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Abstract

We prove a 2018 conjecture of Krawchuk and Rampersad on the extremal behav-
ior of c(n), where c(n) counts the number of length-n factors of the Thue-Morse
sequence t, up to cyclic rotation.

1. Introduction

Let x be an infinite word (or sequence) over a finite alphabet. Many different

notions of the “complexity” of x have been explored. To name just five:

• subword or factor complexity, the number of distinct blocks of length n ap-

pearing in x [5];

• Abelian complexity, the number of distinct blocks of length n in x, up to

permutation [13];

• palindrome complexity, the number of distinct length-n palindromes appearing

in x [1];

• linear complexity, the length of the shortest linear recurrence satisfied by a

prefix of length n [12];

• maximum order complexity, the degree of a smallest nonlinear feedback shift

register generating a length-n prefix of x [7].

In a 2017 paper, Cassaigne et al. [4] introduced yet another interesting measure of

complexity, called cyclic complexity. The cyclic complexity function cx(n) is defined
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to be the number of length-n factors of x, where factors that are the same, up to

cyclic shift, are only counted once. It was further studied in [6].

Cyclic complexity is a more mysterious measure than ordinary subword complex-

ity. For ordinary subword complexity ρx(n), which counts the number of distinct

length-n factors appearing in x, it is known that if x is an automatic sequence, then

there is an automaton that takes as input the representations of n and y in parallel,

and accepts iff y = ρx(n). In other words, ρx(n) is synchronized for automatic se-

quences; see [8] for more details. This means that checking whether ρx(n) ≤ An+B

or ρx(n) ≥ An+B for all n is, in general, decidable for automatic sequences, since

we can express these assertions as a first-order logical formula [15].

However, for cyclic complexity the function cx(n) is not, in general, synchronized.

We can see this as follows: let p = 11010001 · · · be the characteristic sequence of

the powers of 2. Then it is not hard to see that cp(n) = O(log n) and cp(2n) = n+2

for n ≥ 0. However, by a theorem about synchronized sequences [14], this kind of

growth rate is impossible. This fundamental difference may help explain why it is

so much harder to prove inequalities for cyclic complexity.

In a recent paper, Krawchuk and Rampersad [9] studied the cyclic complexity

function cx(n) where x is one of the most celebrated aperiodic binary words, the

Thue-Morse sequence t = 01101001 · · · [2]. They showed that the function ct(n) is

2-regular and is specified by a linear representation of rank 50. This means there

are vectors v, w and a matrix-valued morphism γ such that ct(n) = vγ(z)w for

all strings z that are binary representations of n (allowing leading zeros). See [3]

for more details. The first few terms of ct(n) are given in Table 1; it is sequence

A360104 in the On-Line Encyclopedia of Integer Sequences (OEIS) [11].

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
ct(n) 1 2 3 2 4 4 6 8 12 8 12 16 14 18 18 18 28

Table 1: First few values of ct(n).

Krawchuk and Rampersad conjectured that

lim sup ct(n)/n = 2 and lim inf ct(n)/n =
4

3
.

In this paper we prove these two conjectures. The conjectures follow from two

inequalities: ct(n) ≤ 2n− 4 for n ≥ 3 and ct(n) ≥ 4
3n− 4 for n ≥ 0, which we prove

in Section 3 and 4, respectively.

The method of linear representations (as discussed in, for example, [15]) is ex-

tremely powerful for proving statements about automatic sequences, but it has some

limitations. While it can often be used to prove various equalities, proving inequali-

ties is typically more problematic. In this paper we use traditional techniques based

on induction, together with linear representations, to prove the desired inequalities.

https://oeis.org/A360104
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2. Preliminary Results

Throughout we abbreviate ct(n) by c(n). We start with a list of identities for c(n)

that will prove useful later.

Proposition 1. We have

c(2k) = 2k+1 − 4, (k ≥ 2) (1)

c(2k + 3) =
5

3
· 2k − 2

3
(−1)k + 2, (k ≥ 2) (2)

c(2k + 1) =
4

3
· 2k +

2

3
(−1)k − 2, (k ≥ 2) (3)

c(2k − 3) =
5

3
· 2k +

1

3
(−1)k − 5, (k ≥ 5) (4)

c(2k − 1) =
4

3
· 2k − 1

3
(−1)k − 3, (k ≥ 2) (5)

c(2k − 5) =
3

2
· 2k + (−1)k − 7, (k ≥ 5) (6)

c(2k − 7) =
3

2
· 2k − (−1)k − 9, (k ≥ 3) (7)

c(12 · 2k − 3) =
56

3
· 2k − 2

3
(−1)k − 10, (k ≥ 0). (8)

Proof. Equation (1) can be found in [9, Proposition 1]. The remaining equalities

can be proved exactly as in that paper, using the same technique. Also see [15,

Section 9.11.15].

The following three identities are crucial to our approach. Their usefulness resides

in the fact that they express subsequences of c(n) as non-negative linear combina-

tions of other subsequences, modulo a term that is bounded in absolute value. This

facilitates proving upper and lower bounds by induction.

Lemma 1. There are 2-automatic sequences a0, a1, a3 such that

c(2i) = 2c(i) + a0(i) (9)

c(4i+ 1) = 2c(i+ 1) + c(2i+ 1) + a1(i) (10)

c(4i+ 3) =
1

2
c(2i) + c(2i+ 3) +

1

2
c(2i+ 4) + a3(i) (11)

and furthermore

2 ≤ a0(i) ≤ 6, (i ≥ 3) (12)

0 ≤ a1(i) ≤ 10, (i ≥ 2) (13)

−1 ≤ a3(i) ≤ 3, (i ≥ 1). (14)



INTEGERS: 23 (2023) 4

Proof. For each relation, we compute a linear representation for each term except

a0 (resp., a1, a3) using Walnut [10]; then we compute a linear representation for the

difference using block matrices. Then we minimize the linear representation and

use the “semigroup trick” (see, e.g., [15, Section 4.11]) to verify that the sequence

is automatic and find a deterministic finite automaton with output (DFAO) for a0
(resp., a1, a3).

We provide more details about the computation of a0 (in part because we will

need them in what follows). We start with the following Walnut code:

def tmfactoreq "At t<n => T[i+t]=T[j+t]":

def tmconj "Et t<=n & $tmfactoreq(j,i+t,n-t) &

$tmfactoreq(i,(j+n)-t,t)":

def tmc "Aj j<i => ~$tmconj(i,j,n)":

Here

• tmfactoreq(i,j,n) asserts that the two length-n factors t[i..i + n − 1] and

t[j..j + n− 1] are identical.

• tmconj(i,j,n) asserts that t[i..i+ n− 1] is a cyclic shift of t[j..j + n− 1].

• tmc(i,n) asserts that t[i..i+ n− 1] is the first occurrence of a factor that is

cyclically equivalent to it.

Hence, by counting the number of i for which tmc evaluates to TRUE, we determine

the number of length-n factors up to cyclic shift. We can then find the appropriate

linear representations using Walnut:

eval tmcc n "$tmc(i,n)":

eval tmcc2 n "$tmc(i,2*n)":

The first two commands produce linear representations for c(n) and c(2n), in

Maple format. They are of rank 50 and 60, respectively. From this we can easily

compute a linear representation for a0(n) := c(2n) − 2c(n), of rank 110. Using

Schützenberger’s algorithm [3, Chap. 2], this representation can be minimized into

a linear representation (v, γ, w) of rank 7, as follows:

vT = [ 1 0 0 0 0 0 0 ] γ(0) =


1 0 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 1 0 0
0 0 0 1 0 0 0
0 0 0 0 0 0 1

 γ(1) =


0 1 0 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 1/2 0 0
0 0 0 0 1 0 0
0 0 0 0 0 0 1
0 0 0 0 1/2 0 0

 w =


−1
−1
−2
2
4
2
6

 .
We can now use the “semigroup trick” to show that a0(n) is 2-automatic and find

a DFAO for it. It has 8 states and is displayed in Figure 1. From examining the

result, we see that a0(n) ∈ {−2,−1, 2, 4, 6} and furthermore a0(n) ∈ {2, 4, 6} for

n ≥ 3. This proves Equations (9) and (12).
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0/-1

0

1/-11

2/-2
0

3/2
1

4/40,1

5/2
0

6/21

0,1

0
7/61

0,1
1

0

Figure 1: DFAO for a0(n).

Using a similar procedure, and the following Walnut commands, we can find the

DFAO’s for a1(n) and a3(n), which are given in Figures 2 and 3.

eval tmcc41 n "$tmc(i,4*n+1)":

eval tmcc1 n "$tmc(i,n+1)":

eval tmcc21 n "$tmc(i,2*n+1)":

eval tmcc43 n "$tmc(i,4*n+3)":

eval tmcc23 n "$tmc(i,2*n+3)":

eval tmcc24 n "$tmc(i,2*n+4)":

0/-4

0

1/-41

2/00

3/2
1

1

4/40

5/60

6/6

1

0,1

7/6
0

8/2
1

1
0

0
9/101

0,1
0

1

Figure 2: DFAO for a1(n).
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9/11
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0
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13/20

14/01

1
0
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0

1

1

15/20
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Figure 3: DFAO for a3(n).

Examining the results proves Equations (10), (11), (13), and (14).

3. Upper Bound

Theorem 1. We have c(n) ≤ 2n− 4 for all n ≥ 3.

Proof. The proof proceeds by induction on n, using Equations (9)–(11) and (13)–

(14). However, the claim of the theorem does not seem to be strong enough to carry

out the induction, so we actually prove the following stronger claim by induction:

c(n) ≤ 2n− 7 if n ≥ 12 and n 6∈ P2, (15)

where P2 = {2i : i ≥ 0} = {1, 2, 4, 8, 16, . . .}. The base case is n ≤ 44; we can

easily check that Assertion (15) holds for these n.

Now assume n ≥ 45. There are three cases to consider.

Case 1: n ≡ 0 (mod 2), n = 2i.

Case 1a: Assume n/2 6∈ P2. Then

c(n) = c(2i) = 2c(i) + a0(i)

= 2c(n/2) + a0(n/2)

≤ 2c(n/2) + 6

≤ 2(n− 7) + 6 (by induction, since n/2 ≥ 22)

= 2n− 8 ≤ 2n− 7.
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Case 1b: If n/2 ∈ P2, then n = 2k for some k ≥ 1. Since n ≥ 45 we have k ≥ 6.

Hence the desired bound c(n) ≤ 2n− 4 follows from Equation (1).

Case 2: n ≡ 1 (mod 4), n = 4i+ 1.

Case 2a: Assume (n+ 3)/4 6∈ P2 and (n+ 1)/2 6∈ P2. Then we have

c(n) = c(4i+ 1) = 2c(i+ 1) + c(2i+ 1) + a1(i)

≤ 2c((n+ 3)/4) + c((n+ 1)/2) + a1((n− 1)/4)

≤ 2((n+ 3)/2− 7) + (n+ 1− 7) + 10

(by induction, since (n+ 1)/2 ≥ (n+ 3)/4 ≥ 12)

= 2n− 7.

Case 2b: If (n+ 3)/4 ∈ P2, then n = 2k − 3 for some k ≥ 2. Since n ≥ 45 we must

have k ≥ 6. Then Equation (4) implies the desired bound.

Case 2c: If (n+ 1)/2 ∈ P2 then n = 2k − 1 for some k ≥ 1. Since n ≥ 45 we have

k ≥ 6. Hence by Equation (5) we get the desired bound.

Case 3: n ≡ 3 (mod 4), n = 4i+ 3.

Case 3a: Assume (n− 3)/2 6∈ P2 and (n+ 3)/2 6∈ P2 and (n+ 5)/2 6∈ P2. Then we

have

c(n) = c(4i+ 3) =
1

2
c(2i) + c(2i+ 3) +

1

2
c(2i+ 4) + a3(i)

=
1

2
c((n− 3)/2) + c((n+ 3)/2) +

1

2
c((n+ 5)/2) + a3((n− 3)/4)

≤ 1

2
(n− 10) + (n+ 3− 7) +

1

2
(n+ 5− 7) + 3

(by induction, since (n+ 5)/2 ≥ (n+ 3)/2 ≥ (n− 3)/2 ≥ 21)

= 2n− 7.

Case 3b: If (n− 3)/2 ∈ P2 then n = 2k + 3 for some k ≥ 1. Since n ≥ 45 we have

k ≥ 6. So the desired bound follows from Equation (2).

Case 3c: If (n+ 3)/2 ∈ P2 then n = 2k − 3 for some k ≥ 1. Since n ≥ 45 we have

k ≥ 6. So the desired bound follows from Equation (4).

Case 3d: If (n+ 5)/2 ∈ P2 then n = 2k − 5 for some k ≥ 1. Since n ≥ 45 we have

k ≥ 6. So the desired bound follows from Equation (6).

We have now completed the proof of Assertion (15). To finish the proof of the

theorem, we only need observe that if n ≥ 8 is a power of 2, then c(n) = 2n − 4,

and check that c(n) ≤ 2n− 4 for 3 ≤ n ≤ 11.

Combining our upper bound with Equation (1), we now get the first conjecture

of Krawchuk and Rampersad as an immediate corollary.
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Corollary 1. We have lim supn→∞ c(n)/n = 2.

4. Lower Bound

In this section we prove the the corresponding lower bound on c(n).

Theorem 2. We have c(n) ≥ 4
3n− 4 for n ≥ 0.

The ideas are similar to those in the proof of the upper bound, but a bit more

complicated because the various exceptional sets are more intricate.

We need a lemma. Define the following exceptional sets.

A = {2k − 1 : k ≥ 1} = {1, 3, 7, 15, 31, . . .}
B = {2k + 1 : k ≥ 2} = {5, 9, 17, 33, . . .}
D = {12 · 2k − 3 : k ≥ 0} = {9, 21, 45, 93, . . .}
J = {(22i+1 + 1)2j : i ≥ 1, j ≥ 0} = {9, 18, 33, 36, 66, 72, 129, 132, 144, 258, . . .}.

Lemma 2. The following hold:

(i) If n ∈ A, then c(n) ≥ 4
3n− 2.

(ii) If n ∈ B, then c(n) ≥ 4
3n− 4.

(iii) If n ∈ D, then c(n) = 2c((n+ 3)/4) + c((n+ 1)/2).

(iv) If n ∈ J , say n = (22i+1 + 1)2j, then c(n) = 8
322i+j + 4

32j − 4 = 4
3n − 4 for

i ≥ 1, j ≥ 0.

(v) If n ∈ 4J + 3, say n = (22i+1 + 1)2j+2 + 3, and (i, j) 6= (1, 0) (i.e., n 6= 39),

then c(n) = (104 ·22i+j +64 ·2j +4 ·22i(−1)j−10 ·(−1)j +18)/9 ≥ (4n+16)/3.

(vi) If n ∈ 2J + 3, say n = (22i+1 + 1)2j+1 + 3, and furthermore j ≥ 1, then

c(n) = (52 · 22i+j + 32 · 2j − 4 · 22i(−1)j + 10 · (−1)j + 18)/9.

(vii) If n ∈ 2J − 5, say n = (22i+1 + 1)2j+1 − 5, then c(n) = 6 · 22i+j + 4 · 2j + 8
3 ·

22i(−1)j − 2
3 (−1)j − 14 for i ≥ 1 and j ≥ 2.

Proof. Items (i) and (ii) follow immediately from Equations (3) and (5).

For item (iii), take i = (n− 1)/4 in Equation (10). Then c(n) = 2c((n+ 3)/4) +

c((n+1)/2) iff a1((n−1)/4) = 0. But from the DFAO in Figure 2 we see ai(m) = 0

iff m = 3 · 2k − 1 for k ≥ 0. Hence a1((n − 1)/4) = 0 iff (n − 1)/4 = 3 · 2k − 1 for

k ≥ 0, iff n = 12 · 2k − 3 for k ≥ 0.

For item (iv), we use a variant of the linear representation trick. Let n =

(22i+1 + 1)2j . The base-2 representation of n is 102i10j , so c(n) = vγ(102i10j)w =
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vγ(1)γ(0)2iγ(1)γ(0)jw. The minimal polynomial of γ(0) is X2(X−1)(X−2)(X+1),

so each entry of γ(0)j for j ≥ 2 is a linear combination of 2j , (−1)j , and 1. The

same is then true for γ(1)γ(0)jw. Similarly, each entry of γ(0)2i for i ≥ 2 is a linear

combination of 22i and 1, and the same is true for vγ(1)γ(0)2i. Hence the entries

of the product vγ(1)γ(0)2iγ(1)γ(0)jw are linear combinations of 22i+j , 2j , 22i, 1,

22i(−1)j , and (−1)j . We can deduce the particular constants by substituting small

values of i and j and solving the resulting linear system. The result now follows.

Parts (v), (vi), and (vii) follow from the same technique.

We are now ready to prove Theorem 2.

Proof of Theorem 2. Again, the statement of the theorem does not seem strong

enough to make the induction go through.

We will prove the following three claims below by simultaneous induction on n.

(i) For all n we have c(n) ≥ 4
3n− 4.

(ii) If n is even and n 6∈ J then c(n) ≥ 4
3n− 2.

(iii) If n is odd, n ≥ 47, and n 6∈ A ∪ B, then c(n) ≥ (4n+ 16)/3.

The base case is n < 191, which we can check by a short computation. Now

assume n ≥ 191.

Case 1: n ≡ 0 (mod 2), n = 2i.

Case 1a: Suppose n ∈ J . Then from Lemma 2 (iv) we have c(n) = 4
3n− 4.

Case 1b: Suppose n 6∈ J . Then

c(n) = c(2i) = c(i) + a0(i)

= 2c(n/2) + a0(n/2)

≥ 2c(n/2) + 2

≥ 2 · (4

3
(n/2)− 2) + 2 (by induction, since n/2 ≥ 47)

=
4

3
n− 2.

Case 2: n ≡ 1 (mod 4), n = 4i+1. If n ∈ A ∪ B then the inequality c(n) ≥ 4
3n−4

follows from Equations (3) and (5). So assume n 6∈ A ∪ B.

Case 2a: Suppose n 6∈ D, n+3
4 6∈ J ∪ A ∪ B, n+1

2 6∈ A ∪ B.
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Then

c(n) = c(4i+ 1) = 2c(i+ 1) + c(2i+ 1) + a1(i)

= 2c((n+ 3)/4) + c((n+ 1)/2) + a1((n− 1)/4)

≥ 2c((n+ 3)/4) + c((n+ 1)/2) + 2 (because n 6∈ D)

≥ 2 · (4

3
· ((n+ 3)/4)− 2) + (4

n+ 1

2
+ 16)/3 + 2

(because (n+ 3)/4 6∈ J ∪ A ∪ B and (n+ 1)/2 6∈ A ∪ B
and (n+ 1)/2 ≥ (n+ 3)/4 ≥ 47 by induction)

≥ 4

3
n+ 6 ≥ (4n+ 16)/3.

Case 2b: If n ∈ D then Equation (8) implies that c(n) ≥ (4n/3) − 4. If further

n ≥ 47 then it implies that c(n) ≥ (4n+ 16)/3.

Case 2c: Suppose n+3
4 ∈ J . Then from Lemma 2 (v) we have a closed form for

c(n). Using a routine calculation and the fact that n 6= 39, we get c(n) ≥ (4n+16)/3.

Case 2d: Suppose n+3
4 ∈ A. Then n = 2k − 7 for k ≥ 3, and then by Equation (7)

we have c(n) ≥ (4n+ 16)/3 for k ≥ 5.

Case 2e: Suppose n+3
4 ∈ B. Then n ∈ B, a contradiction.

Case 2f: Suppose n+1
2 ∈ A . Then n = 2k − 3 for k ≥ 2, and by Equation (4) we

have c(n) ≥ (4n+ 16)/3 for k ≥ 5.

Case 2g: Suppose n+1
2 ∈ B. Then n ∈ B, a contradiction.

Case 3: n ≡ 3 (mod 4), n = 4i+ 3. If n ∈ A ∪ B then c(n) ≥ 4
3n− 4 follows from

Equations (3) and (5). So assume n 6∈ A ∪ B.

Case 3a: Suppose (n − 3)/2 6∈ J ∪ A ∪ B and (n + 3)/2 6∈ J ∪ A ∪ B and

(n+ 5)/2 6∈ J ∪ A ∪ B. Then

c(n) = c(4i+ 3) =
1

2
c(2i) + c(2i+ 3) +

1

2
c(2i+ 4) + a3(i)

=
1

2
c((n− 3)/2) + c((n+ 3)/2) + c((n+ 5)/2) + a3((n− 3)/4)

≥ 1

2
(
4

3
(n− 3)/2− 2) + (4

n+ 3

2
+ 16)/3 +

1

2
(
4

3
(n+ 5)/2− 2)− 1

(by conditions on (n− 3)/2, (n+ 3)/2, (n+ 5)/2

and (n+ 5)/2 ≥ (n+ 3)/2 ≥ (n− 3)/2 ≥ 47)

=
4

3
n+ 6 ≥ (4n+ 16)/3.

Case 3b: Suppose (n − 3)/2 ∈ J . Then n ∈ 2J + 3, so n = (22i+1 + 1)2j+1 + 3.
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Since n ≡ 3 (mod 4) we must have j ≥ 1. Then by a routine calculation using

Lemma 2 (vi), we have c(n) ≥ (4n+ 16)/3 since n > 39.

Case 3c: Suppose (n−3)/2 ∈ A ∪ B. But (n−3)/2 = 2n is even, a contradiction.

Case 3d: Suppose (n + 3)/2 ∈ J . Then n ∈ 2J − 3. But n ≡ 3 (mod 4), so it is

easy to see that this forces n = 22k − 1 ∈ B for k ≥ 2, a contradiction.

Case 3e: Suppose (n+ 3)/2 ∈ A. Then n = 2k − 5, and by Equation (6) we have

c(n) ≥ (4n+ 16)/3 for k ≥ 6.

Case 3f: Suppose (n+ 3)/2 ∈ B. Then n ∈ A, a contradiction.

Case 3g: Suppose (n + 5)/2 ∈ J . Then n ∈ 2J − 5. Then from Lemma 2 (vii) it

follows by a routine computation that c(n) ≥ (4n+ 16)/3.

Case 3h: Suppose (n+5)/2 ∈ A∪B. But (n+5)/2 = 2n+4 is even, a contradiction.

This completes the proof by induction of (i), (ii), and (iii).

Combining the lower bound with Equation (3) now gives us the following result.

Corollary 2. We have lim infn→∞ c(n)/n = 4/3.

We also have enough to prove the following result.

Theorem 3. We have c(n) = 4
3n− 4 iff n ∈ J .

Proof. The ⇐= direction follows from Lemma 2 (v), while the =⇒ direction is as

follows: If n is even and n 6∈ J then c(n) ≥ 4
3n − 2 > 4

3n − 4 by above. If n ≥ 47

is odd and n 6∈ A ∪ B, then c(n) ≥ (4n + 16)/3 > 4
3n − 4 by above. It remains

to check n < 47 and n ∈ A ∪ B. For n ∈ A, we know from Lemma 2 (i) that

c(n) ≥ 4
3n−2 > 4

3n−4. For n ∈ B, it follows from Equation (3) that c(n) = 4
3n−4

iff n = 22k+1 + 1 ∈ J . Finally, n < 47 can be checked with a computation.

Acknowledgment. I thank Narad Rampersad and the referee for helpful remarks.
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