Sury’s relation involving Fibonacci-type and Lucas-type

polynomials are also obtained. Of course, these relations are generalizations of the

well-known Fibonacci-Lucas relation.

1. Introduction

Sury [16] obtained an interesting relation involving Fibonacci and Lucas numbers,

2n+1Fn+1 = 20L0 + 21L1 + · · ·+ 2nLn,

for all positive integers n. We call it the Fibonacci-Lucas relation or Sury’s relation

involving Fibonacci numbers and Lucas numbers. However, much earlier, Benjamin

and Quinn [2] proved the same relation by using the argument of colored tilings.

Proof of the Fibonacci-Lucas relation based on the method of generating function
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was given in [12]. A family of the Fibonacci-Lucas relations by replacing 2 with any

positive integer m could be found in [8, 13]. To be precise, it holds that

3n+1Fn+1 =

n∑
i=0

3iLi +

n+1∑
i=0

3i−1Fi,

and

mn+1Fn+1 =

n∑
i=0

miLi + (m− 2)

n+1∑
i=0

mi−1Fi.

Indeed, their proofs were based on a crucial identity

Ln = Fn−1 + Fn+1, n ≥ 1.

More generally, Dafnis, Philippou, and Livieris [7] considered the Fibonacci and the

Lucas numbers of order k, and they proved a relation of the same fashion:

mn+1F
(k)
n+1 + k − 2 =

n∑
i=0

mi

L(k)
i + (m− 2)F

(k)
i+1 −

k∑
j=3

(j − 2)F
(k)
i−j+1

 , (1)

where F
(k)
n and L

(k)
n are the n-th Fibonacci and the n-th Lucas numbers of order

k, respectively. (The definition will be given as below.) These results can also be

proved by the argument of colored tilings (see [2, 7, 14]).

On the other hand, Martinjak and Prodinger [14] proved the alternating Sury’s

relation involving Fibonacci numbers and Lucas numbers,

(−1)nFn+1 =

n∑
i=0

(−1)irn−i [Li+1 + (r − 2)Fi] ,

for any integer r ≥ 2. Indeed, this relation holds when r = 1 as is easily checked. In

addition, Bhatnagar [3] proved the Sury’s and the alternating Sury’s relation for the

case in which r is an indeterminate (real or complex) by using Euler’s telescoping

lemma.

From now on, let k ≥ 2 be a fixed positive integer and r 6= 0 be an indeterminate.

We define the sequence of Fibonacci k-step polynomials {F (k)
n (x)}n≥−k+1 (or the

sequence of Fibonacci polynomials of order k, or k-bonacci polynomials sequence) as

follows:

F (k)
n (x) = 0, for − k + 1 ≤ n ≤ 0,

and

F
(k)
1 (x) = 1, F (k)

n (x) =

k∑
i=1

xk−iF
(k)
n−i(x) for n ≥ 2.
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For example, when k = 3 it reduces to the tribonacci polynomials Tn(x), which are

defined by

T−1(x) = T0(x) = 0, T1(x) = 1,

and

Tn(x) = x2Tn−1(x) + xTn−2(x) + Tn−3(x), for n ≥ 2.

The tribonaaci polynomials were originally studied in an article by Hoggatt and

Bicknell [9] in 1973.

Similarly, the sequence of Lucas k-step polynomials {L(k)
n (x)}n≥0 (or the sequence

of Lucas polynomials of order k) is defined as

L
(k)
0 (x) = k (a constant polynomial), L

(k)
1 (x) = xk−1,

and

L(k)
n (x) =


nxk−n +

n−1∑
j=1

xk−jL
(k)
n−j(x), 2 ≤ n ≤ k;

k∑
j=1

xk−jL
(k)
n−j(x), n ≥ k + 1.

The Fibonacci k-step polynomials F
(k)
n (x) are generalizations of the “regular”

Fibonacci polynomials, which were studied by Catalan and Jacobsthal in 1883.

And the Lucas k-step polynomials L
(k)
n (x) are generalizations of the “regular” Lucas

polynomials, originally studied by Bicknell [4] in 1970. Indeed, when k = 2 these

become the regular Fibonacci and the regular Lucas polynomials and we should

write F
(2)
n (x) := Fn(x), and L

(2)
n (x) := Ln(x), respectively. The Fibonacci and

Lucas polynomials have been extensively studied in the books of Koshy [10, 11].

We notice that, from the definition,

F
(k)
2 (x) = xk−1,

and

L
(k)
2 (x) = 2xk−2 + xk−1L

(k)
1 (x) = x2k−2 + 2xk−2.

Also, by taking x = 1, F
(k)
n (1) := F

(k)
n and L

(k)
n (1) := L

(k)
n are the n-th Fibonacci

and the n-th Lucas numbers of order k, respectively.

We now present our main results in this paper.

Theorem 1. For any positive integer n, we have the extension of Sury’s relation

involving Fibonacci k-step and Lucas k-step polynomials:

rn+1xk−1F
(k)
n+1(x) + k − 2 =

n∑
i=0

ri
[
L
(k)
i (x)+(rxk−1 − 2)F

(k)
i+1(x)

−
k∑

j=3

(j − 2)xk−jF
(k)
i−j+1(x)

]
,

(2)
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and the extension of alternating Sury’s relation involving Fibonacci k-step and Lucas

k-step polynomials:

(−1)nxk−1F
(k)
n+1(x) =

n∑
i=0

(−1)irn−i
[
L
(k)
i+1(x)+xk−2(rx− 2)F

(k)
i (x)

−
k∑

j=3

jxk−jF
(k)
i−j+2(x)

]
,

(3)

where the summation
∑b

j=a ∗ is zero if b < a.

In [15], Philippou, Georghiou, and Philippou introduced the sequence of Fibonacci-

type polynomials of order k, denoted by {f (k)
n (x)}n≥0. The definition is similar to

the sequence of Fibonacci k-step polynomials. Define f
(k)
0 (x) = 0, f

(k)
1 (x) = 1, and

f (k)
n (x) =


x

n−1∑
j=1

f
(k)
n−j(x), 2 ≤ n ≤ k;

x

k∑
j=1

f
(k)
n−j(x), n ≥ k + 1.

Later, Charalambides [5] introduced the sequence of Lucas-type polynomials {`(k)n (x)}n≥0
which was defined as follows. Let `

(k)
0 (x) = k be a constant polynomial, `

(k)
1 (x) = x

and

`(k)n (x) =


x

n +

n−1∑
j=1

`
(k)
n−j(x)

 , 2 ≤ n ≤ k;

x

k∑
j=1

`
(k)
n−j(x), n ≥ k + 1.

There exists a crucial identity relating to Fibonacci-type and Lucas-type poly-

nomials of order k (Equation (6) in Section 4) and the extension of Sury’s relation

involving Fibonacci-type and Lucas-type polynomials of order k (Theorem 3).

The rest of this paper is organized as follows. A crucial identity relating to

Fibonacci k-step and Lucas k-step polynomials is presented in Section 2. Also, we

derive the generating functions of the sequence of Fibonacci k-step and Lucas k-step

polynomials, respectively. Proofs of our main results are given in Section 3. Some

remarks and conclusions are included in the final section.

2. Preliminaries

Let F (k)(x; y) =
∑

n≥0 F
(k)
n (x)yn be the generating function of the sequence of

Fibonacci k-step polynomials. Similarly, we set the generating function of the se-
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quence of Lucas k-step polynomials to be

L(k)(x; y) =
∑
n≥0

L(k)
n (x)yn = L

(k)
0 (x) + L

(k)
1 (x)y + L

(k)
2 (x)y2 + · · · .

Then it is easy to obtain the following lemma.

Lemma 1. The generating functions of the sequence of Fibonacci k-step polynomial

F
(k)
n (x) and Lucas k-step polynomial L

(k)
n (x) are given by

F (k)(x; y) =
y

1−
k∑

j=1

xk−jyj
and L(k)(x; y) =

k −
k∑

j=1

(k − j)xk−jyj

1−
k∑

j=1

xk−jyj
,

respectively.

Proof. Notice that

L(k)(x; y)− L
(k)
0 (x)− L

(k)
1 (x)y − · · · − L

(k)
k (x)yk =

∑
n≥k+1

L(k)
n (x)yn.

According to the definition of L
(k)
n (x), the right-hand side can be written as

∑
n≥k+1

 k∑
j=1

xk−jL
(k)
n−j(x)

 yn =
∑

n≥k+1

(
xk−1L

(k)
n−1(x) + · · ·+ x0L

(k)
n−k(x)

)
yn

= xk−1y
(
L(k)(x; y)− L

(k)
0 (x)− · · · − L

(k)
k−1(x)yk−1

)
+ xk−2y2

(
L(k)(x; y)− L

(k)
0 (x)− · · · − L

(k)
k−2(x)yk−2

)
...

+ x0yk
(
L(k)(x; y)− L

(k)
0 (x)

)
.

Therefore, we find1−
k∑

j=1

xk−jyj

L(k)(x; y) = L
(k)
0 (x) +

(
L
(k)
1 (x)− xk−1L

(k)
0 (x)

)
y

+
(
L
(k)
2 (x)− xk−1L

(k)
1 (x)− xk−2L

(k)
0 (x)

)
y2 + · · ·

+
(
L
(k)
k (x)− xk−1L

(k)
k−1(x)− xk−2L

(k)
k−2(x)− · · · − L

(k)
0 (x)

)
yk.

So the second generating function now follows. We omit the proof of the first

conclusion since it can be obtained in a similar way.
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A crucial identity relating to Fibonacci k-step and Lucas k-step polynomials is

given in the following lemma. See also the identity (2.21) in [5].

Lemma 2. Let {F (k)
n (x)}n≥−k+1 and {L(k)

n (x)}n≥0 be the Fibonacci k-step and the

Lucas k-step polynomials sequence, respectively. Then we have for all n ≥ 1,

L(k)
n (x) =

k∑
j=1

jxk−jF
(k)
n−j+1(x). (4)

Proof. Let G(k)(x; y) =
∑

n≥0 F
(k)
n+1(x)yn and H(k)(x; y) =

∑k
i=1(i − k)xk−iyi.

Then by Lemma 1 we have

L(k)(x; y) =
(
k + H(k)(x; y)

)
G(k)(x; y), (5)

since G(k)(x; y) = F (k)(x; y)/y =
(

1−
∑k

j=1 x
k−jyj

)−1
. This implies that, by

comparing the coefficient yn on both sides of Equation (5),

L(k)
n (x) = kF

(k)
n+1(x) +

min{n,k}∑
j=1

(j − k)xk−jF
(k)
n−j+1(x).

If n < k, then we have

k∑
j=1

(j − k)xk−jF
(k)
n−j+1(x) =

n∑
j=1

(j − k)xk−jF
(k)
n−j+1(x)

+

k∑
j=n+1

(j − k)xk−jF
(k)
n−j+1(x).

The above second term vanishes since F
(k)
n (x) = 0 if −k + 1 ≤ n ≤ 0, and hence

min{n,k}∑
j=1

(j − k)xk−jF
(k)
n−j+1(x) =

k∑
j=1

(j − k)xk−jF
(k)
n−j+1(x).

By the definition of Fibonacci k-step polynomials,

F
(k)
n+1(x) =

k∑
j=1

xk−jF
(k)
n+1−j(x),

we conclude that Equation (4) holds for all n ≥ 1.
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3. Proofs of Main Results

We are now ready to prove Theorem 1 by the generating function approach.

Proof of Theorem 1. Consider the generating function

T (k)(x; y) :=
∑
n≥0

[
rn+1xk−1F

(k)
n+1(x) + k − 2−

n∑
i=0

riL
(k)
i (x)

]
yn.

Note that the coefficient of yn in T (k)(x; y) is clearly

rn+1xk−1F
(k)
n+1(x) + k − 2−

n∑
i=0

riL
(k)
i (x).

Now we compute this coefficient in another way. From the definition of the gener-

ating function F (k)(x; y), we find∑
n≥0

rn+1xk−1F
(k)
n+1(x)yn =

xk−1

y

∑
n≥0

F
(k)
n+1(x)(ry)n+1 =

xk−1F (k)(x; ry)

y
.

Similarly we have

T (k)(x; y) =
xk−1F (k)(x; ry)

y
+

k − 2

1− y
− L(k)(x; ry)

1− y
.

In light of Lemma 1, this becomes

T (k)(x; y) =

rxk−1(1− y) + (k − 2)

(
1−

k∑
j=1

xk−j(ry)j

)
− k +

k∑
j=1

(k − j)xk−j(ry)j

(1− y)

(
1−

k∑
j=1

xk−j(ry)j

)

=

(rxk−1 − 2)−
k∑

j=3

(j − 2)xk−j(ry)j

(1− y)

(
1−

k∑
j=1

xk−j(ry)j

) .

Notice that

(rxk−1 − 2)

(1− y)

(
1−

k∑
j=1

xk−j(ry)j

) = (rxk−1 − 2) · 1

ry(1− y)
· ry

1−
k∑

j=1

xk−j(ry)j

= (rxk−1 − 2)
∑
n≥0

(
n∑

i=0

riF
(k)
i+1(x)

)
yn.
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Also, we have

k∑
j=3

(j − 2)xk−j(ry)j

(1− y)

(
1−

k∑
j=1

xk−j(ry)j

) =

k∑
j=3

(j − 2)xk−j(ry)j−1
F (k)(x; ry)

1− y

=
∑
n≥0

 k∑
j=3

(j − 2)xk−j
n∑

i=0

riF
(k)
i−j+1(x)

 yn.

Putting this all together, we compare with the coefficient of yn in T (k)(x; y) to

obtain the desired Equation (2).

To prove (3), consider the generating function

V (k)(x; y) :=
∑
n≥0

[
(−1)nxk−1F (k)n + 1(x)−

n∑
i=0

(−1)irn−iL
(k)
i+1(x)

]
yn,

for which the right-hand side is simply equal to

−xk−1F (k)(x;−y)

y
− L(k)(x;−y)− L

(k)
0 (x)

(−y)(1− ry)
.

Thus, by Lemma 1,

V (k)(x; y) =
L(k)(x;−y)− k − (1− ry)xk−1F (k)(x;−y)

y(1− ry)

=
(2− rx)xk−2y2

y(1− ry)

(
1−

k∑
j=1

xk−j(−y)j

) +

k∑
j=3

jxk−j(−y)j

y(1− ry)

(
1−

k∑
j=1

xk−j(−y)j

) .

Notice that

(2− rx)xk−2y2

y(1− ry)

(
1−

k∑
j=1

xk−j(−y)j

) = (rx− 2)xk−2F
(k)(x;−y)

1− ry
,

and from this, we obtain that the coefficient of yn is equal to

(rx− 2)xk−2
n∑

i=0

(−1)irn−iF
(k)
i (x).
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The second term becomes

k∑
j=3

jxk−j(−y)j

y(1− ry)

(
1−

k∑
j=1

xk−j(−y)j

) = −
k∑

j=3

jxk−j(−y)j−2 · F
(k)(x;−y)

1− ry
.

Thus the coefficient of yn in the series expansion is

−
k∑

j=3

jxk−j
n∑

i=0

(−1)irn−iF
(k)
i−j+2(x).

Altogether, by comparing the coefficient of yn in V (k)(x; y) in two different ways,

the desired Equation (3) follows.

The case k = 2 of Theorem 1 reduces to the following corollary.

Corollary 1. For any positive integer n, we have Sury’s relation involving Fi-

bonacci and Lucas polynomials:

rn+1xFn+1(x) =

n∑
i=0

ri [Li(x) + (rx− 2)Fi+1(x)] ,

and the alternating Sury’s relation involving Fibonacci and Lucas polynomials:

(−1)nxFn+1(x) =

n∑
i=0

(−1)irn−i [Li+1(x) + (rx− 2)Fi(x)] .

If we replace x with 2 in the first equation of Corollary 1, we get

2rn+2Fn+1(2) =

n∑
i=0

ri [Li(2) + (2r − 2)Fi+1(2)] ,

and since Fn(2) is the familiar Pell number Pn and likewise Ln(2) is the familiar

Pell-Lucas number Qn, this becomes

rn+1Pn+1 =
1

2

n∑
i=0

ri [2(r − 1)Pi+1 + Qi] .

See also Equation (15) in [1]. Since Qn = Pn+1 + Pn−1, the above equation is

equivalent to

rn+1Pn+1 =

n∑
i=0

ri [Pi + (r − 2)Pi+1 + Qi] .
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Now we replace x with 2 in the second equation of Corollary 1 to get an alternating

relation involving Pell and Pell-Lucas numbers,

(−1)nPn+1 =
1

2

n∑
i=0

(−1)irn−i [Qi+1 + 2(r − 1)Pi] .

So in particular, we have

(−1)nPn+1 =
1

2

n∑
i=0

(−1)iQi+1.

If we take x = 1 in Corollary 1, we recover two well-known relations involving

Fibonacci and Lucas numbers [3]. The first author proved a more general relation

(under the consideration k = 2) for the sequence of the W -polynomials and the

w-polynomials; see [6].

If we set x = 1 in (2) and (3), then we get Equation (1) obtained in [7] and a

new identity, respectively.

Corollary 2. For any positive integer n, we have Sury’s relation involving Fi-

bonacci and Lucas numbers of order k:

rn+1F
(k)
n+1 + k − 2 =

n∑
i=0

ri

L(k)
i + (r − 2)F

(k)
i+1 −

k∑
j=3

(j − 2)F
(k)
i−j+1

 ,

and the alternating Sury’s relation involving Fibonacci and Lucas numbers of order

k:

(−1)nF
(k)
n+1 =

n∑
i=0

(−1)irn−i

L(k)
i+1 + (r − 2)F

(k)
i −

k∑
j=3

jF
(k)
i−j+2

 .

Actually, Equation (2) is equivalent to Equation (3) through Lemma 2.

Theorem 2. Equations (2) and (3) listed in Theorem 1 are equivalent.

Proof. Assume that r 6= 0. Our proof strategy is to substitute r for −1/r and then

use Lemma 2 to obtain the equivalence of (2) and (3).

Substituting r for −1/r, we have(
−1

r

)n+1

xk−1F
(k)
n+1(x) + k − 2 =

n∑
i=0

(
−1

r

)i[
L
(k)
i (x) +

(
−xk−1

r
− 2

)
F

(k)
i+1(x)

−
k∑

j=3

(j − 2)xk−jF
(k)
i−j+1(x)

]
,
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or

(−1)nxk−1F
(k)
n+1(x) =(k − 2)rn+1 +

n∑
i=0

(−1)i+1rn+1−i
[
L
(k)
i (x)

+

(
−xk−1

r
− 2

)
F

(k)
i+1(x)−

k∑
j=3

(j − 2)xk−jF
(k)
i−j+1(x)

]
.

After a series of indices shifting and computation, we can rewrite the above right-

hand side as

n∑
i=0

(−1)irn−i

L(k)
i+1(x) + xk−2(rx− 2)F

(k)
i (x)−

k∑
j=3

jxk−jF
(k)
i−j+2(x)


+ (−1)n+1L

(k)
n+1(x) + (−1)n+1xk−1F

(k)
n+1(x)

+ 2(−1)nF
(k)
n+2(x) + (−1)n

k∑
j=3

(j − 2)xk−jF
(k)
n−j+2(x).

Now, by Lemma 2, we have

(−1)n+1L
(k)
n+1(x) = (−1)n+1

k∑
j=1

jxk−jF
(k)
n−j+2(x).

Therefore, we obtain that the last few terms vanish. That is to say

(−1)n+1L
(k)
n+1(x) + (−1)n+1xk−1F

(k)
n+1(x)

+ 2(−1)nF
(k)
n+2(x) + (−1)n

k∑
j=3

(j − 2)xk−jF
(k)
n−j+2(x) = 0.

Hence the proof that (2) implies (3) is done. And the proof of the reverse direction

is similar.

4. Remarks and Conclusions

In Section 2 we follow the approach of the generating function, however, one can

prove Lemma 2 directly by using induction on n. Here is another proof of Lemma

2.

Second proof of Lemma 2. Let k ≥ 2 be a fixed positive integer. First of all, we

show that Equation (4) holds when n ≤ k. The initial case n = 1 holds trivially. So
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we assume that when n ≤ m, Equation (4) holds for some positive integer m < k.

Now, we have m + 1 ≤ k and by definition

L
(k)
m+1(x) = (m + 1)xk−m−1 +

m∑
i=1

xk−iL
(k)
m+1−i(x).

By the inductive hypothesis, the summation can be rewritten as

m∑
i=1

xk−iL
(k)
m+1−i(x) =

m∑
i=1

xk−i
k∑

j=1

jxk−jF
(k)
m−i−j+2(x)

=

m∑
i=1

xk−i
m∑
j=1

jxk−jF
(k)
m−i−j+2(x)

=

m∑
j=1

jxk−j
m∑
i=1

xk−iF
(k)
m−i−j+2(x)

=

m∑
j=1

jxk−j

(
F

(k)
m−j+2(x)−

k∑
i=m+1

xk−iF
(k)
m−i−j+2(x)

)

=

m∑
j=1

jxk−jF
(k)
m−j+2(x).

Hence

L
(k)
m+1(x) = (m + 1)xk−m−1 +

m∑
j=1

jxk−jF
(k)
m−j+2(x) =

m+1∑
j=1

jxk−jF
(k)
m−j+2(x),

and Equation (4) holds for n ≤ k by induction.

We now obtain

L
(k)
k+1(x) =

k∑
i=1

xk−iL
(k)
k+1−i(x) =

k∑
i=1

xk−i
k∑

j=1

jxk−jF
(k)
k−i−j+2(x)

=

k∑
j=1

jxk−j
k∑

i=1

xk−iF
(k)
k−i−j+2(x) =

k∑
j=1

jxk−jF
(k)
k−j+2(x).

So Equation (4) holds for n = k + 1.

Suppose that Equation (4) holds for some positive integer m which is greater

than k + 1. Then we have

L
(k)
m+1(x) =

k∑
i=1

xk−iL
(k)
m+1−i(x) =

k∑
i=1

xk−i
k∑

j=1

jxk−jF
(k)
m−i−j+2(x)

=

k∑
j=1

jxk−j
k∑

i=1

xk−iF
(k)
m−i−j+2(x) =

k∑
j=1

jxk−jF
(k)
m−j+2(x).
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Thus by induction, we have proved that Equation (4) holds for all n ≥ 1 and all

k ≥ 2.

We use only the result in Lemma 2 to give a rather easier proof of Theorem 1.

Second proof of Theorem 1. In light of Lemma 2, the inner sum of the right-hand

side (2) for i ≥ 1 is equal to

L
(k)
i (x) + (rxk−1 − 2)F

(k)
i+1(x)−

k∑
j=3

(j − 2)xk−jF
(k)
i−j+1(x)

=

k∑
j=1

jxk−jF
(k)
i−j+1(x) + (rxk−1 − 2)F

(k)
i+1(x)−

k∑
j=3

(j − 2)xk−jF
(k)
i−j+1(x)

= (rxk−1 − 2)F
(k)
i+1(x) + 2

k∑
j=1

xk−jF
(k)
i−j+1(x)− xk−1F

(k)
i (x)

= xk−1
(
rF

(k)
i+1(x)− F

(k)
i (x)

)
.

Therefore we obtain that

n∑
i=0

ri

L(k)
i (x) + (rxk−1 − 2)F

(k)
i+1(x)−

k∑
j=3

(j − 2)xk−jF
(k)
i−j+1(x)


= rxk−1 + k − 2 +

n∑
i=1

rixk−1
(
rF

(k)
i+1(x)− F

(k)
i (x)

)
= rxk−1 + k − 2 + xk−1

n∑
i=1

[
ri+1F

(k)
i+1(x)− riF

(k)
i (x)

]
= rxk−1 + k − 2 + xk−1

[
rn+1F

(k)
n+1(x)− rF

(k)
1 (x)

]
= rn+1xk−1F

(k)
n+1(x) + k − 2.

Hence Equation (2) follows.

For the extension of alternating Sury’s relation (3), note that the inner sum is

equal to

L
(k)
i+1(x) + xk−2(rx− 2)F

(k)
i (x)−

k∑
j=3

jxk−jF
(k)
i−j+2(x)

= xk−1F
(k)
i+1(x) + 2xk−2F

(k)
i (x) + xk−2(rx− 2)F

(k)
i (x)

= xk−1
[
F

(k)
i+1(x) + rF

(k)
i (x)

]
.
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Once again we have used the result in Lemma 2. It follows that

n∑
i=0

(−1)irn−i

L(k)
i+1(x) + xk−2(rx− 2)F

(k)
i (x)−

k∑
j=3

jxk−jF
(k)
i−j+2(x)


= rnxk−1 + xk−1

n∑
i=1

[
(−1)irn−iF

(k)
i+1(x) + (−1)irn−i+1F

(k)
i (x)

]
= rnxk−1 + xk−1

[
(−1)nF

(k)
n+1(x)− rnF

(k)
1 (x)

]
= (−1)nxk−1F

(k)
n+1(x).

We remark that Equation (2) is equivalent to the following:

xk−1
(
rnF

(k)
n+1(x)− 1

)
=

n∑
i=1

ri−1
[
L
(k)
i (x) + (rxk−1 − 2)F

(k)
i+1(x)

−
k∑

j=3

(j − 2)xk−jF
(k)
i−j+1(x)

]
.

This implies that the polynomials rnF
(k)
n+1(x) − 1 divide the above right-hand side

for all r 6= 0 and n ≥ 1.

Recall the definitions of Fibonacci-type polynomials of order k, f
(k)
n (x), and

Lucas-type polynomials of order k, `
(k)
n (x) (on page 4). Expansions in terms of bi-

nomial coefficients, generating functions, properties, and connections between these

two types of polynomials sequence could be found in [5, 15]. Some applications in

combinatorics and probability are also given in [5, 15]. We only summarize a few

results here but without proof.

The generating functions of the sequence of Fibonacci-type and Lucas-type poly-

nomials of order k are

f (k)(x; y) =
∑
n≥0

f (k)
n (x)yn =

y

1− x
k∑

j=1

yj
,

and

`(k)(x; y) =
∑
n≥0

`(k)n (x)yn =

k − x
k∑

j=1

(k − j)yj

1− x
k∑

j=1

yj
,

respectively. For n ≥ 1, we have a crucial identity relating to Fibonacci-type and

Lucas-type polynomials of order k,

`(k)n (x) = x

min{n,k}∑
j=1

jf
(k)
n−j+1(x). (6)
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In addition, for n ≥ 1, we have

F (k)
n (x) = x−n+1f (k)

n (xk), and L(k)
n (x) = x−n`(k)n (xk).

We also note that L
(k)
n = L

(k)
n (1) = `

(k)
n (1) and F

(k)
n = F

(k)
n (1) = f

(k)
n (1),

which are the n-th Lucas and the n-th Fibonacci number of order k, respectively.

According to the same method in this paper, it is not hard to present two additional

extensions of Sury’s relation involving Fibonacci-type and Lucas-type polynomials

of order k, as presented in the following theorem.

Theorem 3. For any positive integer n, we have the extension of Sury’s relation

involving Fibonacci-type and Lucas-type polynomials of order k:

rn+1xf
(k)
n+1(x) + k − 2 =

n∑
i=0

ri
[
`
(k)
i (x) + (rx− 2)f

(k)
i+1(x)

− x

k∑
j=3

(j − 2)f
(k)
i−j+1(x)

]
,

(7)

and the extension of alternating Sury’s relation involving Fibonacci-type and Lucas-

type polynomials of order k:

(−1)nxf
(k)
n+1(x) =

n∑
i=0

(−1)irn−i

`(k)i+1(x) + x(r − 2)f
(k)
i (x)−

k∑
j=3

jxf
(k)
i−j+2(x)

 ,

(8)

where the summation
∑b

j=a ∗ is zero if b < a and f
(k)
−m = 0 for any positive integer

m. Moreover, it can be seen from Equation (6) that Equations (7) and (8) are

equivalent.

Finally, we remark that by setting x = 1 in (7) and (8), the results coincide with

Corollary 2.

Acknowledgement. The authors would like to thank the referee for their valuable

suggestions and comments.
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