EXTENSIONS OF SURY'S RELATION INVOLVING FIBONACCI k-STEP AND LUCAS k-STEP POLYNOMIALS

Chan-Liang Chung ${ }^{1}$
School of Mathematics and Statistics, Fuzhou University, China
andrechung@fzu.edu.cn
Jialing Yao
School of Mathematics and Statistics, Fuzhou University, China yaojialing_6@163.com
Kanglun Zhou
School of Mathematics and Statistics, Fuzhou University, China
zhoukanglunz@163.com

Received: 11/2/21, Revised: 9/23/22, Accepted: 5/1/23, Published: 6/2/23

Abstract

Based on the method of generating functions of the sequence of Fibonacci k-step and Lucas k-step polynomials, or on a crucial identity relating Fibonacci k-step and Lucas k-step polynomials, extensions of Sury's relation and the alternating Sury's relation involving Fibonacci k-step and Lucas k-step polynomials are derived, respectively. Extensions of Sury's relation involving Fibonacci-type and Lucas-type polynomials are also obtained. Of course, these relations are generalizations of the well-known Fibonacci-Lucas relation.

1. Introduction

Sury [16] obtained an interesting relation involving Fibonacci and Lucas numbers,

$$
2^{n+1} F_{n+1}=2^{0} L_{0}+2^{1} L_{1}+\cdots+2^{n} L_{n}
$$

for all positive integers n. We call it the Fibonacci-Lucas relation or Sury's relation involving Fibonacci numbers and Lucas numbers. However, much earlier, Benjamin and Quinn [2] proved the same relation by using the argument of colored tilings. Proof of the Fibonacci-Lucas relation based on the method of generating function

[^0]was given in [12]. A family of the Fibonacci-Lucas relations by replacing 2 with any positive integer m could be found in $[8,13]$. To be precise, it holds that
$$
3^{n+1} F_{n+1}=\sum_{i=0}^{n} 3^{i} L_{i}+\sum_{i=0}^{n+1} 3^{i-1} F_{i}
$$
and
$$
m^{n+1} F_{n+1}=\sum_{i=0}^{n} m^{i} L_{i}+(m-2) \sum_{i=0}^{n+1} m^{i-1} F_{i}
$$

Indeed, their proofs were based on a crucial identity

$$
L_{n}=F_{n-1}+F_{n+1}, n \geq 1
$$

More generally, Dafnis, Philippou, and Livieris [7] considered the Fibonacci and the Lucas numbers of order k, and they proved a relation of the same fashion:

$$
\begin{equation*}
m^{n+1} F_{n+1}^{(k)}+k-2=\sum_{i=0}^{n} m^{i}\left[L_{i}^{(k)}+(m-2) F_{i+1}^{(k)}-\sum_{j=3}^{k}(j-2) F_{i-j+1}^{(k)}\right], \tag{1}
\end{equation*}
$$

where $F_{n}^{(k)}$ and $L_{n}^{(k)}$ are the n-th Fibonacci and the n-th Lucas numbers of order k, respectively. (The definition will be given as below.) These results can also be proved by the argument of colored tilings (see [2, 7, 14]).

On the other hand, Martinjak and Prodinger [14] proved the alternating Sury's relation involving Fibonacci numbers and Lucas numbers,

$$
(-1)^{n} F_{n+1}=\sum_{i=0}^{n}(-1)^{i} r^{n-i}\left[L_{i+1}+(r-2) F_{i}\right]
$$

for any integer $r \geq 2$. Indeed, this relation holds when $r=1$ as is easily checked. In addition, Bhatnagar [3] proved the Sury's and the alternating Sury's relation for the case in which r is an indeterminate (real or complex) by using Euler's telescoping lemma.

From now on, let $k \geq 2$ be a fixed positive integer and $r \neq 0$ be an indeterminate. We define the sequence of Fibonacci k-step polynomials $\left\{F_{n}^{(k)}(x)\right\}_{n \geq-k+1}$ (or the sequence of Fibonacci polynomials of order k, or k-bonacci polynomials sequence) as follows:

$$
F_{n}^{(k)}(x)=0, \text { for }-k+1 \leq n \leq 0,
$$

and

$$
F_{1}^{(k)}(x)=1, F_{n}^{(k)}(x)=\sum_{i=1}^{k} x^{k-i} F_{n-i}^{(k)}(x) \text { for } n \geq 2
$$

For example, when $k=3$ it reduces to the tribonacci polynomials $T_{n}(x)$, which are defined by

$$
T_{-1}(x)=T_{0}(x)=0, T_{1}(x)=1
$$

and

$$
T_{n}(x)=x^{2} T_{n-1}(x)+x T_{n-2}(x)+T_{n-3}(x), \text { for } n \geq 2
$$

The tribonaaci polynomials were originally studied in an article by Hoggatt and Bicknell [9] in 1973.

Similarly, the sequence of Lucas k-step polynomials $\left\{L_{n}^{(k)}(x)\right\}_{n \geq 0}$ (or the sequence of Lucas polynomials of order k) is defined as

$$
L_{0}^{(k)}(x)=k(\text { a constant polynomial }), L_{1}^{(k)}(x)=x^{k-1}
$$

and

$$
L_{n}^{(k)}(x)= \begin{cases}n x^{k-n}+\sum_{j=1}^{n-1} x^{k-j} L_{n-j}^{(k)}(x), & 2 \leq n \leq k \\ \sum_{j=1}^{k} x^{k-j} L_{n-j}^{(k)}(x), & n \geq k+1\end{cases}
$$

The Fibonacci k-step polynomials $F_{n}^{(k)}(x)$ are generalizations of the "regular" Fibonacci polynomials, which were studied by Catalan and Jacobsthal in 1883. And the Lucas k-step polynomials $L_{n}^{(k)}(x)$ are generalizations of the "regular" Lucas polynomials, originally studied by Bicknell [4] in 1970. Indeed, when $k=2$ these become the regular Fibonacci and the regular Lucas polynomials and we should write $F_{n}^{(2)}(x):=F_{n}(x)$, and $L_{n}^{(2)}(x):=L_{n}(x)$, respectively. The Fibonacci and Lucas polynomials have been extensively studied in the books of Koshy [10, 11].

We notice that, from the definition,

$$
F_{2}^{(k)}(x)=x^{k-1}
$$

and

$$
L_{2}^{(k)}(x)=2 x^{k-2}+x^{k-1} L_{1}^{(k)}(x)=x^{2 k-2}+2 x^{k-2}
$$

Also, by taking $x=1, F_{n}^{(k)}(1):=F_{n}^{(k)}$ and $L_{n}^{(k)}(1):=L_{n}^{(k)}$ are the n-th Fibonacci and the n-th Lucas numbers of order k, respectively.

We now present our main results in this paper.
Theorem 1. For any positive integer n, we have the extension of Sury's relation involving Fibonacci k-step and Lucas k-step polynomials:

$$
\begin{align*}
r^{n+1} x^{k-1} F_{n+1}^{(k)}(x)+k-2=\sum_{i=0}^{n} r^{i}\left[L_{i}^{(k)}(x)+\right. & \left(r x^{k-1}-2\right) F_{i+1}^{(k)}(x) \\
& \left.-\sum_{j=3}^{k}(j-2) x^{k-j} F_{i-j+1}^{(k)}(x)\right] \tag{2}
\end{align*}
$$

and the extension of alternating Sury's relation involving Fibonacci k-step and Lucas k-step polynomials:

$$
\begin{align*}
(-1)^{n} x^{k-1} F_{n+1}^{(k)}(x)=\sum_{i=0}^{n}(-1)^{i} r^{n-i}\left[L_{i+1}^{(k)}(x)+\right. & x^{k-2}(r x-2) F_{i}^{(k)}(x) \\
& \left.-\sum_{j=3}^{k} j x^{k-j} F_{i-j+2}^{(k)}(x)\right] \tag{3}
\end{align*}
$$

where the summation $\sum_{j=a}^{b} *$ is zero if $b<a$.
In [15], Philippou, Georghiou, and Philippou introduced the sequence of Fibonaccitype polynomials of order k, denoted by $\left\{f_{n}^{(k)}(x)\right\}_{n \geq 0}$. The definition is similar to the sequence of Fibonacci k-step polynomials. Define $f_{0}^{(k)}(x)=0, f_{1}^{(k)}(x)=1$, and

$$
f_{n}^{(k)}(x)= \begin{cases}x \sum_{j=1}^{n-1} f_{n-j}^{(k)}(x), & 2 \leq n \leq k \\ x \sum_{j=1}^{k} f_{n-j}^{(k)}(x), & n \geq k+1\end{cases}
$$

Later, Charalambides [5] introduced the sequence of Lucas-type polynomials $\left\{\ell_{n}^{(k)}(x)\right\}_{n \geq 0}$ which was defined as follows. Let $\ell_{0}^{(k)}(x)=k$ be a constant polynomial, $\ell_{1}^{(k)}(x)=x$ and

$$
\ell_{n}^{(k)}(x)= \begin{cases}x\left[n+\sum_{j=1}^{n-1} \ell_{n-j}^{(k)}(x)\right], & 2 \leq n \leq k \\ x \sum_{j=1}^{k} \ell_{n-j}^{(k)}(x), & n \geq k+1\end{cases}
$$

There exists a crucial identity relating to Fibonacci-type and Lucas-type polynomials of order k (Equation (6) in Section 4) and the extension of Sury's relation involving Fibonacci-type and Lucas-type polynomials of order k (Theorem 3).

The rest of this paper is organized as follows. A crucial identity relating to Fibonacci k-step and Lucas k-step polynomials is presented in Section 2. Also, we derive the generating functions of the sequence of Fibonacci k-step and Lucas k-step polynomials, respectively. Proofs of our main results are given in Section 3. Some remarks and conclusions are included in the final section.

2. Preliminaries

Let $F^{(k)}(x ; y)=\sum_{n \geq 0} F_{n}^{(k)}(x) y^{n}$ be the generating function of the sequence of Fibonacci k-step polynomials. Similarly, we set the generating function of the se-
quence of Lucas k-step polynomials to be

$$
L^{(k)}(x ; y)=\sum_{n \geq 0} L_{n}^{(k)}(x) y^{n}=L_{0}^{(k)}(x)+L_{1}^{(k)}(x) y+L_{2}^{(k)}(x) y^{2}+\cdots .
$$

Then it is easy to obtain the following lemma.
Lemma 1. The generating functions of the sequence of Fibonacci k-step polynomial $F_{n}^{(k)}(x)$ and Lucas k-step polynomial $L_{n}^{(k)}(x)$ are given by

$$
F^{(k)}(x ; y)=\frac{y}{1-\sum_{j=1}^{k} x^{k-j} y^{j}} \text { and } L^{(k)}(x ; y)=\frac{k-\sum_{j=1}^{k}(k-j) x^{k-j} y^{j}}{1-\sum_{j=1}^{k} x^{k-j} y^{j}},
$$

respectively.
Proof. Notice that

$$
L^{(k)}(x ; y)-L_{0}^{(k)}(x)-L_{1}^{(k)}(x) y-\cdots-L_{k}^{(k)}(x) y^{k}=\sum_{n \geq k+1} L_{n}^{(k)}(x) y^{n} .
$$

According to the definition of $L_{n}^{(k)}(x)$, the right-hand side can be written as

$$
\begin{aligned}
& \sum_{n \geq k+1}\left(\sum_{j=1}^{k} x^{k-j} L_{n-j}^{(k)}(x)\right) y^{n}=\sum_{n \geq k+1}\left(x^{k-1} L_{n-1}^{(k)}(x)+\cdots+x^{0} L_{n-k}^{(k)}(x)\right) y^{n} \\
& =x^{k-1} y\left(L^{(k)}(x ; y)-L_{0}^{(k)}(x)-\cdots-L_{k-1}^{(k)}(x) y^{k-1}\right) \\
& \quad+x^{k-2} y^{2}\left(L^{(k)}(x ; y)-L_{0}^{(k)}(x)-\cdots-L_{k-2}^{(k)}(x) y^{k-2}\right) \\
& \quad \vdots \\
& \quad+x^{0} y^{k}\left(L^{(k)}(x ; y)-L_{0}^{(k)}(x)\right) .
\end{aligned}
$$

Therefore, we find

$$
\begin{aligned}
\left(1-\sum_{j=1}^{k} x^{k-j} y^{j}\right) & L^{(k)}(x ; y)=L_{0}^{(k)}(x)+\left(L_{1}^{(k)}(x)-x^{k-1} L_{0}^{(k)}(x)\right) y \\
& +\left(L_{2}^{(k)}(x)-x^{k-1} L_{1}^{(k)}(x)-x^{k-2} L_{0}^{(k)}(x)\right) y^{2}+\cdots \\
& +\left(L_{k}^{(k)}(x)-x^{k-1} L_{k-1}^{(k)}(x)-x^{k-2} L_{k-2}^{(k)}(x)-\cdots-L_{0}^{(k)}(x)\right) y^{k} .
\end{aligned}
$$

So the second generating function now follows. We omit the proof of the first conclusion since it can be obtained in a similar way.

A crucial identity relating to Fibonacci k-step and Lucas k-step polynomials is given in the following lemma. See also the identity (2.21) in [5].

Lemma 2. Let $\left\{F_{n}^{(k)}(x)\right\}_{n \geq-k+1}$ and $\left\{L_{n}^{(k)}(x)\right\}_{n \geq 0}$ be the Fibonacci k-step and the Lucas k-step polynomials sequence, respectively. Then we have for all $n \geq 1$,

$$
\begin{equation*}
L_{n}^{(k)}(x)=\sum_{j=1}^{k} j x^{k-j} F_{n-j+1}^{(k)}(x) \tag{4}
\end{equation*}
$$

Proof. Let $G^{(k)}(x ; y)=\sum_{n \geq 0} F_{n+1}^{(k)}(x) y^{n}$ and $H^{(k)}(x ; y)=\sum_{i=1}^{k}(i-k) x^{k-i} y^{i}$. Then by Lemma 1 we have

$$
\begin{equation*}
L^{(k)}(x ; y)=\left(k+H^{(k)}(x ; y)\right) G^{(k)}(x ; y) \tag{5}
\end{equation*}
$$

since $G^{(k)}(x ; y)=F^{(k)}(x ; y) / y=\left(1-\sum_{j=1}^{k} x^{k-j} y^{j}\right)^{-1}$. This implies that, by comparing the coefficient y^{n} on both sides of Equation (5),

$$
L_{n}^{(k)}(x)=k F_{n+1}^{(k)}(x)+\sum_{j=1}^{\min \{n, k\}}(j-k) x^{k-j} F_{n-j+1}^{(k)}(x) .
$$

If $n<k$, then we have

$$
\begin{aligned}
& \sum_{j=1}^{k}(j-k) x^{k-j} F_{n-j+1}^{(k)}(x)=\sum_{j=1}^{n}(j-k) x^{k-j} F_{n-j+1}^{(k)}(x) \\
&+\sum_{j=n+1}^{k}(j-k) x^{k-j} F_{n-j+1}^{(k)}(x)
\end{aligned}
$$

The above second term vanishes since $F_{n}^{(k)}(x)=0$ if $-k+1 \leq n \leq 0$, and hence

$$
\sum_{j=1}^{\min \{n, k\}}(j-k) x^{k-j} F_{n-j+1}^{(k)}(x)=\sum_{j=1}^{k}(j-k) x^{k-j} F_{n-j+1}^{(k)}(x)
$$

By the definition of Fibonacci k-step polynomials,

$$
F_{n+1}^{(k)}(x)=\sum_{j=1}^{k} x^{k-j} F_{n+1-j}^{(k)}(x),
$$

we conclude that Equation (4) holds for all $n \geq 1$.

3. Proofs of Main Results

We are now ready to prove Theorem 1 by the generating function approach.
Proof of Theorem 1. Consider the generating function

$$
T^{(k)}(x ; y):=\sum_{n \geq 0}\left[r^{n+1} x^{k-1} F_{n+1}^{(k)}(x)+k-2-\sum_{i=0}^{n} r^{i} L_{i}^{(k)}(x)\right] y^{n}
$$

Note that the coefficient of y^{n} in $T^{(k)}(x ; y)$ is clearly

$$
r^{n+1} x^{k-1} F_{n+1}^{(k)}(x)+k-2-\sum_{i=0}^{n} r^{i} L_{i}^{(k)}(x)
$$

Now we compute this coefficient in another way. From the definition of the generating function $F^{(k)}(x ; y)$, we find

$$
\sum_{n \geq 0} r^{n+1} x^{k-1} F_{n+1}^{(k)}(x) y^{n}=\frac{x^{k-1}}{y} \sum_{n \geq 0} F_{n+1}^{(k)}(x)(r y)^{n+1}=\frac{x^{k-1} F^{(k)}(x ; r y)}{y}
$$

Similarly we have

$$
T^{(k)}(x ; y)=\frac{x^{k-1} F^{(k)}(x ; r y)}{y}+\frac{k-2}{1-y}-\frac{L^{(k)}(x ; r y)}{1-y} .
$$

In light of Lemma 1, this becomes

$$
\begin{aligned}
T^{(k)}(x ; y)= & \frac{r x^{k-1}(1-y)+(k-2)\left(1-\sum_{j=1}^{k} x^{k-j}(r y)^{j}\right)-k+\sum_{j=1}^{k}(k-j) x^{k-j}(r y)^{j}}{(1-y)\left(1-\sum_{j=1}^{k} x^{k-j}(r y)^{j}\right)} \\
= & \frac{\left(r x^{k-1}-2\right)-\sum_{j=3}^{k}(j-2) x^{k-j}(r y)^{j}}{(1-y)\left(1-\sum_{j=1}^{k} x^{k-j}(r y)^{j}\right)} .
\end{aligned}
$$

Notice that

$$
\begin{aligned}
\frac{\left(r x^{k-1}-2\right)}{(1-y)\left(1-\sum_{j=1}^{k} x^{k-j}(r y)^{j}\right)} & =\left(r x^{k-1}-2\right) \cdot \frac{1}{r y(1-y)} \cdot \frac{r y}{1-\sum_{j=1}^{k} x^{k-j}(r y)^{j}} \\
& =\left(r x^{k-1}-2\right) \sum_{n \geq 0}\left(\sum_{i=0}^{n} r^{i} F_{i+1}^{(k)}(x)\right) y^{n} .
\end{aligned}
$$

Also, we have

$$
\begin{aligned}
\frac{\sum_{j=3}^{k}(j-2) x^{k-j}(r y)^{j}}{(1-y)\left(1-\sum_{j=1}^{k} x^{k-j}(r y)^{j}\right)} & =\sum_{j=3}^{k}(j-2) x^{k-j}(r y)^{j-1} \frac{F^{(k)}(x ; r y)}{1-y} \\
& =\sum_{n \geq 0}\left(\sum_{j=3}^{k}(j-2) x^{k-j} \sum_{i=0}^{n} r^{i} F_{i-j+1}^{(k)}(x)\right) y^{n}
\end{aligned}
$$

Putting this all together, we compare with the coefficient of y^{n} in $T^{(k)}(x ; y)$ to obtain the desired Equation (2).

To prove (3), consider the generating function

$$
V^{(k)}(x ; y):=\sum_{n \geq 0}\left[(-1)^{n} x^{k-1} F^{(k)} n+1(x)-\sum_{i=0}^{n}(-1)^{i} r^{n-i} L_{i+1}^{(k)}(x)\right] y^{n},
$$

for which the right-hand side is simply equal to

$$
-\frac{x^{k-1} F^{(k)}(x ;-y)}{y}-\frac{L^{(k)}(x ;-y)-L_{0}^{(k)}(x)}{(-y)(1-r y)}
$$

Thus, by Lemma 1,

$$
\begin{aligned}
V^{(k)}(x ; y) & =\frac{L^{(k)}(x ;-y)-k-(1-r y) x^{k-1} F^{(k)}(x ;-y)}{y(1-r y)} \\
& =\frac{(2-r x) x^{k-2} y^{2}}{y(1-r y)\left(1-\sum_{j=1}^{k} x^{k-j}(-y)^{j}\right)}+\frac{\sum_{j=3}^{k} j x^{k-j}(-y)^{j}}{y(1-r y)\left(1-\sum_{j=1}^{k} x^{k-j}(-y)^{j}\right)} .
\end{aligned}
$$

Notice that

$$
\frac{(2-r x) x^{k-2} y^{2}}{y(1-r y)\left(1-\sum_{j=1}^{k} x^{k-j}(-y)^{j}\right)}=(r x-2) x^{k-2} \frac{F^{(k)}(x ;-y)}{1-r y}
$$

and from this, we obtain that the coefficient of y^{n} is equal to

$$
(r x-2) x^{k-2} \sum_{i=0}^{n}(-1)^{i} r^{n-i} F_{i}^{(k)}(x)
$$

The second term becomes

$$
\frac{\sum_{j=3}^{k} j x^{k-j}(-y)^{j}}{y(1-r y)\left(1-\sum_{j=1}^{k} x^{k-j}(-y)^{j}\right)}=-\sum_{j=3}^{k} j x^{k-j}(-y)^{j-2} \cdot \frac{F^{(k)}(x ;-y)}{1-r y}
$$

Thus the coefficient of y^{n} in the series expansion is

$$
-\sum_{j=3}^{k} j x^{k-j} \sum_{i=0}^{n}(-1)^{i} r^{n-i} F_{i-j+2}^{(k)}(x)
$$

Altogether, by comparing the coefficient of y^{n} in $V^{(k)}(x ; y)$ in two different ways, the desired Equation (3) follows.

The case $k=2$ of Theorem 1 reduces to the following corollary.
Corollary 1. For any positive integer n, we have Sury's relation involving Fibonacci and Lucas polynomials:

$$
r^{n+1} x F_{n+1}(x)=\sum_{i=0}^{n} r^{i}\left[L_{i}(x)+(r x-2) F_{i+1}(x)\right]
$$

and the alternating Sury's relation involving Fibonacci and Lucas polynomials:

$$
(-1)^{n} x F_{n+1}(x)=\sum_{i=0}^{n}(-1)^{i} r^{n-i}\left[L_{i+1}(x)+(r x-2) F_{i}(x)\right]
$$

If we replace x with 2 in the first equation of Corollary 1 , we get

$$
2 r^{n+2} F_{n+1}(2)=\sum_{i=0}^{n} r^{i}\left[L_{i}(2)+(2 r-2) F_{i+1}(2)\right]
$$

and since $F_{n}(2)$ is the familiar Pell number P_{n} and likewise $L_{n}(2)$ is the familiar Pell-Lucas number Q_{n}, this becomes

$$
r^{n+1} P_{n+1}=\frac{1}{2} \sum_{i=0}^{n} r^{i}\left[2(r-1) P_{i+1}+Q_{i}\right]
$$

See also Equation (15) in [1]. Since $Q_{n}=P_{n+1}+P_{n-1}$, the above equation is equivalent to

$$
r^{n+1} P_{n+1}=\sum_{i=0}^{n} r^{i}\left[P_{i}+(r-2) P_{i+1}+Q_{i}\right]
$$

Now we replace x with 2 in the second equation of Corollary 1 to get an alternating relation involving Pell and Pell-Lucas numbers,

$$
(-1)^{n} P_{n+1}=\frac{1}{2} \sum_{i=0}^{n}(-1)^{i} r^{n-i}\left[Q_{i+1}+2(r-1) P_{i}\right]
$$

So in particular, we have

$$
(-1)^{n} P_{n+1}=\frac{1}{2} \sum_{i=0}^{n}(-1)^{i} Q_{i+1}
$$

If we take $x=1$ in Corollary 1, we recover two well-known relations involving Fibonacci and Lucas numbers [3]. The first author proved a more general relation (under the consideration $k=2$) for the sequence of the W-polynomials and the w-polynomials; see [6].

If we set $x=1$ in (2) and (3), then we get Equation (1) obtained in [7] and a new identity, respectively.

Corollary 2. For any positive integer n, we have Sury's relation involving Fibonacci and Lucas numbers of order k :

$$
r^{n+1} F_{n+1}^{(k)}+k-2=\sum_{i=0}^{n} r^{i}\left[L_{i}^{(k)}+(r-2) F_{i+1}^{(k)}-\sum_{j=3}^{k}(j-2) F_{i-j+1}^{(k)}\right],
$$

and the alternating Sury's relation involving Fibonacci and Lucas numbers of order k :

$$
(-1)^{n} F_{n+1}^{(k)}=\sum_{i=0}^{n}(-1)^{i} r^{n-i}\left[L_{i+1}^{(k)}+(r-2) F_{i}^{(k)}-\sum_{j=3}^{k} j F_{i-j+2}^{(k)}\right]
$$

Actually, Equation (2) is equivalent to Equation (3) through Lemma 2.
Theorem 2. Equations (2) and (3) listed in Theorem 1 are equivalent.
Proof. Assume that $r \neq 0$. Our proof strategy is to substitute r for $-1 / r$ and then use Lemma 2 to obtain the equivalence of (2) and (3).

Substituting r for $-1 / r$, we have

$$
\begin{array}{r}
\left(-\frac{1}{r}\right)^{n+1} x^{k-1} F_{n+1}^{(k)}(x)+k-2=\sum_{i=0}^{n}\left(-\frac{1}{r}\right)^{i}\left[L_{i}^{(k)}(x)+\left(-\frac{x^{k-1}}{r}-2\right) F_{i+1}^{(k)}(x)\right. \\
\left.-\sum_{j=3}^{k}(j-2) x^{k-j} F_{i-j+1}^{(k)}(x)\right]
\end{array}
$$

or

$$
\begin{aligned}
(-1)^{n} x^{k-1} F_{n+1}^{(k)}(x)= & (k-2) r^{n+1}+\sum_{i=0}^{n}(-1)^{i+1} r^{n+1-i}\left[L_{i}^{(k)}(x)\right. \\
& \left.+\left(-\frac{x^{k-1}}{r}-2\right) F_{i+1}^{(k)}(x)-\sum_{j=3}^{k}(j-2) x^{k-j} F_{i-j+1}^{(k)}(x)\right]
\end{aligned}
$$

After a series of indices shifting and computation, we can rewrite the above righthand side as

$$
\begin{aligned}
& \sum_{i=0}^{n}(-1)^{i} r^{n-i}\left[L_{i+1}^{(k)}(x)+x^{k-2}(r x-2) F_{i}^{(k)}(x)-\sum_{j=3}^{k} j x^{k-j} F_{i-j+2}^{(k)}(x)\right] \\
& \quad+(-1)^{n+1} L_{n+1}^{(k)}(x)+(-1)^{n+1} x^{k-1} F_{n+1}^{(k)}(x) \\
& \quad+2(-1)^{n} F_{n+2}^{(k)}(x)+(-1)^{n} \sum_{j=3}^{k}(j-2) x^{k-j} F_{n-j+2}^{(k)}(x)
\end{aligned}
$$

Now, by Lemma 2, we have

$$
(-1)^{n+1} L_{n+1}^{(k)}(x)=(-1)^{n+1} \sum_{j=1}^{k} j x^{k-j} F_{n-j+2}^{(k)}(x)
$$

Therefore, we obtain that the last few terms vanish. That is to say

$$
\begin{aligned}
& (-1)^{n+1} L_{n+1}^{(k)}(x)+(-1)^{n+1} x^{k-1} F_{n+1}^{(k)}(x) \\
& +2(-1)^{n} F_{n+2}^{(k)}(x)+(-1)^{n} \sum_{j=3}^{k}(j-2) x^{k-j} F_{n-j+2}^{(k)}(x)=0
\end{aligned}
$$

Hence the proof that (2) implies (3) is done. And the proof of the reverse direction is similar.

4. Remarks and Conclusions

In Section 2 we follow the approach of the generating function, however, one can prove Lemma 2 directly by using induction on n. Here is another proof of Lemma 2.

Second proof of Lemma 2. Let $k \geq 2$ be a fixed positive integer. First of all, we show that Equation (4) holds when $n \leq k$. The initial case $n=1$ holds trivially. So
we assume that when $n \leq m$, Equation (4) holds for some positive integer $m<k$. Now, we have $m+1 \leq k$ and by definition

$$
L_{m+1}^{(k)}(x)=(m+1) x^{k-m-1}+\sum_{i=1}^{m} x^{k-i} L_{m+1-i}^{(k)}(x)
$$

By the inductive hypothesis, the summation can be rewritten as

$$
\begin{aligned}
\sum_{i=1}^{m} x^{k-i} L_{m+1-i}^{(k)}(x) & =\sum_{i=1}^{m} x^{k-i} \sum_{j=1}^{k} j x^{k-j} F_{m-i-j+2}^{(k)}(x) \\
& =\sum_{i=1}^{m} x^{k-i} \sum_{j=1}^{m} j x^{k-j} F_{m-i-j+2}^{(k)}(x) \\
& =\sum_{j=1}^{m} j x^{k-j} \sum_{i=1}^{m} x^{k-i} F_{m-i-j+2}^{(k)}(x) \\
& =\sum_{j=1}^{m} j x^{k-j}\left(F_{m-j+2}^{(k)}(x)-\sum_{i=m+1}^{k} x^{k-i} F_{m-i-j+2}^{(k)}(x)\right) \\
& =\sum_{j=1}^{m} j x^{k-j} F_{m-j+2}^{(k)}(x)
\end{aligned}
$$

Hence

$$
L_{m+1}^{(k)}(x)=(m+1) x^{k-m-1}+\sum_{j=1}^{m} j x^{k-j} F_{m-j+2}^{(k)}(x)=\sum_{j=1}^{m+1} j x^{k-j} F_{m-j+2}^{(k)}(x),
$$

and Equation (4) holds for $n \leq k$ by induction.
We now obtain

$$
\begin{aligned}
L_{k+1}^{(k)}(x) & =\sum_{i=1}^{k} x^{k-i} L_{k+1-i}^{(k)}(x)=\sum_{i=1}^{k} x^{k-i} \sum_{j=1}^{k} j x^{k-j} F_{k-i-j+2}^{(k)}(x) \\
& =\sum_{j=1}^{k} j x^{k-j} \sum_{i=1}^{k} x^{k-i} F_{k-i-j+2}^{(k)}(x)=\sum_{j=1}^{k} j x^{k-j} F_{k-j+2}^{(k)}(x) .
\end{aligned}
$$

So Equation (4) holds for $n=k+1$.
Suppose that Equation (4) holds for some positive integer m which is greater than $k+1$. Then we have

$$
\begin{aligned}
L_{m+1}^{(k)}(x) & =\sum_{i=1}^{k} x^{k-i} L_{m+1-i}^{(k)}(x)=\sum_{i=1}^{k} x^{k-i} \sum_{j=1}^{k} j x^{k-j} F_{m-i-j+2}^{(k)}(x) \\
& =\sum_{j=1}^{k} j x^{k-j} \sum_{i=1}^{k} x^{k-i} F_{m-i-j+2}^{(k)}(x)=\sum_{j=1}^{k} j x^{k-j} F_{m-j+2}^{(k)}(x) .
\end{aligned}
$$

Thus by induction, we have proved that Equation (4) holds for all $n \geq 1$ and all $k \geq 2$.

We use only the result in Lemma 2 to give a rather easier proof of Theorem 1.
Second proof of Theorem 1. In light of Lemma 2, the inner sum of the right-hand side (2) for $i \geq 1$ is equal to

$$
\begin{aligned}
L_{i}^{(k)} & (x)+\left(r x^{k-1}-2\right) F_{i+1}^{(k)}(x)-\sum_{j=3}^{k}(j-2) x^{k-j} F_{i-j+1}^{(k)}(x) \\
& =\sum_{j=1}^{k} j x^{k-j} F_{i-j+1}^{(k)}(x)+\left(r x^{k-1}-2\right) F_{i+1}^{(k)}(x)-\sum_{j=3}^{k}(j-2) x^{k-j} F_{i-j+1}^{(k)}(x) \\
& =\left(r x^{k-1}-2\right) F_{i+1}^{(k)}(x)+2 \sum_{j=1}^{k} x^{k-j} F_{i-j+1}^{(k)}(x)-x^{k-1} F_{i}^{(k)}(x) \\
& =x^{k-1}\left(r F_{i+1}^{(k)}(x)-F_{i}^{(k)}(x)\right)
\end{aligned}
$$

Therefore we obtain that

$$
\begin{aligned}
\sum_{i=0}^{n} r^{i} & {\left[L_{i}^{(k)}(x)+\left(r x^{k-1}-2\right) F_{i+1}^{(k)}(x)-\sum_{j=3}^{k}(j-2) x^{k-j} F_{i-j+1}^{(k)}(x)\right] } \\
& =r x^{k-1}+k-2+\sum_{i=1}^{n} r^{i} x^{k-1}\left(r F_{i+1}^{(k)}(x)-F_{i}^{(k)}(x)\right) \\
& =r x^{k-1}+k-2+x^{k-1} \sum_{i=1}^{n}\left[r^{i+1} F_{i+1}^{(k)}(x)-r^{i} F_{i}^{(k)}(x)\right] \\
& =r x^{k-1}+k-2+x^{k-1}\left[r^{n+1} F_{n+1}^{(k)}(x)-r F_{1}^{(k)}(x)\right] \\
& =r^{n+1} x^{k-1} F_{n+1}^{(k)}(x)+k-2
\end{aligned}
$$

Hence Equation (2) follows.
For the extension of alternating Sury's relation (3), note that the inner sum is equal to

$$
\begin{aligned}
L_{i+1}^{(k)} & (x)+x^{k-2}(r x-2) F_{i}^{(k)}(x)-\sum_{j=3}^{k} j x^{k-j} F_{i-j+2}^{(k)}(x) \\
& =x^{k-1} F_{i+1}^{(k)}(x)+2 x^{k-2} F_{i}^{(k)}(x)+x^{k-2}(r x-2) F_{i}^{(k)}(x) \\
& =x^{k-1}\left[F_{i+1}^{(k)}(x)+r F_{i}^{(k)}(x)\right] .
\end{aligned}
$$

Once again we have used the result in Lemma 2. It follows that

$$
\begin{aligned}
\sum_{i=0}^{n}(& (-1)^{i} r^{n-i}\left[L_{i+1}^{(k)}(x)+x^{k-2}(r x-2) F_{i}^{(k)}(x)-\sum_{j=3}^{k} j x^{k-j} F_{i-j+2}^{(k)}(x)\right] \\
& =r^{n} x^{k-1}+x^{k-1} \sum_{i=1}^{n}\left[(-1)^{i} r^{n-i} F_{i+1}^{(k)}(x)+(-1)^{i} r^{n-i+1} F_{i}^{(k)}(x)\right] \\
& =r^{n} x^{k-1}+x^{k-1}\left[(-1)^{n} F_{n+1}^{(k)}(x)-r^{n} F_{1}^{(k)}(x)\right]=(-1)^{n} x^{k-1} F_{n+1}^{(k)}(x)
\end{aligned}
$$

We remark that Equation (2) is equivalent to the following:

$$
\begin{aligned}
x^{k-1}\left(r^{n} F_{n+1}^{(k)}(x)-1\right)=\sum_{i=1}^{n} r^{i-1}[& L_{i}^{(k)}(x)+\left(r x^{k-1}-2\right) F_{i+1}^{(k)}(x) \\
& \left.-\sum_{j=3}^{k}(j-2) x^{k-j} F_{i-j+1}^{(k)}(x)\right]
\end{aligned}
$$

This implies that the polynomials $r^{n} F_{n+1}^{(k)}(x)-1$ divide the above right-hand side for all $r \neq 0$ and $n \geq 1$.

Recall the definitions of Fibonacci-type polynomials of order $k, f_{n}^{(k)}(x)$, and Lucas-type polynomials of order $k, \ell_{n}^{(k)}(x)$ (on page 4). Expansions in terms of binomial coefficients, generating functions, properties, and connections between these two types of polynomials sequence could be found in [5, 15]. Some applications in combinatorics and probability are also given in [5, 15]. We only summarize a few results here but without proof.

The generating functions of the sequence of Fibonacci-type and Lucas-type polynomials of order k are

$$
f^{(k)}(x ; y)=\sum_{n \geq 0} f_{n}^{(k)}(x) y^{n}=\frac{y}{1-x \sum_{j=1}^{k} y^{j}}
$$

and

$$
\ell^{(k)}(x ; y)=\sum_{n \geq 0} \ell_{n}^{(k)}(x) y^{n}=\frac{k-x \sum_{j=1}^{k}(k-j) y^{j}}{1-x \sum_{j=1}^{k} y^{j}}
$$

respectively. For $n \geq 1$, we have a crucial identity relating to Fibonacci-type and Lucas-type polynomials of order k,

$$
\begin{equation*}
\ell_{n}^{(k)}(x)=x \sum_{j=1}^{\min \{n, k\}} j f_{n-j+1}^{(k)}(x) \tag{6}
\end{equation*}
$$

In addition, for $n \geq 1$, we have

$$
F_{n}^{(k)}(x)=x^{-n+1} f_{n}^{(k)}\left(x^{k}\right), \text { and } L_{n}^{(k)}(x)=x^{-n} \ell_{n}^{(k)}\left(x^{k}\right)
$$

We also note that $L_{n}^{(k)}=L_{n}^{(k)}(1)=\ell_{n}^{(k)}(1)$ and $F_{n}^{(k)}=F_{n}^{(k)}(1)=f_{n}^{(k)}(1)$, which are the n-th Lucas and the n-th Fibonacci number of order k, respectively. According to the same method in this paper, it is not hard to present two additional extensions of Sury's relation involving Fibonacci-type and Lucas-type polynomials of order k, as presented in the following theorem.

Theorem 3. For any positive integer n, we have the extension of Sury's relation involving Fibonacci-type and Lucas-type polynomials of order k :

$$
\begin{align*}
& r^{n+1} x f_{n+1}^{(k)}(x)+k-2=\sum_{i=0}^{n} r^{i}\left[\ell_{i}^{(k)}(x)+(r x-2) f_{i+1}^{(k)}(x)\right. \\
&\left.-x \sum_{j=3}^{k}(j-2) f_{i-j+1}^{(k)}(x)\right] \tag{7}
\end{align*}
$$

and the extension of alternating Sury's relation involving Fibonacci-type and Lucastype polynomials of order k :

$$
\begin{equation*}
(-1)^{n} x f_{n+1}^{(k)}(x)=\sum_{i=0}^{n}(-1)^{i} r^{n-i}\left[\ell_{i+1}^{(k)}(x)+x(r-2) f_{i}^{(k)}(x)-\sum_{j=3}^{k} j x f_{i-j+2}^{(k)}(x)\right] \tag{8}
\end{equation*}
$$

where the summation $\sum_{j=a}^{b} *$ is zero if $b<a$ and $f_{-m}^{(k)}=0$ for any positive integer m. Moreover, it can be seen from Equation (6) that Equations (7) and (8) are equivalent.

Finally, we remark that by setting $x=1$ in (7) and (8), the results coincide with Corollary 2.

Acknowledgement. The authors would like to thank the referee for their valuable suggestions and comments.

References

[1] W. M. Abd-Elhameed and N. A. Zeyada, New identities involving generalized Fibonacci and generalized Lucas numbers, Indian J. Pure Appl. Math. 49 (2018), 527-537.
[2] A. T. Benjamin, and J. J. Quinn, Fibonacci and Lucas identities through colored tilings, Util. Math. 56 (1999), 137-142.
[3] G. Bhatnagar, Analogues of a Fibonacci-Lucas identity, Fibonacci Quart. 54.2 (2016), 166171.
[4] M. Bicknell, A primer for the Fibonacci numbers: part vii, Fibonacci Quart. 8.4 (1970), 407-420.
[5] C. A. Charalambides, Lucas numbers and polynomials of order k and the length of the longest circular success run, Fibonacci Quart. 29.4 (1991), 290-297.
[6] C.-L. Chung, Some polynomial sequence relations, Mathematics 7(8): 750 (2019). https://doi.org/10.3390/math7080750
[7] S. D. Dafnis, A. N. Philippou, and I. E. Livieris, An identity relating Fibonacci and Lucas numbers of order k, Electron. Notes Discrete Math. 70 (2018), 37-42.
[8] T. Edgar, Extending some Fibonacci-Lucas relations, Fibonacci Quart. 54.1 (2016), 79.
[9] V. E. Hoggatt, and M. Bicknell, Generalized Fibonacci polynomials, Fibonacci Quart. 11.5 (1973), 457-465.
[10] T. Koshy, Fibonacci and Lucas Numbers with Applications, John Wiley and Sons Inc., NY, 2011.
[11] T. Koshy, Fibonacci and Lucas Numbers with Applications, Volume 2, John Wiley and Sons Inc., NY, 2019.
[12] H. Kwong, An alternate proof of Sury's Fibonacci-Lucas relation, Amer. Math. Monthly 6 (2014), 514.
[13] D. Marques, A new Fibonacci-Lucas relation, Amer. Math. Monthly 7 (2015), 683.
[14] I. Martinjak, and H. Prodinger, Complementary families of the Fibonacci-Lucas relations, Integers 19 (2019), \#A2, 10pp.
[15] A. N. Philippou, C. Georghiou, and G. N. Philippou, Fibonacci-type polynomials of order k with probability applications, Fibonacci Quart. 23.2 (1985), 100-105.
[16] B. Sury, A polynomial parent to a Fibonacci-Lucas relation, Amer. Math. Monthly 3 (2014), 236.

[^0]: DOI: 10.5281/zenodo. 7998000
 ${ }^{1}$ Research supported by Fuzhou University grant XRC-20077:0030-50009112, G2050999:003050016704 , and Fujian Natural Science grant No. 2020J01498

