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Abstract

Algorithms like ones used to generate Pascal’s triangle for generating Bernoulli poly-
nomials and their various generalizations are given. It is remarkable that the algo-
rithms for Bernoulli polynomials are natural interpolations of the ones for Bernoulli
numbers. The algorithms presented in this paper can be understood as essentially
unique, even if the Bernoulli polynomials are generalized in various ways.

1. Triangle Algorithm for Bernoulli Numbers

Two types of Bernoulli numbers {Bn}n and {Cn}n are defined by the generating

functions 1

tet

et − 1
=

∞∑
n=0

Bn
tn

n!
and

t

et − 1
=

∞∑
n=0

Cn
tn

n!
,

respectively. In their study on special values at non-positive integers of multiple zeta

functions of Euler-Zagier type, S. Akiyama and Y. Tanigawa [1] found a triangle

algorithm for generating Bernoulli numbers like “Pascal’s triangle algorithm” for

binomial coefficients.

Akiyama and Tanigawa’s triangle algorithm can be written as follows. We denote

the m-th number in the n-th row by bn,m which is determined by the recurrence

formula

bn+1,m = (m+ 1)(bn,m − bn,m+1) (n,m ≥ 0), (1)

and start with the 0-th row {b0,m}m = { 1
m+1}m = {1, 12 ,

1
3 ,

1
4 ,

1
5 , . . .}, which we call

the initial sequence of the algorithm. Then 0-th component bn,0 of each row is the

DOI: 10.5281/zenodo.8028914
1Note that B1 = −C1 = 1

2
and Bn = Cn for any non-negative integer n 6= 1.
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n-th Bernoulli number Bn (see Figure 1) 2. As a generalization, M. Kaneko [9]

replaced the initial sequence { 1
m+1}m by { 1

(m+1)k
}m for any integer k, and applied

the same recurrence formula to obtain poly-Bernoulli numbers, which are treated

in the next section. On the other hand, K.-W. Chen [4] replaced the recurrence

formula (1) by

bn+1,m = mbn,m − (m+ 1)bn,m+1 (n,m ≥ 0), (2)

and applied { 1
m+1}m as the initial sequence to obtain Bernoulli numbers {Cn}n as

the resulting sequence (see Figure 2).
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Figure 1: Akiyama and Tanigawa’s algorithm for Bn
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Figure 2: Chen’s algorithm for Cn

2To be precise, using our notation, [1] states the fact {bn,0}n≥2 = {Cn}n≥2, and if we write this
using Bn instead of Cn, the formula is valid for n = 0 and 1 as well.
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To state our first step, we introduce the definition of Bernoulli polynomials

{Bn(x)}n as follows:

t

et − 1
ext =

∞∑
n=0

Bn(x)
tn

n!
.

One can easily see that

Bn(0) = Cn, Bn(1) = Bn.

As our first step, we describe the following algorithm (preliminary version) before

considering various generalizations.

Theorem 1. Setting the initial sequence {b0,m(x)}m = { 1
m+1}m as before and

applying the recurrence formula

bn+1,m(x) = (m+ x)bn,m(x)− (m+ 1)bn,m+1(x) (n,m ≥ 0), (3)

the resulting sequence {bn,0(x)}n is {Bn(x)}n.

Miraculously, the above recurrence formula gives a natural interpolation between

those of Akiyama and Tanigawa’s and Chen’s (see Figure 3). In other words, if we

set x = 0 or x = 1 in the formula (3), then it is reduced to the one we have

already mentioned for {Cn}n or {Bn}n, respectively. Thus, we succeed in obtaining

an algorithm, named a triangle algorithm for Bernoulli polynomials as a natural

generalization of Akiyama and Tanigawa’s and Chen’s algorithms.
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Figure 3: Triangle algorithm for Bn(x) (preliminary version)
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In this paper, we discuss more general triangle algorithms for various generaliza-

tions of Bernoulli numbers and polynomials, including multi-poly-Bernoulli poly-

nomials. In these discussions, we note that it is more natural to invert the signs

in the recurrence formula (3). In fact, by inverting the signs, the recurrence for-

mulas of triangle algorithms for various generalizations of Bernoulli numbers and

polynomials are essentially unified.

This paper is organized as follows. In Section 2, we introduce the triangle al-

gorithm for poly-Bernoulli numbers/polynomials. In Section 3, we introduce and

show the triangle algorithm for multi-poly-Bernoulli polynomials. It is remarkable

that we can naturally obtain the algorithms for Bernoulli and poly-Bernoulli num-

bers/polynomials and multi-poly-Bernoulli numbers as restricted cases of that for

multi-poly-Bernoulli polynomials. In Section 4, we discuss two kinds of variants of

multi-poly-Bernoulli numbers. For example, in Section 4.2, we define generalized

multi-poly-Bernoulli polynomials like that for the classical generalized Bernoulli

polynomials, and discuss their triangle algorithm.

2. Triangle Algorithm for Poly-Bernoulli Numbers and Polynomials

For any integer k, poly-Bernoulli polynomials {B(k)
n (x)}n are defined by

Lik(1− e−t)
et − 1

ext =

∞∑
n=0

B(k)
n (x)

tn

n!

and two types of poly-Bernoulli numbers {B(k)
n }n and {C(k)

n }n are defined by

B(k)
n (1) = B(k)

n and B(k)
n (0) = C(k)

n ,

respectively. In other words, the generating functions for these two series are

Lik(1− e−t)
1− e−t

=
∞∑
n=0

B(k)
n

tn

n!
and

Lik(1− e−t)
et − 1

=

∞∑
n=0

C(k)
n

tn

n!
.

Here, Lik(z) is defined as the special case when k = (k) of the formal power series

Lik(z) :=
∑

0<m1<···<mr

zmr

mk1
1 · · ·m

kr
r

for any r-tuple of integers k = (k1, . . . , kr). One can easily see that B
(1)
n (x) = Bn(x)

for any non-negative integer n, and thus {B(1)
n }n and {C(1)

n }n coincide with the

ordinary Bernoulli numbers {Bn}n = {1, 12 ,
1
6 , . . .} and {Cn}n = {1,− 1

2 ,
1
6 , . . .},

respectively.
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We introduce a recurrence formula slightly different from the one in the previous

section for obtaining poly-Bernoulli polynomials:

bn+1,m(x) = (m+ 1)bn,m+1(x)− (m+ 1− x) bn,m(x) (n,m ≥ 0). (4)

Also, we replace the initial sequence { 1
m+1}m by { 1

(m+1)k
}m for any integer k, and

apply the algorithm (4) to obtain poly-Bernoulli polynomials B
(k)
n (x) (see Figure

4).
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Figure 4: Triangle algorithm for Bn(x)

Substituting x = 0 and x = 1, the recurrence formula (4) becomes

bn+1,m = (m+ 1)(bn,m+1 − bn,m) (n,m ≥ 0) (5)

and

bn+1,m = (m+ 1)bn,m+1 −mbn,m (n,m ≥ 0), (6)

and we obtain {C(k)
n } and {B(k)

n } as the respective resulting sequences.

It is easy to see that the recurrence formulas (5) and (6) can be obtained by

multiplying the right-hand sides of the ones (1) and (2) by −1. the ones (1) and (2)

by−1. Thus, the previous algorithms (1) and (2) can each be considered to be a kind

of “dual” of the recurrence formulas (5) and (6). Through these inversions of signs,

with the well-known property (−1)nCn = Bn of the ordinary (classical) Bernoulli

numbers, the algorithms (5) and (6) can be understood as recurrence formulas for

generating {Cn}n (see Figure 5) and {Bn}n (see Figure 6), respectively.
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Remark 1. In [9], M. Kaneko already obtained poly-Bernoulli numbers (−1)nC
(k)
n

by applying the recurrence formula (1) to the initial sequence { 1
m+1}m; however,

here we apply its dual recurrence formula (5).
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Figure 5: Triangle algorithm for Cn
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Figure 6: Triangle algorithm for Bn

3. Triangle Algorithm for Multi-poly-Bernoulli Polynomials

In this section, we introduce multi-poly-Bernoulli polynomials as a natural general-

ization of the classical Bernoulli polynomials, and state their generating algorithm

and give a proof.

Throughout this paper, index k = (k1, . . . , kr) means any r-tuple of integers.
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3.1. Algorithm for Multi-poly-Bernoulli Polynomials

We here define multi-poly-Bernoulli numbers/polynomials and present their recur-

rence formula and triangle algorithm.

Definition 1. For any index k = (k1, . . . , kr) and for any integer l satisfying

1 ≤ l ≤ r, we define multi-poly-Bernoulli polynomials {B(k)/l
n (x)}n by the generating

function
Lik(1− e−t)

(et − 1)l
ext =

∞∑
n=0

B(k)/l
n (x)

tn

n!
,

and we define two types of multi-poly-Bernoulli numbers {B(k)/l
n }n and {C(k)/l

n }n
by

B(k)/l
n = B(k)/l

n (l) and C(k)/l
n = B(k)/l

n (0).

In other words, the generating functions for these two types are

Lik(1− e−t)
(1− e−t)l

=

∞∑
n=0

B(k)/l
n

tn

n!
and

Lik(1− e−t)
(et − 1)l

=

∞∑
n=0

C(k)/l
n

tn

n!
.

Multi-poly-Bernoulli polynomials {B(k)/l
n (x)}n also appeared in [12] and include

various generalizations of Bernoulli numbers/polynomials as follows. By setting

l = 1, we obtain {B(k)
n (x)}n defined by K. Imatomi [7, Definition 6.1], and moreover

we obtain {B(k)
n (x)}n by setting r = l = 1. We can obtain B

(k)/l
n and C

(k)/l
n in

the cases when x = 1 and 0, respectively. We obtain B
(k)
n and C

(k)
n defined by

Imatomi-Kaneko-E. Takeda [8, (1),(2)] if l = 1, and B(k)
n defined by T. Arakawa-

Kaneko [3, p.202 Remarks (ii)] if l = r.

The triangle algorithm for {B(k)/l
n (x)}n which we show in this paper can be

stated as follows. Suppose that the initial sequence {b0,m(x)}m is given by

b0,m(x) =
∑

0<m1<···<mr−1<m+l

1

mk1
1 · · ·m

kr−1

r−1 (m+ l)kr
(m ≥ 0), (7)

and apply the recurrence formula

bn+1,m(x) = (m+ 1)bn,m+1(x)− (m+ l − x) bn,m(x) (n,m ≥ 0). (8)

Then the claim is that we obtain {bn,0(x)}n = {B(k)/(l)
n (x)}n as the resulting se-

quence.

It is remarkable that the terms in the initial sequence {b0,m(x)}m match the

truncated (finite) multiple zeta values (see [6, (2)], [14]).

Now we define Stirling numbers of the second kind
{
n
m

}
for any integers n and m

by the recurrence formula{
n+ 1

m

}
=

{
n

m− 1

}
+m

{
n

m

}
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with the initial conditions
{
0
0

}
= 1 and

{
n
0

}
=
{

0
m

}
= 0 (n,m 6= 0).

The above-mentioned algorithm is based on the identity for B
(k)/l
n (x) in the

following theorem, whose proof is carried out in Section 3.2.

Theorem 2 (Explicit formula). For any index k = (k1, . . . , kr) and non-negative

integers l, r, and n with 1 ≤ l ≤ r, we have

B(k)/l
n (x)

=

n∑
i=0

(
n

i

)
xn−i(−1)i

i∑
m=0

∑
0<m1<···<mr−1<m+l

(−1)m
∑l
j=0(m+ j)!

{
n

m+j

}(
l
j

)
mk1

1 · · ·m
kr−1

r−1 (m+ l)kr
.

From Theorem 2, it suffices to show the following theorem, whose proof is given

in Section 3.3, to justify the above-mentioned algorithm for B
(k)/l
n (x).

Theorem 3. For given {b0,m(x)}m, define bn+1,m(x) (n,m ≥ 0) by the recurrence

formula (8). Then, we have

bn,0(x) =

n∑
i=0

(
n

i

)
xn−i(−1)i

i∑
m=0

(−1)m
l∑

j=0

(m+ j)!

{
i

m+ j

}(
l

j

)
b0,m(x). (9)

By specializing in Theorems 2 and 3 to the cases of x = l and x = 0, we ob-

tain the algorithms for the multi-poly-Bernoulli numbers {B(k)/l
n }n and {C(k)/l

n }n,

respectively, as follows.

Example 1. Suppose that the initial sequence {b0,m(x)}m is given as the formula

(7). By setting x = l in the formula (8), we obtain the recurrence formula (6)

in Section 2. Applying the initial sequence (7) to (9) with x = l, we obtain the

resulting sequence {bn,0(l)}n = {B(k)/l
n }n from Theorem 2.

On the other hand, by setting x = 0 in (8), we obtain

bn+1,m = (m+ 1)bn,m+1 − (m+ l)bn,m (n,m ≥ 0).

Applying the initial sequence (7) to (9) with x = 0, we obtain {bn,0(0)}n =

{C(k)/l
n }nin the same way as above.

We can interpret the recurrence formula (8) by using generating functions as

follows (see [9]).

Remark 2. Suppose that the ordinary generating function of the initial sequence

{b0,m(x)}m is

A(x; t) =

∞∑
m=0

b0,m(x)tm
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and the exponential generating function for the resulting sequence {bn,0(x)}n, from

the recurrence formula (8), is

B(x; t) =

∞∑
n=0

bn,0(x)
tn

n!
.

Then we have

B(x; t) = e(x−l)tA(x; 1− e−t),

as a natural consequence of the formula (9) and Lemma 1 in the next subsection.

3.2. Proof of Theorem 2

We give the explicit formula for B
(k)/l
n and C

(k)/l
n . The latter is necessary for the

proof of Theorem 2.

Theorem 4. For any r-tuple of integers k = (k1, . . . , kr) and non-negative integer

n, we have

B(k)/l
n = (−1)n

n∑
m=0

∑
0<m1<···<mr−1<m+l

(−1)mm!
{
n
m

}
mk1

1 · · ·m
kr−1

r−1 (m+ l)kr
,

and

C(k)/l
n = (−1)n

n∑
m=0

∑
0<m1<···<mr−1<m+l

(−1)m
∑l
j=0(m+ j)!

{
n

m+j

}(
l
j

)
mk1

1 · · ·m
kr−1

r−1 (m+ l)kr
.

Remark 3. By specializing in Theorem 4, we obtain known formulas as follows. If

l = r, we obtain the explicit formula for B
(k)/r
n proved by Y. Hamahata-H. Masub-

uchi [5, Theorem 7]. If l = 1, we obtain the explicit formula for B
(k)/1
n and C

(k)/1
n

proved by Imatomi-Kaneko-Takeda [8, Theorem 3].

We need the following lemma to prove Theorem 4.

Lemma 1. For any non-negative integers l and m, we have

elt(et − 1)m =

∞∑
n=m

l∑
j=0

(m+ j)!

{
n

m+ j

}(
l

j

)
tn

n!
. (10)

Proof. We prove by induction on l. If l = 0, the formula (10) is well known (see

[2, Proposition 2.6 (7)] for example). If we assume that the lemma is valid up to
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l < k, then for l = k we have

ekt(et − 1)m

= e(k−1)t(et − 1)m+1 + e(k−1)t(et − 1)m

=

∞∑
n=m+1

k−1∑
j=0

(m+ j + 1)!

{
n

m+ j + 1

}(
k − 1

j

)
tn

n!

+

∞∑
n=m

k−1∑
j=0

(m+ j)!

{
n

m+ j

}(
k − 1

j

)
tn

n!

=
∞∑
n=m

 k∑
j=1

(m+ j)!

{
n

m+ j

}(
k − 1

j − 1

)
+

k−1∑
j=0

(m+ j)!

{
n

m+ j

}(
k − 1

j

) tn

n!

=

∞∑
n=m

k∑
j=0

(m+ j)!

{
n

m+ j

}(
k

j

)
tn

n!
.

Thus the formula (10) is valid for any non-negative integer l by induction.

Proof of Theorem 4. From the definition of B
(k)/l
n , we obtain

∞∑
n=0

B(k)/l
n

tn

n!
=

∑
0<m1<···<mr−1<m+l

(−1)m(e−t − 1)m

mk1
1 · · ·m

kr−1

r−1 (m+ l)kr
.

Taking l = 0 and applying Lemma 1 to the right-hand side of the above equality,

we obtain

R.H.S. =
∑

0<m1<···<mr−1<m+l

(−1)mm!

mk1
1 · · ·m

kr−1

r−1 (m+ l)kr

∞∑
n=m

{
n

m

}
(−t)n

n!

=
∞∑
n=0

(−1)n
n∑

m=0

∑
0<m1<···<mr−1<m+l

(−1)mm!
{
n
m

}
mk1

1 · · ·m
kr−1

r−1 (m+ l)kr

 tn

n!
.

Comparing the coefficients of tn

n! for the two sides, we obtain the first formula in
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Theorem 4. Similarly, we have

∞∑
n=0

C(k)/l
n

tn

n!

=
∑

0<m1<···<mr−1<m+l

(−1)m(e−t − 1)m

mk1
1 · · ·m

kr−1

r−1 (m+ l)kr
e−lt

=
∑

0<m1<···<mr−1<m+l

(−1)m

mk1
1 · · ·m

kr−1

r−1 (m+ l)kr

∞∑
n=m

l∑
j=0

(m+ j)!

{
n

m+ j

}(
l

j

)
(−t)n

n!

=

∞∑
n=0

(−1)n
n∑

m=0

∑
0<m1<···<mr−1<m+l

(−1)m
∑l
j=0(m+ j)!

{
n

m+j

}(
l
j

)
mk1

1 · · ·m
kr−1

r−1 (m+ l)kr

 tn

n!
,

by the definition of C
(k)/l
n and Lemma 1, and we thereby obtain the second formula

in Theorem 4.

Proof of Theorem 2. By comparing the generating functions for {B(k)/l
n (x)}n and

{C(k)/l
n }n, we easily obtain the equality

B(k)/l
n (x) =

n∑
i=0

(
n

i

)
C

(k)/l
i xn−i

for any index k and non-negative integer n. Applying the explicit formula for C
(k)/l
n

given in Theorem 4 to the right-hand side of the above equality, we readily obtain

Theorem 2.

3.3. Proof of Theorem 3

The proof of Theorem 3 uses the following lemma.

Lemma 2 (see [2, Proposition 2.6 (4)]). For any integer n, we have(
x
d

dx

)n
=

n∑
m=1

{
n

m

}
xm
(
d

dx

)m
.

Proof of Theorem 3. We use the generating function

gn(x; t) =

∞∑
m=0

bn,m(x)tm
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to prove Theorem 3. By the recurrence formula (8), we have

gn(x; t)

=

∞∑
m=0

{(m+ 1)(bn−1,m+1(x)− bn−1,m(x)) + (1− l + x) bn−1,m(x)}tm

=
d

dt

∞∑
m=1

bn−1,m(x)tm − d

dt

∞∑
m=0

bn−1,m(x)tm+1 + (1− l + x)

∞∑
m=0

bn−1,m(x)tm

=
d

dt
(gn−1(x; t)− bn−1,0(x))− d

dt
(tgn−1(x; t)) + (1− l + x) gn−1(x; t)

=

(
−l + x+ (1− t) d

dt

)
gn−1(x; t).

Thus, if we set hn(x; t) = (t− 1)lgn(x; t), we obtain

hn(x; t) =

(
x− (t− 1)

d

dt

)
hn−1(x; t) (n ≥ 1)

=

(
x− (t− 1)

d

dt

)n
h0(x; t)

=

n∑
i=0

(
n

i

)
xn−i(−1)i

(
(t− 1)

d

dt

)i
h0(x; t).

It follows from Lemma 2, setting x equal to t− 1, that(
(t− 1)

d

dt

)i
h0(x; t)

=

i∑
m=1

{
i

m

}
(t− 1)m

(
d

dt

)m
h0(x; t)

=

i∑
m=0

{
i

m

}
(t− 1)m

(
d

dt

)m(
(t− 1)l

∞∑
p=0

b0,p(x)tp

)

=

i∑
m=0

{
i

m

}
(t− 1)m

(
d

dt

)m ∞∑
p=0

l∑
j=0

(
l

j

)
(−1)l−jb0,p−j(x)tp


=

i∑
m=0

{
i

m

}
(t− 1)m

∞∑
p=m

l∑
j=0

(
l

j

)
(−1)l−jp(p− 1) · · · (p− (m− 1))b0,p−j(x)tp−m.



INTEGERS: 23 (2023) 13

Here b0,i is taken to be 0 for any negative integer i. Setting t = 0, we obtain

(−1)lbn,0(x) =

n∑
i=0

(
n

i

)
xn−i(−1)i

i∑
m=0

{
i

m

}
(−1)mm!

l∑
j=0

(
l

j

)
(−1)l−jb0,m−j(x),

bn,0(x) =

n∑
i=0

(
n

i

)
xn−i(−1)i

l∑
j=0

i−j∑
m=−j

(−1)m(m+ j)!

{
i

m+ j

}(
l

j

)
b0,m(x)

=

n∑
i=0

(
n

i

)
xn−i(−1)i

i∑
m=0

(−1)m
l∑

j=0

(m+ j)!

{
i

m+ j

}(
l

j

)
b0,m(x).

This gives the formula (9). Thus, we complete the proof of Theorem 3.

Remark 4. The proof of Theorem 1 can be obtained in a similar way to that of

Theorem 3 by applying the formula Bn(x) = (−1)nBn(1− x) for any non-negative

integer n.

4. Applications

In this section, we give the algorithm for t-multi-poly-Bernoulli numbers. Moreover,

we define generalized multi-poly-Bernoulli polynomials and discuss an algorithm for

them.

4.1. Interpolated Multi-poly-Bernoulli Numbers

In [10, Definition 2.3], the second named author and H. Wayama introduced an-

other interpolation {C(k)
n (t)}n between two types of multi-poly-Bernoulli numbers

based on the Landen connection formula. We call {C(k)
n (t)}n t-multi-poly-Bernoulli

numbers, and define them by

C(k)
n (t) =

∑
k�k′

tdep(k
′)−rC(k′)/1

n (n ≥ 0),

in which we denote by k � k′ that k can be obtained from k′ by replacing some

commas of k′ by pluses. This definition interpolates {C(k)/1
n }n = {C(k)

n (0)}n and

{(−1)n+r−1B
(k)/1
n }n = {C(k)

n (1)}n and is suitable for expressing the special values

at negative integral points of t-interpolated Arakawa-Kaneko multiple zeta functions

(see [10]).

Curiously, we can obtain the numbers by using the recurrence formula of Akiyama

and Tanigawa’s algorithm (1). In fact, if we apply the initial sequence {b0,m(t)}m
obtained by

b0,m(t) =
∑
k�k′

tdep(k
′)−rb

(k′)
0,m (m ≥ 0),
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and

b
(k)
0,m =

∑
0<m1<···<mr−1<m+1

1

mk1
1 · · ·m

kr−1

r−1 (m+ 1)
kr
,

then the resulting sequence becomes {C(k)
n (t)}n.

We can show the above by the algorithm for C
(k)/1
n (Example 1) and the definition

of C
(k)
n (t). For example, we obtain the algorithm diagrammed in Figure 7 when

k = (2, 2).

0 1
4

2
9 t+ 5

36
1
24 t

2 + 7
24 t+ 49

576

1
4

4
9 t−

2
9

1
8 t

2 + 5
24 t−

31
192

4
9 t−

17
36

1
4 t

2 − 17
36 t+ 35

288

1
4 t

2 − 11
12 t+ 19

32

�� �� �� �� �� ��

�� �� �� ��

�� ��

Figure 7: Algorithm for C
(2,2)
n (t)

4.2. Generalized Multi-poly-Bernoulli Polynomials

We define generalized multi-poly-Bernoulli polynomials and give an algorithm for

them.

Definition 2. Given a Dirichlet character χ modulo f and an index k, the gener-

alized multi-poly-Bernoulli polynomials {B(k)/l
n,χ (x)}n are defined by

1

f

f∑
a=1

χ(a)
Lik(1− e−ft)

(eft − 1)l
e(a−1+x)t =

∞∑
n=0

B(k)/l
n,χ (x)

tn

n!
.

The generalized multi-poly-Bernoulli polynomials include the generalized poly-

Bernoulli numbers

/polynomials (see [13], [11, (17)]) and multi-poly-Bernoulli polynomials as the cases

when r = x = 1 and f = 1, respectively.

The algorithm for {B(k)/l
n,χ (x)}n is as follows. If we take the initial sequence

{b0,m(χ, a;x)}m obtained from

b0,m(χ, a;x) =
χ(a)

f

∑
0<m1<···<mr−1<m+l

1

mk1
1 · · ·m

kr−1

r−1 (m+ l)kr
(m ≥ 0),



INTEGERS: 23 (2023) 15

and apply the recurrence formula

bn+1,m(χ, a;x)

= (m+ 1)fbn,m+1(χ, a;x)−
(
m+ l − a− 1 + x

f

)
fbn,m(χ, a;x) (n,m ≥ 0),

then the resulting sequence is called the a-part of {B(k)
n,χ(x)}n. Summing up a-parts

from a = 1 to f and obtain {B(k)
n,χ(x)}n. For example, we obtain the algorithm

diagrammed in Figure 8 when l = r = 1 and k = (1).

χ(a)
f

χ(a)
2f

χ(a)
3f

χ(a)
((

a−1+x
f

)
− 1

2

)
χ(a)

(
1
2

(
a−1+x
f

)
− 1

3

)

fχ(a)

((
a−1+x
f

)2
−
(
a−1+x
f

)
+ 1

6

)

�� �� �� ��

�� ��

Figure 8: Algorithm for a-part of {B(1)
n,χ}n = {Bn,χ}n

This algorithm is based on the explicit formula for B
(k)/l
n,χ (x) given in the following

theorem.

Theorem 5. For any Dirichlet character χ modulo f , integers k1, . . . , kr, positive

integer l with 1 ≤ l ≤ r and non-negative integer n, we have

B(k)/l
n,χ (x) = fn−1

f∑
a=1

χ(a)

n∑
i=0

(
n

i

)(
a− 1 + x

f

)n−i

× (−1)i
i∑

m=0

∑
0<m1<···<mr−1<m+l

(−1)m
∑l
j=0(m+ j)!

{
n

m+j

}(
l
j

)
mk1

1 · · ·m
kr−1

r−1 (m+ l)kr
.

Proof. Comparing the generating functions for {B(k)/l
n,χ (x)}n and {B(k)/l

n (x)}n, we



INTEGERS: 23 (2023) 16

obtain

∞∑
n=0

B(k)/l
n,χ (x)

tn

n!
=

1

f

f∑
a=1

χ(a)
Lik(1− e−ft)

(eft − 1)l
e(a−1+x)t

=
1

f

f∑
a=1

χ(a)

( ∞∑
n=0

B(k)/l
n

(
a− 1 + x

f

)
(ft)n

n!

)

=

∞∑
n=0

(
fn−1

f∑
a=1

χ(a)B(k)/l
n

(
a− 1 + x

f

))
tn

n!
.

Applying the explicit formula of B
(k)/l
n (x), we obtain the required formula.

Considering Theorem 5, it suffices to show the following theorem to justify the

algorithm for B
(k)/l
n,χ (x).

Theorem 6. Given {b0,m(χ, a;x)}m, define bn+1,m(χ, a;x) (n,m ≥ 0) by the re-

currence formula

bn+1,m(χ, a;x) = (m+ 1)fbn,m+1(χ, a;x)−
(
m+ l − a− 1 + x

f

)
fbn,m(χ, a;x).

(11)

Then, we have

bn,0(χ, a;x) = fn
n∑
i=0

(
n

i

)(
a− 1 + x

f

)n−i

× (−1)i
i∑

m=0

(−1)m
l∑

j=0

(m+ j)!

{
i

m+ j

}(
l

j

)
b0,m(χ, a;x).

Proof. We use the generating function

gn(χ, a;x; t) =

∞∑
m=0

bn,m(χ, a;x)tm.

By recurrence formula (11), we have

gn(χ, a;x; t) = f

∞∑
m=0

{
(m+ 1)(bn−1,m+1(χ, a;x)− bn−1,m(χ, a;x))

+

(
1− l +

a− 1 + x

f

)
bn−1,m(χ, a;x)

}
tm

= f

(
−l +

a− 1 + x

f
+ (1− t) d

dt

)
gn−1(χ, a;x; t).
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Setting hn(χ, a;x; t) = (t− 1)lgn(χ, a;x; t), we have

hn(χ, a;x; t) = f

(
a− 1 + x

f
− (t− 1)

d

dt

)
hn−1(χ, a;x; t) (n ≥ 1)

= fn
(
a− 1 + x

f
− (t− 1)

d

dt

)n
h0(χ, a;x; t)

= fn
n∑
i=0

(
n

i

)(
a− 1 + x

f

)n−i
(−1)i

(
(t− 1)

d

dt

)i
h0(χ, a;x; t).

Applying Lemma 2 to ((t− 1) ddt )
ih0(χ, a;x; t), we have(

(t− 1)
d

dt

)i
h0(χ, a;x; t)

=

i∑
m=0

{
i

m

}
(t− 1)m

×
∞∑
p=m

l∑
j=0

(
l

j

)
(−1)l−jp(p− 1) · · · (p− (m− 1))b0,p−j(χ, a;x)tp−m.

Here b0,i is taken to be 0 for any negative integer i. Setting t = 0, we have

bn,0(χ, a;x) = fn
n∑
i=0

(
n

i

)(
a− 1 + x

f

)n−i

× (−1)i
i∑

m=0

(−1)m
l∑

j=0

(m+ j)!

{
i

m+ j

}(
l

j

)
b0,m(χ, a;x).

Thus, we obtain Theorem 6.
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