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Abstract

In 1989, Ming Luo showed that the Fibonacci number Un is triangular if and only
if n = ±1, 2, 4, 8, or 10. Over the course of his demonstration, he established a
Jacobi symbol criterion. Moreover, he observed that this problem is equivalent
to finding all integer points on two elliptic curves. In this paper, we shall prove a
Jacobi symbol criterion for more general families of binary recurrences. In addition,
applying the criterion and elementary methods, we shall determine all integer points
on the elliptic curves y2 = 5x2(x+ 3)2 + 4(−1)n.

1. Introduction

Let U = (Un)n≥0 be a binary recurrence sequence defined by initial terms U0, U1 ∈ Z
and the recurrence relation

Un+2 = AUn+1 +BUn (n ≥ 0),

where A and B are non-zero integers. Let α = (A +
√
D)/2 and β = (A −

√
D)/2

be the zeros of the characteristic polynomial of U given by p(x) = x2 − Ax − B,
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where D = A2 + 4B is the discriminant of U and

a = U1 − βU0, b = U1 − αU0, C = U2
1 −AU0U1 −BU2

0 .

The sequence U is called non-degenerate if C 6= 0 and α/β is not a root of unity.

It is well-known that if U is non-degenerate, then we have that

Un =
aαn − bβn

α− β
(1)

for all integers n ≥ 0. In fact, (1) holds whenever α− β 6= 0.

From this point on, we assume that B = 1, A ≥ 1 and U is non-degenerate.

Therefore, it is also well-known that U has a so-called associate sequence V =

(Vn)n≥0 for which

V 2
n −DU2

n = 4C(−1)n

holds for all n ≥ 0, where V0 = 2U1 − AU0, V1 = AU1 + 2BU0 and V satisfies the

same recurrence relation of U (for more details see [8]).

It follows from our assumption that U and V are the Fibonacci and Lucas se-

quences, respectively, for U0 = 0, U1 = 1 and A = 1, since we assume B = 1.

These sequences are famous for having several identities and interesting properties

associated with them. For these reasons, it is common to find several generaliza-

tions of these sequences. Many authors consider the problem of studying the binary

recurrence, the so-called k-Fibonacci sequence Fk = (Fk,n)n≥0 given by Fk,0 = 0,

Fk,1 = 1 and

Fk,n+2 = kFk,n+1 + Fk,n

for n ≥ 0, and its associated k-Lucas sequence Lk = (Lk,n)n≥0, where Lk,0 = 2 and

Lk,1 = k (for more details see [1, 2, 3, 4]).

There are many articles concerning the mixed exponential-polynomial Diophan-

tine equation

Un = P (x),

where P ∈ Z[x] is a polynomial. In particular, there is a special interest in the case

that P (x) has degree 2. Since Y = ±Lk,n and X = ±Fk,n are the complete set of

solutions of the Pell equations

Y 2 − (k2 + 4)X2 = 4(−1)n,

the condition Fk,n = P (x) is equivalent to finding all integer solutions of the Dio-

phantine equation Y 2−(k2+4)(P (x))2 = ±4 (for more details see [5]). In particular,

if P (x) has degree 2, this problem is equivalent to finding all integer points on these

two elliptic curves.

Thus, given the integers a, b and c with a 6= 0, we have that the solutions of the

equation ±Fk,n = a(x + b)(x + c) are the X-coordinates of integer points on the
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following elliptic curves:

y2 = a2(k2 + 4)(x+ b)2(x+ c)2 + 4(−1)n. (2)

For some values of the parameters in Equation (2), we can determine all integer

points on the previous curves by estimating linear forms in elliptic logarithms.

For example, the IntegralQuarticPoints() subroutine of Magma can be used to

determine the solutions of some equations of this type. However, in this paper, we

follow the ideas in [10, 11, 12] and consider the problem of determining these integer

points with elementary number theory methods, especially the Jacobi symbol.

Suppose that

±Fk,n = a(x+ b)(x+ c) (3)

with a, b, c integers with a 6= 0. Note that the Equations in (3) have a solution if

and only if (±4aFk,n + ∆) is a perfect square, where ∆ = a2(b + c)2 − 4a2bc =

a2(b− c)2 = d2. In this case, the Jacobi symbol(
±4aFk,n + d2

s

)
= 1

is valid for all odd positive integers s. The Jacobi symbol is an important tool in

the study of Diophantine equations involving perfect squares (for more examples

see [6, 7, 10, 11]). In order to determine an s such that the Jacobi symbol above is

−1, which implies that (±4aFk,n + ∆) is not a perfect square, we shall prove the

following Jacobi Symbol Criterion, which we believe to have independent interest.

Theorem 1 (Jacobi Symbol Criterion). Let a, d, k be positive integers, where d and

k are odd with d2 > 8a. If n ≡ ±2 (mod 6) and gcd(a, Ln) = 1, then(
±4aFk,2n + d2

Lk,2n

)
= −

(
±8aFk,n + d2Lk,n

64a2 + (k2 + 4)d4

)
,

whenever the right Jacobi symbol is proper.

We organize this paper as follows. In Section 2, we will prove the Jacobi Symbol

Criterion given by Theorem 1. In Section 3, we will use this criterion and some

auxiliary lemmas to determine all integer points on the elliptic curves y2 = 5x2(x+

3)2 + 4(−1)n.

2. Proof of Jacobi Symbol Criterion

Proof of Theorem 1. Firstly, let (Lk,n)n≥0 be the associate sequence given by

Lk,n+2 = kLk,n+1 + Lk,n, for n ≥ 0 and initial terms Lk,0 = 2 and Lk,1 = k. The

proof of Theorem 1 requires the following identities:
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Lk,2n = L2
k,n − 2(−1)n; (4)

Fk,2n = Fk,nLk,n; (5)

2Lk,2n = (k2 + 4)F 2
k,n + L2

k,n. (6)

These identities are generalizations of well-known identities associated with the

Fibonacci and Lucas sequences; for more details see [3]. Since k is odd and n ≡ ±2

(mod 6), we have that Lk,n ≡ 3 (mod 4) and Lk,2n ≡ 7 (mod 8). So, we can

consider the Jacobi symbol (
±4aFk,2n + d2

Lk,2n

)
.

Moreover, the Jacobi symbol (2 | Lk,2n) = 1, and thus(
±4aFk,2n + d2

Lk,2n

)
=

(
2

Lk,2n

)(
±4aFk,2n + d2

Lk,2n

)
=

(
±8aFk,2n + 2d2

Lk,2n

)
.

By (4), we have 2 ≡ L2
k,n (mod Lk,2n), since n is an even integer. Further, using

(5) we obtain (
±4aFk,2n + d2

Lk,2n

)
=

(
±8aFk,nLk,n + d2L2

k,n

Lk,2n

)
.

Note that 8a < d2 by hypothesis, thus ±8aFk,nLk,n + d2L2
k,n > 0. So, by quadratic

reciprocity it follows that(
±4aFk,2n + d2

Lk,2n

)
=

(
Lk,2n

±8aFk,nLk,n + d2L2
k,n

)
=

(
Lk,2n

Lk,n

)(
Lk,2n

±8aFk,n + d2Lk,n

)
,

since d2L2
k,n ≡ 1 (mod 4). Now, by (4) and using Lk,n ≡ 3 (mod 4) we obtain

(Lk,2n | Lk,n) = −(2 | Lk,n). Furthermore, (6) gives us(
±4aFk,2n + d2

Lk,2n

)
= −

(
2

Lk,n

)( 1
2 ((k2 + 4)F 2

k,n + L2
k,n)

±8aFk,n + d2Lk,n

)
.

In order to exchange the sum ((k2 + 4)F 2
k,n + L2

k,n)/2 for a product, we can

multiply it by a Jacobi symbol of a suitable perfect square. For this, we use the

following identity

16a2d2((k2 + 4)F 2
k,n + L2

k,n)

2
= (±8aFk,n+d2Lk,n)Q∓(64a3+(k2+4)ad4)Fk,nLk,n,

where we consider Q = (k2 + 4)ad2Fk,n + 8a2Lk,n in the case 8aFk,n + d2Lk,n and

Q = −(k2 + 4)ad2Fk,n + 8a2Lk,n in other case. It follows that(
±4aFk,2n + d2

Lk,2n

)
= −

(
2

Lk,n

)(
∓(64a3 + (k2 + 4)ad4)

±8aFk,n + d2Lk,n

)(
Fk,nLk,n

±8aFk,n + d2Lk,n

)
.
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Now,(
Lk,n

±8aFk,n + d2Lk,n

)
= −

(
±8aFk,n + d2Lk,n

Lk,n

)
= ∓

(
2a

Lk,n

)(
Fk,n

Lk,n

)
,

and n ≡ ±2 (mod 6) implies Fk,n ≡ (±1)(−1)
k−1
2 (mod 4), thus(

Fk,n

±8aFk,n + d2Lk,n

)
= (±1)(−1)

k−1
2

(
±8aFk,n + d2Lk,n

Fk,n

)
=

(
Fk,n

Lk,n

)
.

From this,(
±4aFk,2n + d2

Lk,2n

)
= ±

(
2

Lk,n

)(
∓(64a3 + (k2 + 4)ad4)

±8aFk,n + d2Lk,n

)(
2a

Lk,n

)
= −

(
a

Lk,n

)(
a

±8aFk,n + d2Lk,n

)(
64a2 + (k2 + 4)d4

±8aFk,n + d2Lk,n

)
= −

(
a

±8aLk,nFk,n + d2L2
k,n

)(
64a2 + (k2 + 4)d4

±8aFk,n + d2Lk,n

)
.

Writing a = 2sb with 2 - b, we obtain(
a

±8aLk,nFk,n + d2L2
k,n

)
=

(
2sb

±8aLk,nFk,n + d2L2
k,n

)

=

(
2s

±8aFk,nLk,n + d2L2
k,n

)(
d2L2

k,n

b

)
= 1,

since ±8aFk,nLk,n + d2L2
k,n ≡ 1 (mod 8) and b | a. Finally,(

±4aFk,2n + d2

Lk,2n

)
= −

(
64a2 + (k2 + 4)d4

±8aFk,n + d2Lk,n

)
= −

(
±8aFk,n + d2Lk,n

64a2 + (k2 + 4)d4

)
and this concludes the proof.

3. The Curves y2 = 5x2(x + 3)2 + 4(−1)n

In this section, we consider the elliptic curves y2 = 5x2(x+3)2+4(−1)n to exemplify

the method. It is well-known that X = ±Fn and Y = ±Ln are the complete set of

solutions of the Diophantine equations

Y 2 − 5X2 = 4(−1)n.
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So, we conclude that the curves y2 = 5x2(x+3)2+4(−1)n have integer points if and

only if the equation ±Fn = x(x + 3) has a solution. We shall prove the following

theorem.

Theorem 2. If (x, y) is a integer point on the elliptic curves

y2 = 5x2(x+ 3)2 + 4(−1)n,

then (x, y, n) ∈ {(−3,±2, 0), (−2,±4, 3), (−1,±4, 3), (0,±2, 0)}.

Clearly, −Fn = x(x+ 3) if and only if x ∈ {−3,−2,−1, 0}. Further, if n = 0 and

x = 0, then Fn = x(x + 3). We shall prove that there are no other solutions. To

achieve this, we will use the Jacobi Symbol Criterion and some auxiliary lemmas.

The following lemma will be used to reduce Fn modulo L2k, in order to apply

Theorem 1.

Lemma 1. For all integers k and m, and g odd,

F2kg+m ≡
{

F2k+m (mod L2k) if g ≡ 1 (mod 4)
−F2k+m (mod L2k) if g ≡ 3 (mod 4).

The proof of this lemma can be found in [11]. In our proof of Theorem 2 we use

the fact that n = 2 · 2w · 52 · 7t with w ≥ 3 and t odd. In order to guarantee this

condition we will prove the following lemma.

Lemma 2. If Fn = x(x+ 3) for some n, x ∈ N, then n ≡ 0 (mod 2800).

Proof. If n and x are integers such that Fn = x(x + 3), then 4Fn + 9 is a perfect

square. Hence, the Jacobi symbol (4Fn + 9 | Q) is equal to 1 for every odd positive

integer Q. So the idea of the proof is to show that if n is not congruent to 0 modulo

2800, then there is an odd prime Q such that (4Fn + 9 | Q) = −1.

The proof will be divided into five steps. In each step, we use some Jacobi symbol

properties and that (Fn)n≥0 is periodic modulo Q.

Step 1. n ≡ 0 (mod 4).

In fact, Fn is periodic modulo 3 and 7 with period 8 and 16, respectively, and(
4Fn + 9

3

)
= −1, if n ≡ 3, 5, or 6 (mod 8);(

4Fn + 9

7

)
= −1, if n ≡ ±1,±2,±3,±6, or± 7 (mod 16).

Thus, if (4Fn + 9 | Q) = 1 for all odd positive integers Q, then n ≡ 0 (mod 4).

Step 2. n ≡ 0 (mod 20).
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By step 1, we have that n ≡ 0, 4, 8, 12, or 16 (mod 20) and n ≡ 0, 4, 8, 2, or 6

(mod 10). Using that Fn is periodic modulo 5 and modulo 11 with periods 20 and

10, respectively, and(
4Fn + 9

Q

)
= −1, if (n,Q) ∈ {(4, 11), (8, 5), (12, 11), (16, 5)},

we get n ≡ 0 (mod 20).

Step 3. n ≡ 0 (mod 100).

Since n ≡ 0 (mod 20), we have n ≡ 0,±20,±40,±60,±80, or 100 (mod 200).

Note that Fn is periodic modulo 401 with period 200 and(
4Fn + 9

401

)
= −1, if n ≡ ±20, 40, 60, or± 80 (mod 200).

Moreover, if n ≡ 140 (mod 200), then n ≡ 40 (mod 100) and if n ≡ 160 (mod 200),

then n ≡ 10 (mod 50). Using the fact that Fn is periodic modulo 3001 and 101

with periods 100 and 50, respectively, and(
4Fn + 9

Q

)
= −1, if (n,Q) ∈ {(40, 3001), (10, 101)},

we obtain that n ≡ 0 (mod 100).

Step 4. n ≡ 0 (mod 700).

First of all, Fn is periodic modulo 13 and 29 with periods 28 and 14, respectively.

Using that 100k ≡ 0, 16, 4, 20, 8, 24, or 12 (mod 28) and 100k ≡ 0, 2, 4, 8, 10, or 12

(mod 14) for k = 0, 1, 2, 3, 4, 5, or 6, respectively, we get (4Fn + 9 | Q) = −1 if

(n,Q) ∈ {(16, 13), (4, 13), (6, 29), (8, 13), (10, 29)}. Thus, either n ≡ 0 (mod 700)

as we claim or n ≡ 600 (mod 700).

Note that Fn is periodic modulo 281 and 2801 with periods 56 and 1400, respec-

tively, and n ≡ 40, or 12 (mod 56) and n ≡ 600, or 1300 (mod 1400) in the case

n ≡ 600 (mod 700), but we have that (4Fn + 9 | Q) = −1 if (n,Q) ∈ {(600, 2801),

(12, 281)}, so we conclude that n ≡ 0 (mod 700).

Step 5. n ≡ 0 (mod 2800).

Finally, as n ≡ 0 (mod 700) and Fn is periodic modulo 47 and 1601 with pe-

riods 32 and 160, respectively, we consider that 700k ≡ 0, 28, 24, 20, 16, 12, 8, or 4

(mod 32) and 700k ≡ 0, 60, 120, 20, 80, 140, 40, or 100 (mod 160), where we take

k = 0, 1, 2, 3, 4, 5, 6, or 7, respectively. Since the Jacobi symbol (4Fn + 9 | Q) = −1

whenever (n,Q) ∈ {(28, 47), (24, 47), (20, 47), (140, 1601), (8, 47), (100, 1601)}, so

we get k = 0 or k = 4. Hence, we conclude n ≡ 0 (mod 2800) and this completes

the proof.
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For the purpose of simplifying the Jacobi Symbol Criterion proved in Theorem

1, we shall prove the following lemma. Before that, let νp(r) be the p-adic valuation

of a integer r, i.e., the exponent of the highest power of a prime p which divides

r. The p-adic valuation of a Fibonacci number was completely characterized, see

[9]. For instance, if m ≡ 0 (mod 8) we have ν7(Fm) = ν7(m) + 1, and now we have

conditions to prove the following lemma.

Lemma 3. If m ≡ 0 (mod 16), then (±8Fm + 9Lm | 7) = 1.

Proof. Note that 7 | Fm/2, since m/2 ≡ 0 (mod 8) and ν7(Fm/2) = ν7(m/2)+1 ≥ 1.

Thus, by (6),(
Lm

7

)
=

(
1
2 (5F 2

m/2 + L2
m/2)

7

)
=

(
10F 2

m/2 + 2L2
m/2

7

)
=

(
2L2

m/2

7

)
= 1.

Therefore, (
±8Fm + 9Lm

7

)
=

(
9Lm

7

)
=

(
Lm

7

)
= 1

and we conclude the proof of the lemma.

Now, considering a = 1, k = 1, d = 3 and n ≡ ±16 (mod 48) in the Jacobi

Symbol Criterion and applying the lemma above, we obtain(
±4F2n + 9

L2n

)
= −

(
±8Fn + 9Ln

64 + 5 · 81

)
= −

(
±8Fn + 9Ln

469

)
= −

(
±8Fn + 9Ln

7

)(
±8Fn + 9Ln

67

)
= −

(
±8Fn + 9Ln

67

)
,

where we use the fact that n ≡ ±16 (mod 48) implies n ≡ ±2 (mod 6) and n ≡ 0

(mod 16).

The following lemma will be useful to calculate (±8Fn + 9Ln | 67) and we use

the Sage Mathematics Software System [13] to simplify the calculations of its proof.

Lemma 4. Let w ≥ 3 be a positive integer. If w ≡ 0, 1, 2, 3, 4, 5, 6,or 7 (mod 8),

then we have

F2w ≡ 18, 62, 64, 21, 49, 5, 3, or 46 (mod 67),
L2w ≡ 63, 14, 60, 47, 63, 14, 60, or 47 (mod 67),
F2w·7 ≡ 4, 65, 37, 10, 63, 2, 30, or 57 (mod 67),
L2w·7 ≡ 33, 15, 22, 13, 33, 15, 22, or 13 (mod 67),
F2w·52 ≡ 21, 49, 5, 3, 46, 18, 62, or 64 (mod 67),
L2w·52 ≡ 47, 63, 14, 60, 47, 63, 14, or 60 (mod 67),
F2w·52·7 ≡ 10, 63, 2, 30, 57, 4, 65, or 37 (mod 67),
L2w·52·7 ≡ 13, 33, 15, 22, 13, 33, 15, or 22 (mod 67),
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respectively.

Proof. Note that Fn and Ln are periodic modulo 67 with period 136. Let nw = 2wt

be a positive integer, where w ≥ 3 and t is a fixed integer with gcd(t, 17) = 1. Since

(nw/2
3)w≥3 is a sequence of integers periodic modulo 17 with period 8, we have

that Fnw
and Lnw

are periodic modulo 67 with period 8. After some calculations,

we obtain the values in the lemma and this completes the proof.

Proof of Theorem 2. Now, we are able to study the equation y2 = 5x2(x+ 3)2 ± 4.

We shall prove that the only integer points on these elliptic curves are (x, y) =

(0,±2). To obtain a contradiction, suppose that Fn = x(x+ 3) has a solution with

(n, x) 6= (0, 0). By Lemma 2, we have that n = 2 · 2w · 52 · 7t with w ≥ 3 and t odd.

Moreover, we can write n = 2gk such that 3 - k and g is odd. Hence, by Lemma 1,

we have (
4Fn + 9

L2k

)
=


(

4F2k+9
L2k

)
, if g ≡ 1 (mod 4),(

−4F2k+9
L2k

)
, if g ≡ 3 (mod 4).

Case 1: t ≡ 1 (mod 4).

• If w ≡ 0, 3, 5, 6, or 7 (mod 8), then we consider k = 2w and g = 52 · 7t. Note

that g ≡ 3 (mod 4), thus by Lemma 1, the Jacobi Symbol Criterion and

Lemma 4, we obtain(
4Fn + 9

L2k

)
=

(
−4F2k + 9

L2k

)
= −

(
−8Fk + 9Lk

67

)
= −1.

• If w ≡ 1, 2, or 4 (mod 8), then we take k = 2w · 52 · 7 and g = t. Using again

Lemma 1, the Jacobi Symbol Criterion and Lemma 4, we have(
4Fn + 9

L2k

)
=

(
4F2k + 9

L2k

)
= −

(
8Fk + 9Lk

67

)
= −1.

Case 2: t ≡ 3 (mod 4).

• If w ≡ 1, 2, 3, 4, or 7 (mod 8), then we take k = 2w and g = 53 · 7t. Note that

g ≡ 1 (mod 4), so in this case we have(
4Fn + 9

L2k

)
=

(
4F2k + 9

L2k

)
= −

(
8Fk + 9Lk

67

)
= −1.

• Finally, if w ≡ 0, 5, or 6 (mod 8), then putting k = 2w · 52 · 7 and g = t, we

conclude that(
4Fn + 9

L2k

)
=

(
−4F2k + 9

L2k

)
= −

(
−8Fk + 9Lk

67

)
= −1.
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Therefore, we obtain a contradiction in all cases. These contradictions occur by

supposing that Fn = x(x+3) has a solution other than (n, x) = (0, 0). Accordingly,

if (x, y) is an integer point on the elliptic curves

y2 = 5x2(x+ 3)2 + 4(−1)n,

then (x, y, n) ∈ {(−3,±2, 0), (−2,±4, 3), (−1,±4, 3), (0,±2, 0)}, and this completes

the proof of Theorem 2.
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