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Abstract

Recently, Jha has found identities that connect certain sums over the divisors of n to
the number of representations of n as a sum of squares and triangular numbers. In
this note, we state a generalized result that gives such relations for s-gonal numbers
for any integer s ≥ 3.

1. Introduction

Jha [3, 4] obtained two identities that connect certain sums over the divisors of n

to the number of representations of n as sums of squares and sums of triangular

numbers, respectively. Our objective is to show that these results can be generalized

to the number of representations of n as a sum of any specific generalized polygonal

number. We also obtain some corollaries, including Jha’s results (Identities (3) and

(8), below). In this section, we introduce two definitions and related tools to use in

the later sections.

Definition 1 For an integer s ≥ 3, the generalized nth s-gonal number is defined

by

Fs(n) :=
(s− 2)n2 − (s− 4)n

2
, n ∈ Z.
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Henceforth, we call these numbers s-gonal numbers.

The generating function Gs(q) of Fs(n) is given by

Gs(q) :=

∞∑
n=−∞

qFs(n) = f(q, qs−3),

where f(a, b) is Ramanujan’s theta function defined by [1, p. 34]:

f(a, b) =

∞∑
n=−∞

an(n+1)/2bn(n−1)/2, |ab| < 1.

Also note the exceptional case that G3(q) generates each triangular number twice

while G6(q) generates only once.

Definition 2 (Comtet, [2, p. 133]) The partial Bell polynomials are the polynomials

Bn,k ≡ Bn,k(x1, x2, · · · , xn−k+1) in an infinite number of variables defined by the

formal double series expansion:

∑
n,k≥0

Bn,k
tn

n!
uk = exp

u∑
m≥1

xm
tm

m!

 .

For more equivalent definitions, exact expressions and further results involving the

Bell polynomials, we refer to [2, Chap. 3.3].

The next section contains some lemmas and the main theorem. In the final

section, we present some corollaries, including Jha’s results (3) and (8).

2. Lemmas and Main Theorem 2.3

In the following, we present two lemmas that lead us to the main theorem, i.e.,

Theorem 2.3.

Lemma 2.1 For any positive integer n, we have∑
d|n

1

d

(
(−1)dδ1

(n
d
, s− 2

)
+ δ2

(n
d
, s− 2

))

=
1

n!

n∑
k=1

(−1)k(k − 1)!Bn,k(G′s(0), G′′s (0), . . . , Gn−k+1
s (0)),

where, we define δ1(m, v) and δ2(m, v) for v ≥ 2 as follows:

δ1(m, v) =


2, if m ≡ 1(mod 2), v = 2,

1, if m ≡ 1 or (v − 1)(mod v), v ≥ 3,

0, otherwise,
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and

δ2(m, v) =

{
1, if m ≡ 0(mod v), v ≥ 2,

0, otherwise.

Proof. By Jacobi triple product identity [1, p. 35, Entry 19], we have

Gs(q) = f(q, qs−3) = (−q; qs−2)∞(−qs−3; qs−2)∞(qs−2; qs−2)∞

=

∞∏
j=0

(
(1 + q(s−2)j+1)(1 + q(s−2)j+s−3)(1− q(s−2)(j+1))

)
.

Therefore,

logGs(q) =

∞∑
j=0

(
log(1 + q(s−2)j+1) + log(1 + q(s−2)j+s−3) + log(1− q(s−2)(j+1))

)
= −

∞∑
j=0

∞∑
`=1

(
(−1)`

`
q((s−2)j+1)` +

(−1)`

`
q((s−2)j+s−3)` +

1

`
q(s−2)(j+1)`

)

= −
∑
j≥1

j≡1 (mod s−2)

∑
`≥1

(−1)`

`
qj` −

∑
j≥1

j≡−1 (mod s−2)

∑
l≥1

(−1)`

`
qj`

−
∑
j≥1

j≡0 (mod s−2)

∑
`≥1

1

`
qj`

= −
∑
n≥1

qn

∑
d|n

1

d

(
(−1)dδ1

(n
d
, s− 2

)
+ δ2

(n
d
, s− 2

)) ,

(1)

where the given definitions of δ1(m, v) and δ2(m, v) follow naturally.

Now, let the Taylor series expansion of Gs(q) be

Gs(q) =
∑
n≥0

gn
qn

n!
.

Then, from [2, p. 140, (5a) and (5b)], we have the following result:

logGs(q) =
∑
n≥1

Ln
qn

n!
, (2)

where

Ln = Ln(g1, g2, . . . , gn) =

n∑
k=1

(−1)k(k − 1)!Bn,k(g1, g2, . . . , gn).

Comparing (1) and (2), we arrive at the desired result. 2
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The following lemma is similar to Lemma 2 in [4]. So we omit the proof.

Lemma 2.2 Let ts,j(n) denote the number of representations of n as a sum of j

s-gonal numbers. Then, we have

Bn,k(G′s(0), G′′s (0), · · · , Gn−k+1
s (0)) =

n!

k!

k∑
j=1

(−1)k−j
(
k

j

)
ts,j(n).

With the use of the above lemmas, we are now able to prove the following theo-

rem.

Theorem 2.3 For all positive integers n, s with s ≥ 4, we have

∑
d|n

1

d

(
(−1)dδ1

(n
d
, s− 2

)
+ δ2

(n
d
, s− 2

))
=

n∑
j=1

(−1)j

j

(
n

j

)
ts,j(n).

Proof. Our proof of the theorem is similar to the one given in [4, Theorem 1]. From

Lemma 2.1 and Lemma 2.2, we have∑
d|n

1

d

(
(−1)dδ1(

n

d
, s− 2) + δ2(

n

d
, s− 2)

)

=
1

n!

n∑
k=1

(−1)k(k − 1)!
n!

k!

k∑
j=1

(−1)k−j
(
k

j

)
ts,j(n)

=

n∑
k=1

k∑
j=1

(−1)j

k

(
k

j

)
ts,j(n)

=

n∑
j=1

(−1)jts,j(n)

n∑
k=j

1

k

(
k

j

)

=
n∑

j=1

(−1)j
1

j

(
n

j

)
ts,j(n),

where we have used the result

n∑
k=j

1

k

(
k

j

)
=

1

j

(
n

j

)
that can be derived easily from the identity(

k

j − 1

)
=

(
k + 1

j

)
−
(
k

j

)
.

2
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3. Corollaries

In this section, we present the results in [3, 4] and some other interesting results as

corollaries of Theorem 2.3.

Corollary 3.1 (Jha [4, Theorem 1]) For any positive integer n, we have

∑
d|n

d odd

2(−1)n

d
=

n∑
j=1

(−1)j

j

(
n

j

)
t4,j(n). (3)

Proof. Setting s = 4 in Theorem 2.3, we find that

∑
d|n

n
d odd

2(−1)d

d
+
∑
d|n

n
d even

1

d
=

n∑
j=1

(−1)j

j

(
n

j

)
t4,j(n). (4)

To prove that (4) is equivalent to (3), it is enough to show that

∑
d|n

d odd

2(−1)n

d
=
∑
d|n

n
d odd

2(−1)d

d
+
∑
d|n

n
d even

1

d
. (5)

We complete it by considering the following three possible cases of n.

Case I, n is odd: In this case, it is easily seen that both sides of (5) become

−
∑
d|n

d odd

2

d
.

Case II, n = 2k, where k ≥ 1: In this case, the left-hand side of (5) is equal to

2. Now, the right-hand side of (5) becomes

∑
d|2k

2k

d odd

2(−1)d

d
+

∑
d|2k

2k

d even

1

d
=

1

2k−1
+

(
1 +

1

2
+

1

22
+ · · ·+ 1

2k−1

)

=
1

2k−1
+

2k − 1

2k−1

= 2.

Thus, (5) is true for this case.
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Case III, n = 2km where k ≥ 1 and m is odd and greater than 1: The

left-hand side of (5) becomes ∑
d|n

d odd

2

d
. (6)

Again, the right-hand side of (5) is

∑
d|2km

2km
d odd

2(−1)d

d
+

∑
d|2km

2km
d even

1

d

=
∑

d|2km
d odd

2

2kd
+
( ∑

d|2km
d odd

1

d
+
∑

d|2km
d odd

1

2d
+
∑

d|2km
d odd

1

22d
+ · · ·+

∑
d|2km
d odd

1

2k−1d

)

=

(
1

2k−1
+ 1 +

1

2
+

1

22
+ · · ·+ 1

2k−1

) ∑
d|n

d odd

1

d

=
∑
d|n

d odd

2

d
.

(7)

From (6) and (7), we conclude that (5) is true for this case as well. 2

Corollary 3.2 (Jha [3, Theorem 1]) For any positive integer n, we have

∑
d|n

1 + 2(−1)d

d
=

n∑
j=1

(−1)j

j

(
n

j

)
t6,j(n). (8)

Proof. Setting s = 6 in Theorem 2.3, we obtain

∑
d|n

n
d odd

(−1)d

d
+

∑
d|n

n
d≡0 (mod 4)

1

d
=

n∑
j=1

(−1)j

j

(
n

j

)
t6,j(n). (9)

To prove the equivalence of (9) and (8), it is enough to show that

∑
d|n

n
d odd

(−1)d

d
+

∑
d|n

n
d≡0 (mod 4)

1

d
=
∑
d|n

1 + 2(−1)d

d
. (10)

We show it by considering three possible cases of n.
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Case I, n is odd: In this case, we notice that both sides of (10) become

−
∑
d|n

d odd

1

d
.

Case II, n = 2m with m odd: In this case, the left-hand side of (10) is

∑
d|2m

2m
d odd

(−1)d

d
+

∑
d|2m

2m
d ≡0 ( mod 4)

1

d
=
∑

2d|2m
d odd

(−1)2d

2d
=

1

2

∑
d|2m
d odd

1

d
.

The right-hand side of (10) is

∑
d|2m
d odd

1 + 2(−1)d

d
+
∑
d|2m
d even

1 + 2(−1)d

d
= −

∑
d|2m
d odd

1

d
+

3

2

∑
d|2m
d odd

1

d
=

1

2

∑
d|2m
d odd

1

d
.

Thus, (10) is true in this case.

Case III, n = 2km with m odd and k ≥ 2: In this case, the left-hand side of

(10) is

∑
d|2km

2km
d odd

(−1)d

d
+

∑
d|2km

2km
d ≡0 (mod 4)

1

d

=
1

2k

∑
d|2km
d odd

1

d
+

(
1 +

1

2
+

1

22
+

1

23
+ · · · 1

2k−2

) ∑
d|2km
d odd

1

d

=

(
2− 3

2k

) ∑
d|2km
d odd

1

d
.

(11)
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Again, the right-hand side of (10) is

∑
d|2km

1 + 2(−1)d

d

=
∑

d|2km
d odd

1 + 2(−1)d

d
+

∑
d|2km

d=2d1, d1 odd

1 + 2(−1)d

d
+

∑
d|2km

d=22d1, d1 odd

1 + 2(−1)d

d

+
∑

d|2km
d=23d1, d1 odd

1 + 2(−1)d

d
+ · · ·+

∑
d|2km

d=2kd1, d1 odd

1 + 2(−1)d

d

= −
∑

d|2km
d odd

1

d
+

3

2

(
1 +

1

2
+

1

22
+

1

23
+ · · · 1

2k−1

) ∑
d|2km
d odd

1

d

=

(
2− 3

2k

) ∑
d|2km
d odd

1

d
.

(12)

From (11) and (12), we arrive at (10) for this case. 2

Corollary 3.3 For any positive integer n, we have

∑
d|n

n
d≡1 or 2 (mod 3)

(−1)d

d
+

∑
d|n

n
d≡0 (mod 3)

1

d
=

n∑
j=1

(−1)j

j

(
n

j

)
t5,j(n).

Proof. The result follows by setting s = 5 in Theorem 2.3. 2

Corollary 3.4 Let n be a positive integer and σ(n) denote the sum of positive

divisors of n. Let p be an odd prime such that p | n and p2 - n. If n
p ≡ 1 or p −

1(mod p), then

n∑
j=1

(−1)j

j

(
n

j

)
tp+2,j(n) =

σ(n)

n
− 2

p
.

Otherwise,

n∑
j=1

(−1)j

j

(
n

j

)
tp+2,j(n) =

σ(n)

n
− 1

p
.
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Proof. Let p be as stated in the corollary. Setting s = p + 2 in Theorem 2.3, it

follows that, if n
p ≡ 1 or p− 1(mod p), then

n∑
j=1

(−1)j

j

(
n

j

)
tp+2,j(n) = −1

p
+
∑
d|n
d 6=p

1

d
.

Otherwise,

n∑
j=1

(−1)j

j

(
n

j

)
tp+2,j(n) =

∑
d|n
d 6=p

1

d
.

2

As ∑
d|n
d 6=p

1

d
=
∑
d|n

1

d
− 1

p
=

1

n

∑
d|n

n

d
− 1

p
=

1

n

∑
d|n

d− 1

p
=
σ(n)

n
− 1

p
,

we readily arrive at the desired results.
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