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Abstract

Numerous congruences for partitions with designated summands have been proven
since first being introduced and studied by Andrews, Lewis, and Lovejoy. This paper
explicitly characterizes the number of partitions with designated summands whose
parts are not divisible by 2`, 2, and 3` working modulo 2, 4, and 3, respectively,
greatly extending previous results on the subject. We provide a few applications of
our characterizations throughout in the form of congruences and a computationally
fast recurrence. Moreover, we illustrate a previously undocumented connection
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between the number of partitions with designated summands and the number of
partitions with odd multiplicities.

1. Introduction

Partitions with designated summands have been studied by many authors since

first being introduced by Andrews, Lewis, and Lovejoy in [2]. These partitions are

constructed by taking the ordinary partitions and marking exactly one part of each

part size, often denoted by affixing a prime to the tagged part. For instance, there

are 15 partitions of 5 with designated summands:

5′, 4′ + 1′, 3′ + 2′, 3′ + 1′ + 1, 3′ + 1 + 1′, 2′ + 2 + 1′,

2 + 2′ + 1′, 2′ + 1′ + 1 + 1, 2′ + 1 + 1′ + 1, 2′ + 1 + 1 + 1′, 1′ + 1 + 1 + 1 + 1,

1 + 1′ + 1 + 1 + 1, 1 + 1 + 1′ + 1 + 1, 1 + 1 + 1 + 1′ + 1, 1 + 1 + 1 + 1 + 1′.

Hence, PD(5) = 15, where PD(n) denotes the total number of partitions of n with

designated summands.

By [2, Theorem 1], the generating function for the number of partitions with

designated summands whose parts belong to a set of positive integers, S, is given

by ∑
n≥0

PDS(n)qn =
∏
n∈S

1− q6n

(1− qn)(1− q2n)(1− q3n)
.

Furthermore, by taking Sk to be the set of positive integers not divisible by k,

one obtains the generating function for the number of partitions with designated

summands whose parts are not divisible by k. It is given in [2, Corollary 3] by∑
n≥0

PDk(n)qn =
(q6; q6)∞(qk; qk)∞(q2k; q2k)∞(q3k; q3k)∞

(q; q)∞(q2; q2)∞(q3; q3)∞(q6k; q6k)∞
,

where (a; q)∞ =
∏

n≥0(1− aqn) represents the q-series or q-Pochhammer symbol.

The generating function for PDk(n), which will be the central object of study

for this paper, has been used to prove numerous congruences for partitions with

designated summands in [2, 5, 7, 8, 10, 15]. In some cases, the generating function

for PDk(n) is more explicitly known. For instance, one has the following complete

characterization of PD2(n) modulo 2.

Theorem 1 ([2, Corollary 10]). For all n ≥ 0,

PD2(n) ≡

{
1 (mod 2), if n = 0 or n = k2 for k ≥ 1, 3 - k
0 (mod 2), otherwise.
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Similarly, a complete characterization of PD3(n) modulo 3 exists.

Theorem 2 ([7, Theorem 2]). For all n ≥ 0,

PD3(n) ≡

{
1 (mod 3), if n = 0,

r(n) (mod 3), otherwise,

where r(n) is the number of solutions to n = k(k+1)+3m(m+1)+1 in nonnegative

integers k,m.

In this paper, we study further characterizations of PDk(n) by means of its

generating function. In particular, we characterize PD2`(n) (mod 2) in Section 3,

PD2(n) (mod 4) in Section 6, and PD3`(n) (mod 3) in Section 8.

In Section 3, Theorem 3, we show that PD2`(n) ≡ an` (mod 2), where

an` =
∣∣∣{solutions to n =

`−1∑
m=0

2mk2m | km ≥ 0, 3 - km or km = 0}
∣∣∣.

For example, along with a few auxiliary results, this allows us to validate numerous

congruences in Theorem 4 and Corollary 1. For n ≥ 0 and r ∈ {5, 7, 10, 13, 14, 15, 20,

21, 23, 26, 28, 29, 30, 31}, we have PD4(32n+r) ≡ 0 (mod 2) and PD8(32n+24) ≡ 0

(mod 2). Additionally, for ` ≥ 3 and r ∈ {4, 6}, PD2`(8n + r) ≡ 0 (mod 2). For

` ≥ 4 and r ∈ {4, 6, 10, 12, 14}, PD2`(16n + r) ≡ 0 (mod 2). For ` ≥ 5 and

r ∈ {4, 6, 10, 12, 14, 16, 20, 22, 24, 26, 28, 30}, PD2`(32n+r) ≡ 0 (mod 2). In general,

for ` ≥ j ≥ 3 and 0 ≤ s < 2j−1 with s 6∈ {0, 4a(8b+1) | a, b ≥ 0}, PD2`(2
jn+2s) ≡ 0

(mod 2).

Finally, in Theorem 6 we provide the very interesting congruence, PD(n) ≡ bn
(mod 2), which links the number PD(n) of partitions of n with designated sum-

mands [19, A077285] to the number bn of partitions of n with odd multiplicities

[19, A055922]. This may be of use in the study of the parity of partitions with odd

multiplicities as in [12], [13], and [18].

In Sections 4 and 7, we prove the following remarkably explicit alternate charac-

terization of PD4(n) (mod 2) in Theorem 7: For all n ≥ 0,

PD4(n) ≡

{
1 (mod 2), if n = mk2 for m, k ≥ 0, m | 6,
0 (mod 2), otherwise.

In Section 5, motivated by [2, Corollaries 6 and 9], [11], and Section 3, for general

n ≥ 0 and k ≥ 2, we also provide a computationally fast recurrence for PDk(n)

(mod 2) in Theorem 8 of the form

PDk(n) +
∑

`≥1, 3-`

PDk(n− `2) ≡

{
1 (mod 2), if n = 0 or n = km2 for some 3 - m,
0 (mod 2), otherwise.
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In Section 6, we consider PD2(n) (mod 4). Theorem 10 gives the explicit char-

acterization PD2(2n+ 1) ≡ dn (mod 4), where

dn =

∣∣∣∣{solutions to n = 3j(3j − 1) + 3k(3k − 1) = 2
[(3j

2

)
+

(
3k

2

)] ∣∣∣ k, j ∈ Z
}∣∣∣∣.

Theorem 11 provides an explicit characterization of PD2(2n) (mod 4) as∑
n≥0

PD2(2n)qn ≡ 1 + 2
∑

k≥1, 3-k

qk
2

+
∑

k,`≥1, 3-k,`

qk
2+`2 (mod 4).

Theorem 13 gives the following combined expression,∑
n≥0

PD2(n)qn ≡ 1 +
( ∑

k≥1, 3-k

qk
2
)(∑

k∈Z
qk

2
)

(mod 4).

Finally, in Theorem 12, we show that for n ≥ 1, PD2(3n) ≡ 0 (mod 4). Moreover,

for all n ≥ 1 with 6 - n, PD2(2n+ 1) ≡ 0 (mod 4).

In Section 8, Theorem 15, we show that PD3(n) ≡ en1 (mod 3), where

en1 =
∣∣{solutions to n = k20 + 3k21 |

km ∈ Z or N when km is even or odd, respectively}
∣∣.

This gives an alternate characterization of Theorem 2. See Remark 2 for alternate

forms of en1 and Theorem 16 for a general description of PD3`(n) (mod 3).

In Theorem 19, for all n ≥ 0 and ` ≥ 2, we show that PD3`(3n) ≡ e∗n` (mod 3),

where

e∗n` =
∣∣{solutions to n = k20 + k′20 + 3`−1(k21 + k′21 ) |

km, k
′
m ∈ Z or N when km, k

′
m is even or odd, respectively}

∣∣.
As an easy application of our results, Theorem 17, we give very short proofs of

the congruences PD3(9n+6) ≡ 0 (mod 3) and PD3`(3n+2) ≡ 0 (mod 3) for which

proofs using dissections can be found in [7, Theorem 3] and [8, Theorem 3]. As a

further application, Theorem 18, we show that for n ≥ 1, PD3(2n) ≡ 0 (mod 3).

Moreover, for all n ≥ 0 and ` ≥ 3, PD3`(27n + 9) ≡ 0 (mod 3) and, for all n ≥ 0

and ` 6= 2, PD3`(27n+18) ≡ 0 (mod 3). Finally, in Corollary 2, for all n ≥ 0, k ≥ 1

and ` ≥ 2k+1, we show that PD3`
(
32k(3n+1)

)
≡ PD3`

(
32k(3n+2)

)
≡ 0 (mod 3).

In Section 9, we conclude with some remarks and conjectured congruences.

2. General Notation and Basic Results

Definition 1. Let

fk = fk(q) = (qk; qk)∞ =
∏
n≥1

(1− qkn) = f1(qk),
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pd(q) =
∑
n≥0

PD(n)qn,

pdk(q) =
∑
n≥0

PDk(n)qn,

where, once again, PD(n) denotes the number of partitions of n with designated

summands (ordinary partitions with exactly one part designated among parts with

equal size) and PDk(n) denotes the number of partitions of n with designated

summands whose parts are not divisible by k.

Using this notation, the generating functions can be written as

pd(q) =
f6(q)

f1(q)f2(q)f3(q)

and

pdk(q) =
f6(q)

f1(q)f2(q)f3(q)

fk(q)f2k(q)f3k(q)

f6k(q)
=

f6(q)

f1(q)f2(q)f3(q)

f1(qk)f2(qk)f3(qk)

f6(qk)
.

Definition 2. Let

g(q) =
1

pd(q)
=
f1(q)f2(q)f3(q)

f6(q)
.

With Definition 2, we have

pdk(q) =
g(qk)

g(q)
. (1)

Modulo a prime, p, the Frobenius automorphism implies that

fpk(q) = fk(qp) ≡ fk(q)p (mod p)

so that g(qp) ≡ g(q)p (mod p). Therefore, Equation (1) gives us

pdp(q) ≡ g(q)p−1 (mod p). (2)

Finally, observe that

pdp`(q) =
g(qp

`

)

g(q)
=

`−1∏
m=0

g(qp
m+1

)

g(qpm)
=

`−1∏
m=0

pdp(qp
m

). (3)

3. The Case of pd2`(q) (mod 2)

The following can be written more succinctly, but is written to synchronize better

with the general case which follows directly after.
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Lemma 1. We have

pd2(q) ≡ g(q) ≡ 1

pd(q)
(mod 2) and pd2(q) ≡

∑
n≥0

an1q
n (mod 2),

where

an1 =
∣∣{solutions to n = k20 | k0 ≥ 0, 3 - k0 or k0 = 0}

∣∣.
Proof. Using p = 2 in Equation (2), we immediately get pd2(q) ≡ g(q) ≡ 1

pd(q)

(mod 2).

The second statement is a rephrasing of Theorem 1,

pd2(q) ≡ 1 +
∑

k≥1, 3-k

qk
2

(mod 2). � (4)

The general case is given by the following.

Theorem 3. For all n ≥ 0 and ` ≥ 1, PD2`(n) ≡ an` (mod 2), where

an` =
∣∣∣{solutions to n =

`−1∑
m=0

2mk2m | km ≥ 0, 3 - km or km = 0}
∣∣∣.

Proof. Using Equations (3) and (4), we see that

pd2`(q) =

`−1∏
m=0

pd2(q2
m

) ≡
`−1∏
m=0

(
1 +

∑
k≥1, 3-k

q2
mk2
)

(mod 2).

The result follows.

As a first easy application of Theorem 3, we prove the following newly observed

congruences of the form PD2`(32n+ r).

Theorem 4. For n ≥ 0 and r ∈ {5, 7, 10, 13, 14, 15, 20, 21, 23, 26, 28, 29, 30, 31},
PD4(32n+ r) ≡ 0 (mod 2), and, for n ≥ 0, PD8(32n+ 24) ≡ 0 (mod 2).

Proof. The first congruence is immediate as the only quadratic residues modulo 32

are 0, 1, 4, 9, 16, 17, and 25.

For the second congruence, we need to pair off solutions (k0, k1, k2) of the equa-

tion

32n+ 24 = k20 + 2k21 + 4k22. (5)

Note that we have k20 ≡ 0 (mod 2), so that 2 | k0, and we can write k0 = 2a for

some integer a. This gives 32n+ 24 = 4a2 + 2k21 + 4k22. Note that with (2a, k1, k2)

also (2k2, k1, a) is a solution of (5), and for k2 6= a we will pair these two solutions

off. This leaves us with considering solutions of the form (2a, k1, a) and the equation
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32n + 24 = 4a2 + 2k21 + 4a2 = 8a2 + 2k21. Note that we have 2k21 ≡ 0 (mod 4), so

that 2 | k1, and we can write k1 = 2b for some integer b. This gives the equation

4n + 3 = a2 + b2 which is not satisfiable as the only quadratic residues modulo 4

are 0 and 1. Thus, solutions of the form (2a, k1, a) do not exist and the pairing is

complete.

Our next result expands on and iterates the idea of pairing off solutions.

Theorem 5. For n ≥ 0, ` ≥ 3, and 0 ≤ s < 2`−1, if PD2`(2
`n+ 2s) ≡ 1 (mod 2),

then s is a quadratic residue modulo 2`−1. Equivalently, if 0 ≤ s < 2`−1 and s is a

quadratic nonresidue modulo 2`−1, then PD2`(2
`n+ 2s) ≡ 0 (mod 2).

Moreover, for all n ≥ 0, ` ≥ 2, we have PD2`(2n) ≡ a∗n` (mod 2), where

a∗n` =
∣∣{solutions to n = k20 + 2`−1k21 | km ≥ 0, 3 - km or km = 0}

∣∣.
Proof. We will be pairing off the solutions (k0, k1, k2, k3, . . . , k`−1) of the equation

2`n+ 2s = k20 + 2k21 + 4k22 + 8k23 + 16k24 + . . .+ 2`−1k2`−1. (6)

Note that we have k20 ≡ 0 (mod 2), so that 2 | k0, and we can write k0 = 2a for

some integer a. This gives

2`n+ 2s = 4a2 + 2k21 + 4k22 + 8k23 + 16k24 + . . .+ 2`−1k2`−1.

Now with (2a, k1, k2, k3, . . . , k`−1), we also see that (2k2, k1, a, k3, . . . , k`−1) is a

solution of (6), and for k2 6= a we will pair these two solutions off. This leaves us

with considering solutions of the form (2a, k1, a, k3, . . . , k`−1) and the equation

2`n+ 2s = 4a2 + 2k21 + 4a2 + 8k23 + 16k24 + . . .+ 2`−1k2`−1.

Note that with (2a, k1, a, k3, k4 . . . , k`−1), also (2k3, k1, k3, a, k4 . . . , k`−1) is a solu-

tion of (6), and for k3 6= a we will pair these two solutions off. This leaves us with

considering solutions of the form (2a, k1, a, a, k4 . . . , k`−1) and the equation

2`n+ 2s = 4a2 + 2k21 + 4a2 + 8a2 + 16k24 + . . .+ 2`−1k2`−1.

This process can be iterated until we are left to consider solutions of the form

(2a, k1, a, a, . . . , a) and the equation

2`n+ 2s = 4a2 + 2k21 + 4a2 + 8a2 + 16a2 + . . .+ 2`−1a2 = 2k21 + 2`a2.

In particular, 2`−1n+ s = k21 + 2`−1a2. Thus, s ≡ k21 (mod 2`−1) and the first part

of the theorem follows. The second part of the theorem is now easy.

We continue with a general auxiliary result.
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Lemma 2. If there exist j and r such that the congruence PD2j (2jn + r) ≡ 0

(mod 2) holds for all n ≥ 0, then PD2`(2
jn + r) ≡ 0 (mod 2) for all n ≥ 0 and

` ≥ j.

Proof. Let j, `, n, and r be fixed. With

L =
{

solutions to 2jn+ r = s+

`−1∑
m=j

2mk2m | s, km ≥ 0, 3 - km or km = 0
}

we have a2jn+r,` =
∑{

asj | (s, kj , kj+1, . . . , k`−1) ∈ L
}
, where s ≡ r (mod 2j)

for all (s, kj , kj+1, . . . , k`−1) ∈ L. Hence, asj ≡ PD2j (s) ≡ 0 (mod 2) for all

(s, kj , kj+1, . . . , k`−1) ∈ L, so that PD2`(2
jn+ r) ≡ a2jn+r,` ≡ 0 (mod 2).

As a demonstration of how Theorem 5 and Lemma 2 combine to efficiently prove

congruences, we provide the following corollary. Some of these results were proven

with dissections in [8, Equations (3), (5), and (8)].

Corollary 1. Let n ≥ 0. For ` ≥ 3 and r ∈ {4, 6} holds PD2`(8n+ r) ≡ 0 (mod 2).

For ` ≥ 4 and r ∈ {4, 6, 10, 12, 14}, PD2`(16n + r) ≡ 0 (mod 2). For all ` ≥ 5

and r ∈ {4, 6, 10, 12, 14, 16, 20, 22, 24, 26, 28, 30}, PD2`(32n + r) ≡ 0 (mod 2). In

general, for ` ≥ j ≥ 3 and 0 ≤ s < 2j−1 with s not of the form 0 or 4a(8b+ 1) for

some a, b ≥ 0, PD2`(2
jn+ 2s) ≡ 0 (mod 2).

Proof. We apply Theorem 5 first with ` = 3. The quadratic nonresidues modulo 4

are 2 and 3. Thus for n ≥ 0 and r ∈ {4, 6}, PD8(8n+ r) ≡ 0 (mod 2).

For ` = 4, the quadratic nonresidues modulo 8 are 2, 3, 5, 6, and 7. So, for

r ∈ {4, 6, 10, 12, 14}, PD16(16n+ r) ≡ 0 (mod 2).

For ` = 5, the quadratic nonresidues modulo 16 are 2, 3, 5, 6, 7, 8, 10, 11, 12, 13, 14,

and 15. So, for r ∈ {4, 6, 10, 12, 14, 16, 20, 22, 24, 26, 28, 30}, PD32(32n + r) ≡ 0

(mod 2).

In general, for j ≥ 3, the quadratic residues modulo 2j−1 are 0 and all numbers

of the form 4a(8b + 1) for a, b ≥ 0. So if 0 ≤ s < 2j−1 is not of this form, then

PD2j (2jn+ 2s) ≡ 0 (mod 2).

The rest follows from Lemma 2.

The function pd2(q) ≡ 1
pd(q) (mod 2) is well known. We end this section on an

interesting new interpretation of its reciprocal.

Theorem 6. We have pd(q) ≡ 1
pd2(q)

≡ 1 +
∑

n≥1 bnq
n (mod 2), where

bn =
∣∣{partitions of n | the multiplicity of each part is odd}

∣∣.
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Proof. Observe that

1− q6

(1− q)(1− q2)(1− q3)
≡ (1− q3)2

(1− q)(1− q2)(1− q3)

=
1 + q + q2

1− q2
≡ 1 +

∑
k≥0

q2k+1 (mod 2).

Using the above equation in conjunction with the definition of pd(q) in terms of the

fk, we get pd(q) ≡
∏

n≥1(1 +
∑

k≥0 q
(2k+1)n) (mod 2) and the result follows.

Theorem 6 provides the hitherto undocumented congruence PD(n) ≡ bn (mod 2),

which links the number PD(n) of partitions of n with designated summands [19,

A077285] to the number bn of partitions of n with odd multiplicities [19, A055922].

This may be of use in understanding the parity of partitions with odd multiplicities

as studied in [12], [13], and [18].

4. An Alternate Characterization of pd4(q) (mod 2)

In the case of ` = 2, Theorem 3 says PD4(n) ≡ an2 (mod 2), where

an2 =
∣∣{solutions to n = k20 + 2k21 | km ≥ 0, 3 - km or km = 0}

∣∣.
In this section we give a remarkably explicit formula for an2 (mod 2) together with a

combinatorial proof. A dissection proof for the same result is provided in Section 7.

Theorem 7. For all n ≥ 0,

an2 ≡

{
1 (mod 2), if n = mk2 for m, k ∈ Z≥0 with m | 6,
0 (mod 2), otherwise.

Proof. Let L(n) =
{

(k0, k1) | n = k20 + 2k21, km ≥ 0, 3 - km or km = 0
}

so that

an2 = |L(n)|. Recall that 0, 1 are the only quadratic residues modulo 3.

Case 1: n ≡ 1 (mod 3)

For (a, b) ∈ L(n), n = a2 + 2b2 ≡ 1 (mod 3) is only possible for b = 0. Thus,

|L(n)| =

{
1, if n = k2 for some k ∈ Z≥0,
0, otherwise,

confirming the theorem for n ≡ 1 (mod 3).

Case 2: n ≡ 2 (mod 3)

For (a, b) ∈ L(n), n = a2 + 2b2 ≡ 2 (mod 3) is only possible for a = 0. Thus,

|L(n)| =

{
1, if n = 2k2 for some k ∈ Z≥0,
0, otherwise,
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confirming the theorem for n ≡ 2 (mod 3).

Case 3: n ≡ 0 (mod 3)

The case n ≡ 0 (mod 3) is more involved. For n = 0, we have L(0) = {(0, 0)}
and a02 = |L(0)| = 1, confirming the theorem. Thus we may assume n > 0. Let

S(n) = {(k0, k1) | n = k20 + 2k21, km ∈ Z}. We define an equivalence relation on

S(n) by

(a, b) ∼ (c, d) if and only if |a| = |c| and |b| = |d|, for (a, b), (c, d) ∈ S(n).

Next, we investigate the equivalence classes of S(n)/ ∼.

For (a, b) ∈ S(n), n = a2 + 2b2 ≡ 0 (mod 3) is only possible for a, b ≡ 0 (mod 3)

or a, b 6≡ 0 (mod 3). In particular, in this case,

L(n) = {(k0, k1) | n = k20 + 2k21, km > 0, 3 - km},

and L(n) contains exactly one representative for each equivalence class [(a, b)] ∈
S(n)/ ∼ with a, b 6≡ 0 (mod 3).

Noting that

a2 + 2b2 = n if and only if

(
a+ 4b

3

)2

+ 2

(
2a− b

3

)2

= n,

we define Ψ : R2 → R2 by

Ψ(a, b) =

(
a+ 4b

3
,

2a− b
3

)
.

Observe that Ψ is an involution, i.e., Ψ2 is the identity map on R2.

We define a graph whose vertices are the equivalence classes of S(n)/ ∼ by

connecting [(a, b)] with [(c, d)] if Ψ(a′, b′) ∈ [(c, d)] for some (a′, b′) ∈ [(a, b)]. Since

Ψ is an involution, [(a, b)] is connected with [(c, d)] if and only if [(c, d)] is connected

with [(a, b)], and the resulting graph is undirected. We will further investigate this

graph. We begin by discussing the most common occurrences, treating exceptions

last.

The equivalence classes [(a, b)] ∈ S(n)/ ∼ with a, b 6≡ 0 (mod 3) are in one-to-one

correspondence with L(n). With exceptions to follow below, each such equivalence

class is usually connected with exactly one other equivalence class. In particular,

for a 6≡ b (mod 3), [(a, b)] is connected to [Ψ(a, b)]; and for a ≡ b (mod 3), we have

that [(a, b)] is connected to [Ψ(a,−b)]. Similarly, with exceptions to follow, the

equivalence classes [(a, b)] ∈ S(n)/ ∼ with a, b ≡ 0 (mod 3) are usually connected

with exactly two other equivalence classes, [Ψ(a, b)] and [Ψ(a,−b)].
Thus, the resulting graph will usually separate the equivalence classes corre-

sponding to L(n) into connected pairs, hence |L(n)| ≡ 0 (mod 2).

Exceptions to the above happen if either of the following two cases occurs:
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(1) One equivalence class is connected to itself, that is, [Ψ(a, b)] = [(a, b)]. This

case occurs if and only if∣∣∣∣2a− b3

∣∣∣∣ = |b|, so that a = −b or a = 2b.

Thus, this case occurs if and only if (k, k) or (2k, k) ∈ S(n), which is equiva-

lent to n = 3k2 or 6k2.

(2) One equivalence class connects to the same equivalence class twice, that is,

[Ψ(a, b)] = [Ψ(a,−b)]. This case occurs if and only if∣∣∣∣2a− b3

∣∣∣∣ =

∣∣∣∣2a+ b

3

∣∣∣∣ , so that a = 0 or b = 0.

Thus, this case occurs if and only if (0, k) or (k, 0) ∈ S(n), which is equivalent

to n = 2k2 or k2 with k ≡ 0 (mod 3).

This completes the proof of the theorem.

Remark 1. The solution set of the Diophantine equation a2 + 2b2 = n can be fur-

ther investigated using unique factorization in the principal ideal domain Z
[√
−2
]
.

5. A Recurrence Relation for PDk(n) (mod 2)

While Theorem 3 provides an explicit description of PD2`(n) (mod 2), for general

PDk(n) (mod 2) we have the following computationally fast recurrence.

Theorem 8. For n ≥ 0 and k ≥ 2,

PDk(n) +
∑

`≥1, 3-`

PDk(n− `2) ≡

{
1 (mod 2), if n = 0 or n = km2, m ≥ 1, 3 - m,
0 (mod 2), otherwise.

Proof. Combining Equation (1) with Lemma 1 gives

pdk(q) =
g(qk)

g(q)
≡ pd2(qk)

pd2(q)
(mod 2).

Substituting Equation (4), we have∑
n≥0

PDk(n)qn

1 +
∑

`≥1, 3-`

q`
2

 ≡ 1 +
∑

m≥1, 3-m

qkm
2

(mod 2),

and the result follows.
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6. The Case of pd2(q) (mod 4)

Next we turn to pd2(q) (mod 4) beginning with a helpful result.

Lemma 3. We have f31 ≡
∑

n≥0 q
n(n+1)

2 (mod 4) and

qf38 ≡
∑

n≥1, 2-n

qn
2

(mod 4). (7)

Proof. For any positive integers k and m, we have the identity, [7, Lemma 5],

f2m2k ≡ f4mk (mod 4). (8)

Therefore, the theta identity [1, Equation (2.2.13)] provides

∑
n≥0

q
n(n+1)

2 =
(q2; q2)∞
(q; q2)∞

=
f22
f1
≡ f31 (mod 4),

and the second identity is an immediate consequence of

qf38 = q[f1(q8)]3 ≡ q
∑
n≥0

q4n(n+1) =
∑
n≥0

q(2n+1)2 (mod 4).

This result allows one to prove the following characterization.

Theorem 9. For all n ≥ 0, PD2(n) ≡ cn (mod 4) where

cn =
∣∣∣{solutions to n =

3k0(k0 + 1)

2
+
∑
m≥1

km(12am + bm) |

km, am ≥ 0, bm ∈ {0, 1, 2, 3}, 1 ≤ k1 < k2 < k3 < . . .}
∣∣∣.

Proof. With Equation (8), we have the generating function

pd2(q) =
f4f

2
6

f1f3f12
≡ f33 f4
f1f12

(mod 4).

The result follows now easily from f33 = [f1(q3)]3 ≡
∑

k≥0 q
3k(k+1)

2 (mod 4) and

1− x4

(1− x)(1− x12)
=

1

1 + x4 + x8

∑
n≥0

xn =
∑

n=12a+b,
a≥0, b∈{0,1,2,3}

xn.

We further prove an explicit characterization of PD2(2n + 1) modulo 4 related

to generalized pentagonal numbers by means of the following dissection of pd2(q)

into even and odd powers.
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Lemma 4. We have

pd2(q) ≡
[
f32
f6

]2
+ qf212 (mod 4), (9)

splitting pd2(q) into even and odd powers of q, respectively.

Proof. With Equation (8), we have

pd2(q) =
f4f

2
6

f1f3f12
≡ f33 f4
f1f12

(mod 4).

Using the identity (cf., [21, Equation (3.75)])

f33
f1

=
f34 f

2
6

f22 f12
+ q

f312
f4
,

and repeatedly using Equation (8), this yields

pd2(q) ≡ f33 f4
f1f12

≡ f44 f
2
6

f22 f
2
12

+ qf212 ≡
[
f32
f6

]2
+ qf212 (mod 4).

Noting that f32 /f6 and f12 are power series in q2, the first term on the right-hand

side gives all even power contributions while the second term gives all odd power

contributions due to the multiplication by the extra factor of q.

An application of Lemma 4 provides the following explicit characterization of

PD2(2n+ 1) (mod 4).

Theorem 10. For all n ≥ 0, PD2(2n+ 1) ≡ dn (mod 4), where

dn =

∣∣∣∣{solutions to n = 3j(3j − 1) + 3k(3k − 1) = 2
[(3j

2

)
+

(
3k

2

)] ∣∣∣ k, j ∈ Z}
∣∣∣∣.

Proof. One has from (9),∑
n≥0

PD2(2n+ 1)qn ≡ f26 = [f1(q6)]2 =
∑
j,k∈Z

(−1)j+kq3[j(3j−1)+k(3k−1)] (mod 4),

where we have used Euler’s pentagonal number theorem [1, Corollary 1.7]. The

result follows from noting that on the right-hand side the only contributions with

coefficient −1 occur with different parities of j and k, hence will come in pairs of

solutions (j, k), (k, j) each time and thus contribute 2(−1)j+k ≡ 2 (mod 4) to the

count.

Similarly, Lemma 4 also provides an explicit characterization of PD2(2n)(mod 4).
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Theorem 11.∑
n≥0

PD2(2n)qn ≡
[
f31
f3

]2
≡
(

1 +
∑

k≥1, 3-k

qk
2
)2

≡ 1 + 2
∑

k≥1, 3-k

qk
2

+
∑

k,`≥1, 3-k,`

qk
2+`2 (mod 4).

Proof. Note that by [18, Equations (2) and (4)], we have

f31
f3
≡ 1 + q

f39
f3
≡ 1 + q

∑
j∈Z

q3j(3j−2) = 1 +
∑
j∈Z

q(3j−1)
2

= 1 +
∑

k≥1, 3-k

qk
2

(mod 2),

which implies [
f31
f3

]2
≡
(

1 +
∑

k≥1, 3-k

qk
2
)2

(mod 4). (10)

Combining Equation (9) with Equation (10) gives

∑
n≥0

PD2(2n)qn ≡
[
f31
f3

]2
≡
(

1 +
∑

k≥1, 3-k

qk
2
)2

(mod 4).

As an easy application of these results, we prove a few observed congruences.

Alternative proofs using dissections can be found in [3, Corollary 1.4, Theorem 1.5].

Theorem 12. For n ≥ 1, we have PD2(3n) ≡ 0 (mod 4). For all n ≥ 1 with 6 - n,
we have PD2(2n+ 1) ≡ 0 (mod 4).

Proof. The first congruence is easily seen by noting from [2, Theorem 22] and Equa-

tion (8) that

∑
n≥0

PD2(3n)qn =
f22 f

4
6

f41 f
2
12

≡ f41 f
4
6

f41 f
4
6

≡ 1 (mod 4).

The second congruence follows immediately from Theorem 10 as n = 3j(3j − 1) +

3k(3k − 1) = 2
[(

3j
2

)
+
(
3k
2

)]
implies that n ≡ 0 (mod 6).

We end this section with yet another nice characterization of PD2(n) (mod 4).

Theorem 13.

pd2(q) ≡ 1 +
( ∑

k≥1, 3-k

qk
2
)(

1 + 2
∑
k≥1

qk
2
)

= 1 +
( ∑

k≥1, 3-k

qk
2
)(∑

k∈Z
qk

2
)

(mod 4).
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Proof. Starting from [2, Equation (3.13)], we have

pd2(q) =

∑
j∈Z q

(3j)2 −
∑

j∈Z q
(3j+1)2

1 + 2
∑

k≥1(−1)kqk2 =
1 + 2

∑
k≥1, 3|k q

k2 −
∑

k≥1, 3-k q
k2

1 + 2
∑

k≥1(−1)kqk2

≡
1 + 2

∑
k≥1, 3|k q

k2

+ 3
∑

k≥1, 3-k q
k2

1 + 2
∑

k≥1 q
k2 =

1 + 2
∑

k≥1 q
k2

+
∑

k≥1, 3-k q
k2

1 + 2
∑

k≥1 q
k2

= 1 +

∑
k≥1, 3-k q

k2

1 + 2
∑

k≥1 q
k2 ≡ 1 +

( ∑
k≥1, 3-k

qk
2
)(

1 + 2
∑
k≥1

qk
2
)

(mod 4).

7. A Dissection Proof for Theorem 7

In this section, we will prove Theorem 7 with the help of dissections. This proof

will reuse some of the identities from the last section. In addition, we will also need

the following auxiliary result.

Lemma 5. We have

q2f62 f
6
6 ≡ q2f316 + q6f348 (mod 2). (11)

Proof. Using the identity (cf., [21, Equation (3.12)])

1

f1f3
=

f28 f
5
12

f22 f4f
4
6 f

2
24

+ q
f54 f

2
24

f42 f
2
6 f

2
8 f12

,

we have

f31 f
3
3 =

f41 f
4
3 f

2
8 f

5
12

f22 f4f
4
6 f

2
24

+ q
f41 f

4
3 f

5
4 f

2
24

f42 f
2
6 f

2
8 f12

≡ f34 + qf312 (mod 2),

where we make repeated use of the identity f2k ≡ f2k (mod 2). Raising the last

equation to the fourth power gives f62 f
6
6 ≡ f316 + q4f348 (mod 2), and the result

follows.

Alternate proof of Theorem 7. For a proof of Theorem 7, we start with the generating

function

pd4(q) =
f4f6f8f12
f1f2f3f24

≡
[
f31
f3

]3
(mod 2).

Applying Equation (3) and Lemma 4 one can provide the even and odd power
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dissection of pd4(q),

pd4(q) = pd2(q) pd2(q2)

≡

([
f32
f6

]2
+ qf212

)([
f34
f12

]2
+ q2f224

)
≡

([
f32
f6

]2
+ qf46

)([
f32
f6

]4
+ q2f86

)

≡
[
f32
f6

]6
+ q2f62 f

6
6 + qf122 + q3f126

≡
[
f32
f6

]6
+ q2f316 + q6f348 + qf38 + q3f324 (mod 2), (12)

where the last line is a result of Equation (11) and once again applying the identity

f2k ≡ f2k (mod 2). In Equation (12), noting that[
f32
f6

]6
≡
[
f31
f3

]12
≡ [pd4(q)]4 ≡ pd4(q4) (mod 2)

and applying Equation (7) to qrf38r = qr[f8(qr)]3, r ∈ {1, 2, 3, 6}, yields

pd4(q) ≡ pd4(q4) +
∑

n≥1, 2-n

[
qn

2

+ q2n
2

+ q3n
2

+ q6n
2]

(mod 2).

Raising this equation to the fourth power yields

pd4(q4) ≡ pd4(q16) +
∑

n≥1, 2-n

[
q(2n)

2

+ q2(2n)
2

+ q3(2n)
2

+ q6(2n)
2]

(mod 2),

and combining the last two equations results in

pd4(q) ≡ pd4(q4
2

) +
∑

n≥1, 2-n,
i∈{0,1}

[
q(2

in)2 + q2(2
in)2 + q3(2

in)2 + q6(2
in)2
]

(mod 2).

Therefore, iterating one obtains, for ` ≥ 1,

pd4(q) ≡ pd4(q4
`

) +
∑

n≥1, 2-n,
0≤i<`

[
q(2

in)2 + q2(2
in)2 + q3(2

in)2 + q6(2
in)2
]

(mod 2),

where the first summand on the right-hand side contains only powers of q4
`

. For

`→∞, this results in the identity

pd4(q) ≡ 1 +
∑

n≥1, 2-n, i≥0

[
q(2

in)2 + q2(2
in)2 + q3(2

in)2 + q6(2
in)2
]

≡ 1 +
∑
n≥1

[
qn

2

+ q2n
2

+ q3n
2

+ q6n
2]

(mod 2),
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completing the proof of Theorem 7.

We will end this section with a few Rogers-Ramanujan-type identities for pd4(q).

Denote by ϕ(q), ψ(q), and f(a, b) Ramanujan’s first, second, and general theta

functions, respectively, defined by, cf. [4, Entry 22(i), Entry 22(ii), Equation (18.1)

and Entry 19],

ϕ(q) = f(q, q) =
∑
n∈Z

qn
2

=
(q2; q2)∞(−q; q2)∞
(q; q2)∞(−q2; q2)∞

=
f22 (−q; q)∞
f1(−q2; q2)2∞

=
f52
f21 f

2
4

,

ψ(q) = f(q, q3) =
∑
n≥0

qn(n+1)/2 =
(q2; q2)∞
(q; q2)∞

=
f22
f1
,

f(a, b) =
∑
n∈Z

an(n+1)/2bn(n−1)/2 = (−a; ab)∞(−b; ab)∞(ab; ab)∞.

Then, one can show the following identities by means of Theorem 7.

Theorem 14. Working modulo 2, the following identities hold:

pd4(q)≡
[
f31
f3

]3
≡ f(q6, q10)

ψ(q)
+
f(q18, q30)

ψ(q3)
− 1

≡ f131 (q6; q16)∞(q10; q16)∞ + f133 (q18; q48)∞(q30; q48)∞ − 1

≡ f131 (q6; q16)∞(q10; q16)∞ + q3f133 (q6; q48)∞(q42; q48)∞

≡ f133 (q18; q48)∞(q30; q48)∞ + qf131 (q2; q16)∞(q14; q16)∞ (mod 2).

Proof. Theorem 7 claims

pd4(q) =
f4f6f8f12
f1f2f3f24

≡
[
f31
f3

]3
≡ 1

2

[
ϕ(q) + ϕ(q2) + ϕ(q3) + ϕ(q6)− 2

]
(mod 2), (13)

where we make repeated use of the identity f2k ≡ f2k (mod 2). The identities [4,

Example (iv), p. 51] and [4, Corollary (ii), p. 49] imply, working modulo 4 and 2,

respectively,

ϕ(q) + ϕ(q2) ≡ ϕ(−q) + ϕ(q2) = 2
f2(q3, q5)

ψ(q)
(mod 4), (14)

f2(q3, q5) ≡ f(q6, q10) ≡ ψ(q) + qf(q2, q14) (mod 2), (15)

while for ψ(q) we have the identity

ψ(q) =
f22
f1
≡ f31 (mod 2). (16)
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Substituting Equations (14) and (16) into the right-hand side of Equation (13) and

applying the definition of f(a, b), yields

pd4(q) ≡
[
f31
f3

]3
≡ 1

2

[
ϕ(q) + ϕ(q2)

]
+

1

2

[
ϕ(q3) + ϕ(q6)

]
− 1

≡ f2(q3, q5)

ψ(q)
+
f2(q9, q15)

ψ(q3)
− 1 ≡ f(q6, q10)

f31
+
f(q18, q30)

f33
− 1

≡ f131 (q6; q16)∞(q10; q16)∞ + f133 (q18; q48)∞(q30; q48)∞ − 1 (mod 2).

Now applying Equations (15) and (16) and the definition of f(a, b), one obtains

pd4(q) ≡
[
f31
f3

]3
≡ f2(q3, q5)

ψ(q)
+
f2(q9, q15)

ψ(q3)
− 1 ≡ f(q6, q10)

ψ(q)
+ q3

f(q6, q42)

ψ(q3)

≡ f131 (q6; q16)∞(q10; q16)∞ + q3f133 (q6; q48)∞(q42; q48)∞ (mod 2)

and

pd4(q) ≡
[
f31
f3

]3
≡ f2(q3, q5)

ψ(q)
+
f2(q9, q15)

ψ(q3)
− 1 ≡ f(q18, q30)

ψ(q3)
+ q

f(q2, q14)

ψ(q)

≡ f133 (q18; q48)∞(q30; q48)∞ + qf131 (q2; q16)∞(q14; q16)∞ (mod 2).

8. The Case of pd3`(q) (mod 3)

Definition 3. Let

h(q) =
f1(q)2

f2(q)
,

noting by Gauss’s square power identity [1, Equation (2.2.12)],

h(q) =
(q; q)∞

(−q; q)∞
= 1 + 2

∑
m≥1

(−1)mqm
2

. (17)

Using the previous definition, we prove the following.

Theorem 15. We have pd3(q) ≡
∑

n≥0 en1q
n (mod 3) where

en1 =
∣∣{solutions to n = k20 + 3k21 |

km ∈ Z or N when km is even or odd, respectively}
∣∣.

Proof. Using p = 3 in Equation (2), we get pd3(q) ≡ g(q)2 (mod 3). As g(q) =
f1(q)f2(q)f3(q)

f6(q)
≡ h(q)2 (mod 3), it follows, in a similar vein to Equation (2), that

pd3(q) ≡ h(q)4 = h(q)h(q)3 ≡ h(q)h(q3) (mod 3). (18)

By Equation (17), we may write h(q) ≡
∑

m∈Z, 2|m qm
2

+
∑

m≥1, 2-m qm
2

(mod 3).

The result follows.
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Remark 2. Note that en1 gives an interesting alternate characterization of PD3(n)

(mod 3) to the one given in [7, Theorem 2] where it was shown that, for n ≥ 1,

PD3(n) ≡
∣∣{solutions to n = k(k + 1) + 3m(m+ 1) + 1 | k,m ≥ 0}

∣∣ (mod 3).

Note also that we have

n = k(k + 1) + 3m(m+ 1) + 1 if and only if 4n = (2k + 1)2 + 3(2m+ 1)2.

Thus, for n ≥ 1, we can also write

PD3(n) ≡
∣∣{solutions to 4n = k20 + 3k21 | km ≥ 0, km odd}

∣∣
≡
∣∣{solutions to 4n = k20 + 3k21 | km ∈ Z, km odd}

∣∣ (mod 3).

Theorem 15 extends quite naturally as seen by the next result.

Theorem 16. For all n ≥ 0, PD3`(n) ≡ en` (mod 3) where

en` =
∣∣∣{solutions to n = k20 +

`−1∑
m=1

3m(k2m + k′2m) + 3`k2` |

km, k
′
m ∈ Z or N when km, k

′
m is even or odd, respectively}

∣∣∣.
Proof. Using Equations (3) and (18),

pd3`(q) =

`−1∏
m=0

pd3(q3
m

) ≡ h(q)

[ `−1∏
m=1

h(q3
m

)2
]
h(q3

`

) (mod 3).

The result follows.

As an easy application of Theorem 16, we provide very short proofs of the follow-

ing congruences for which proofs using dissections can be found in [7, Theorem 3]

and [8, Theorem 3] for PD3(9n+ 6) and PD3k(3n+ 2), respectively.

Theorem 17. For n ≥ 0, PD3(9n + 6) ≡ 0 (mod 3). For all n ≥ 0 and ` ≥ 1,

PD3`(3n+ 2) ≡ 0 (mod 3).

Proof. For the first congruence, if en1 6= 0 in Theorem 16, then we can write n =

k20 +3k21 for suitable integers k0, k1. A straightforward calculation shows that n 6≡ 6

(mod 9) as 0, 1, 4, 7 are the only quadratic residues modulo 9. Hence, en1 = 0 for

all n ≡ 6 (mod 9).

The second congruence follows similarly. If en` 6= 0 in Theorem 16, then, since

0, 1 are the only quadratic residues modulo 3, we can write

n = k20 +

`−1∑
m=1

3m(k2m + k′2m) + 3`k2` ≡ k20 6≡ 2 (mod 3).

Thus, en` = 0 for all n ≡ 2 (mod 3).
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As a further application of Theorem 16, we prove the following newly observed

congruences. We have not found the first congruence in the literature, but expect

it to be known.

Theorem 18. For n ≥ 1, PD3(2n) ≡ 0 (mod 3). For all n ≥ 0 and ` ≥ 3,

PD3`(27n+ 9) ≡ 0 (mod 3). For all n ≥ 0 and ` 6= 2, PD3`(27n+ 18) ≡ 0 (mod 3).

Proof. The first congruence is an immediate consequence of Theorem 2 as n =

k(k + 1) + 3m(m+ 1) + 1 is odd for nonnegative integers k,m.

The case ` = 1 of the third congruence follows similarly to that of the first

congruence in the previous theorem. In particular, a straightforward calculation

shows that n = k20 + 3k21 6≡ 18 (mod 27) as 0, 1, 4, 7, 9, 10, 13, 16, 19, 22, and 25 are

the only quadratic residues modulo 27. Hence, en1 = 0 for all n ≡ 18 (mod 27).

For ` ≥ 3 in the third congruence, we argue as follows. We want to count the

number of solutions to the Diophantine equation

27n+ 18 = k20 +

`−1∑
m=1

3m(k2m + k′2m) + 3`k2` (19)

modulo 3 with sign constraints as stated in Theorem 15. Note that we have k20 ≡ 0

(mod 3), so that 3 | k0, and we can write k0 = 3a for some integer a. This gives

27n+ 18 = 3(k21 + k′21 ) + 9(a2 + k22 + k′22 ) + . . .+ 3`k2` . (20)

In particular, 3(k21 + k′21 ) ≡ 0 (mod 9). Thus, 3 | (k21 + k′21 ), but as 0 and 1 are the

only quadratic residues modulo 3, we conclude 3 | k1, k′1. Hence 3(k21 + k′21 ) ≡ 0

(mod 27), and Equation (20) implies 9(a2 + k22 + k′22 ) ≡ 18 (mod 27), so that we

conclude

a2 + k22 + k′22 ≡ 2 (mod 3). (21)

It is immediate that, together with (3a, k1, k
′
1, k2, k

′
2, k3, k

′
3, . . . , k`), also

(3k2, k1, k
′
1, k
′
2, a, k3, k

′
3, . . . , k`) and (3k′2, k1, k

′
1, a, k2, k3, k

′
3, . . . , k`) solve Equation

(19). As a result, the mapping

Ψ((k0, k1, k
′
1, k2, k

′
2, k3, k

′
3, . . . , k`)) = (3k2, k1, k

′
1, k
′
2, k0/3, k3, k

′
3, . . . , k`)

defines a bijection on the solution set of Equation (19) such that Ψ3 is the iden-

tity map. The proof will be finished by showing that each orbit of the solution

set under iterates of Ψ has order 3. To see this, by way of contradiction, suppose

(3a, k1, k
′
1, k2, k

′
2, k3, k

′
3, . . . , k`) = (3k2, k1, k

′
1, k
′
2, a, k3, k

′
3, . . . , k`). Comparing com-

ponents yields a = k2 = k′2, hence a2+k22+k′22 ≡ 0 (mod 3), contradicting Equation

(21) and completing the proof of the third congruence.

The second congruence follows analogously by systematically replacing 18 by 9

in the proof for ` ≥ 3.
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It is noteworthy that we can recreate some of our structural results on pd2`(q)

modulo 2 from Section 3 in the context of pd3`(q) modulo 3. In particular, the

grouping argument of the last theorem once again can be iterated.

Theorem 19. For all n ≥ 0, ` ≥ 2, we have PD3`(3n) ≡ e∗n` (mod 3), where

e∗n` =
∣∣{solutions to n = k20 + k′20 + 3`−1(k21 + k′21 ) |

km, k
′
m ∈ Z or N when km, k

′
m is even or odd, respectively}

∣∣.
Proof. We will be grouping the solutions (k0, k1, k

′
1, k2, k

′
2, k3, k

′
3, . . . , k`) of the equa-

tion

3n = k20 + 3(k21 + k′21 ) + 9(k22 + k′22 ) + 27(k23 + k′23 ) + . . .+ 3`k2` (22)

into triplets. Note that we have k20 ≡ 0 (mod 3), so that 3 | k0, and we can write

k0 = 3a for some integer a. This gives

3n = 9a2 + 3(k21 + k′21 ) + 9(k22 + k′22 ) + 27(k23 + k′23 ) + . . .+ 3`k2` .

Note that with (3a, k1, k
′
1, k2, k

′
2, k3, k

′
3, . . . , k`) also (3k2, k1, k

′
1, k
′
2, a, k3, k

′
3, . . . , k`)

and (3k′2, k1, k
′
1, a, k2, k3, k

′
3, . . . , k`) are solutions of Equation (22), which provide

us with a triplet of solutions unless k2 = k′2 = a. This leaves us with considering

solutions of the form (3a, k1, k
′
1, a, a, k3, k

′
3, . . . , k`) and the equation

3n = 9a2 + 3(k21 + k′21 ) + 9(a2 + a2) + 27(k23 + k′23 ) + . . .+ 3`k2` .

Note that with (3a, k1, k
′
1, a, a, k3, k

′
3, . . . , k`) also (3k3, k1, k

′
1, k3, k3, k

′
3, a, . . . , k`)

and (3k′3, k1, k
′
1, k
′
3, k

′
3, a, k3, . . . , k`) are solutions of Equation (22), which provide us

with a triplet of solutions unless k3 = k′3 = a. This leaves us with considering solu-

tions of the form (3a, k1, k
′
1, a, a, a, a, k4, k

′
4, . . . , k`), and this process can be iterated

until we are left to consider solutions of the form (3a, k1, k
′
1, a, a, . . . , a, a, k`) and the

equation 3n = 9a2 +3(k21 +k′21 )+9(a2 +a2)+27(a2 +a2)+ . . .+3`−1(a2 +a2)+3`k2`
= 3(k21 +k′21 )+3`(a2 +k2` ) In particular, n = k21 +k′21 +3`−1(a2 +k2` ), and the result

follows.

The next result can be proven the same way as Lemma 2

Lemma 6. If there exist j and r such that the congruence PD3j (3jn + r) ≡ 0

(mod 3) holds for all n ≥ 0, then PD3`(3
jn + r) ≡ 0 (mod 3) for all n ≥ 0 and

` ≥ j.

As an application of these results, we generalize Theorem 18.

Corollary 2. For all n ≥ 0, k ≥ 1 and ` ≥ 2k + 1, PD3`
(
32k(3n + 1)

)
≡

PD3`
(
32k(3n+ 2)

)
≡ 0 (mod 3).
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Proof. We will focus on the congruence PD3`
(
32k(3n + 1)

)
≡ 0 (mod 3). With

Lemma 6, it will be sufficient to prove PD32k+1

(
32k(3n + 1)

)
≡ 0 (mod 3), and

according to Theorem 19 we can focus on the equation

32k−1(3n+ 1) = k20 + k′20 + 32k(k21 + k′21 ).

Note that k20 +k′20 ≡ 0 (mod 3). We conclude 3 | k0, k′0 and can write k0 = 3a1, k
′
0 =

3a′1 for integers a1, a
′
1. This leads to the new equation 32k−3(3n + 1) = a21 + a′21 +

32k−2(k21 + k′21 ). We can iterate this argument to show that k0 = 3kak, k
′
0 = 3ka′k

with 32k−1(3n + 1) = 32k(a2k + a′2k + k21 + k′21 ). This is an apparent contradiction

as the right-hand side of this equation is divisible by 32k while the left-hand side is

not. This shows e∗32k(3n+1),2k+1 = 0.

9. Open Problems

We conclude with some additional conjectured congruences. While these congru-

ences may easily be verifiable by a computer proving system along the lines of [17],

it would be interesting to find some elementary proofs.

Conjecture 1. For n ≥ 0, we have

PD2(16n+ 12) ≡ 0 (mod 4),

PD2(24n+ 20) ≡ 0 (mod 4),

PD2(25n+ 5) ≡ 0 (mod 4),

PD2(32n+ 24) ≡ 0 (mod 4),

PD2(48n+ 26) ≡ 0 (mod 4),

and for r ∈ {5, 11, 15, 17},

PD9(54n+ 3r) ≡ 0 (mod 3).
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