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Abstract

A lattice equable quadrilateral is a quadrilateral in the plane whose vertices lie on
the integer lattice and which is equable in the sense that its area equals its perime-
ter. This paper treats the tangential and extangential cases. We show that up to
Euclidean motions, there are only 6 convex tangential lattice equable quadrilater-
als, while the concave ones are arranged in 7 infinite families, each being given by
a well known Diophantine equation of order 2 in 3 variables. On the other hand,
apart from the kites, up to Euclidean motions there is only one concave extangential
lattice equable quadrilateral, while there are infinitely many convex ones.

1. Introduction

A lattice equable quadrilateral (LEQ for short) is a quadrilateral whose vertices lie
on the integer lattice Z? and which is equable in the sense that its area equals
its perimeter. This paper is a continuation of the work [3], which treated lattice
equable parallelograms, and [4], which treated lattice equable kites, trapezoids and
cyclic quadrilaterals, but this paper can be read independently of the previous two.
Here we examine convex and concave LEQs that are either tangential, i.e., their
sides or extended sides are tangent to an incircle, or extangential, i.e., their sides or
extended sides are tangent to an excircle.

Before stating our main results, let us make some general remarks about the
importance and occurrence of tangential and extangential LEQs, up to Euclidean
motions. Remarkably, tangential and extangential LEQs apparently constitute a
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large component of the overall set of LEQs. For example, apart from parallelo-
grams and trapezoids, we know of only one convex LEQ that is neither tangential
nor extangential. This is the LEQ with vertices (0,0), (2,0), (8,8), (8,15) and side
lengths 2,10,7,17. There seem to be significantly more tangential LEQs than ex-
tangential LEQs, within a ball of any given radius of sufficient size. The tangential
LEQs are mainly concave; indeed, as we show in Corollary 1, there are only 6
convex tangential LEQs. The extangential LEQs are mainly convex; we show in
Corollary 3 that there is only one concave non-kite extangential LEQ. Kites which
are not parallelograms are both tangential and extangential, and they are the only
LEQs with this property.

Consider a tangential LEQ OABC whose sides OA, AB, BC,CO have length
a, b, c,d, respectively, which therefore are integers [3, Remark 2]. The key to our
results on tangential LEQs is the observation that a certain pair of functions of the
side lengths take a very restricted range of possible values. The functions are as
follows.

Definition 1. For a tangential LEQ OABC, let

ad + be + 26+/abed — 4(a + ¢)? ab + ed — 26+/abed — 4(a + ¢)?
S

16 4 (a — b)? ’ B 16 4 (a — d)? ’

where § = 1 if B lies within the circumcircle of the triangle OAC, and 6 = —1
otherwise.

In fact, as we show in Subsection 2.3, the functions ¢ and 7 can only take the
seven possible values 2,3,5,9,9/8,5/4,3/2, and moreover % + % = 1. In particular,
in each case at least one of o, 7 is an integer and belongs to {2, 3,5, 9}.

For each of the seven possibilities for the pair (o, 7), we show that the side lengths
satisfy a certain corresponding Diophantine equation, and conversely, solutions to
the equation, along with some auxiliary conditions, lead to the existence of a corre-
sponding tangential LEQ. There is a certain redundancy both in the statement of
the seven results and their proofs, so we have been at pains to present the results
in as compact a form as possible. The statements of the resulting theorem and its
converse are rather cumbersome, but considerable saving is attained in the long run.
Before stating the results, note that for a tangential LEQ OABC with successive
side lengths a, b, ¢, d, we see in Remark 9 that by making a reflection if necessary,
we may assume that a and c¢ are even in the case ¢ = 7 = 2. Our classification
result for tangential LEQs is then as follows.

Theorem 1. Suppose that OABC' is a tangential LEQ with vertices O, A, B,C in
positive cyclic order and successive side lengths a, b, c,d, respectively. Suppose also
that if OABC is concave, then its reflex angle is at B. Without loss of generality
we also assume that a and ¢ are even in the case 0 = 7 = 2. Then the following
conditions hold:



INTEGERS: 23 (2023) 3

(i) le=blt <a+ec, (ii) (a+d)T>a+c, (iii) (b+e)T#a+c.

Moreover, OABC is convez if and only if (b+ ¢)T > a + ¢. Furthermore, there are
two cases:

(a) If 7 € {2,3,5,9}, then a,7b have the same parity and setting u = T%;a7v =

Tore we have

(27)2+u2v2<vT2lc>2. (1)

b) If ¢ € {3,5,9}, then a,od have the same parity and setting v = 242 ¢ =
( ,5,9}, ; parity g R
od+a
2

, we have

(20)2+u2:u2—<u—";10>2. 2)

We now state the converse result.

Theorem 2. Let x € {2,3,5,9} and suppose we have an integer solution (u,v,c)
of the Diophantine equation

(2x)2+u2=v2—<v—””glc>2 3)

for which u+v =0 (mod ) and ¢ > 0, and further that c is even when x = 2 and
that ¢ is not divisible by 3 if = 3. Then we have the following.

(a) Lett =z, a=v—u,b= (v+u)/t,d = a+ c—b, and suppose the following
conditions hold:

(i) le=blt <a+c, (ii) (a+d)t>a+c, (iii) (b+c)t#a+c.

Then there is a tangential LEQ) O ABC with successive side lengths a, b, c,d for
which (o,7) = (5, 1).

=1

(b) Let s=z,a=v—u,d= (v+u)/s,b=a+c—d and suppose that the above

conditions (i) — (iii) hold for t = >3 and that b > 0. Then there is a tangential
LEQ OABC with successive side lengths a,b, c,d for which (o,7) = (s,t).

Furthermore, in both of the above cases, if OABC is concave, then the reflex angle
is at B.

Corollary 1. Up to Euclidean motions, there are only six convex tangential LEQs:
e the 4 X 4 square,

e the isosceles trapezoid of side lengths 5,2,5,8,
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the right trapezoid of side lengths 5,3,4,6,

the equable rhombus of side length 5,

the equable kite of side lengths 3 and 15,

the LEQ with vertices (0,0), (40, 9), (36,12), (35,12), and side lengths 37,1,5,
41.

Corollary 2. The incenter of a tangential LEQ is an integer lattice point in the
cases where o, € {2,3,5,5/4,3/2}.

Examples where 0,7 € {9,9/8} and the incenter is not an integer lattice point
are given in Example 1.

We now turn to our results on extangential LEQs. Consider an extangential LEQ
OABC whose sides OA, AB, BC,CO have length a,b, ¢, d, respectively. We intro-
duce functions analogous to those of Definition 1. More precisely, it is convenient
to define functions ¥, T analogous to 8,87, as follows.

Definition 2. For an extangential LEQ OABC, let
S_g ad + be + 26+/abed — 4(a + b)?
N 16 + (a — ¢)? ’

T — 8(a + b)? ab + cd + 26+/abed — 4(a + b)?
= a .

16(a+0)2+(a—c)(a—d)? "’

where § = 1 if B lies within the circumcircle of the triangle OAC, and 6 = —1
otherwise.

The functions X, T are not constrained to take only a finite number of possible
values, as was the case with o, 7. So the study of extangential LEQs is somewhat
more complicated than that of tangential LEQs. Our main result is as follows.

Theorem 3. If a non-kite extangential LEQ OABC has successive side lengths
a,b,c,d, then X, T are integers and one of the following holds:

(a) (Z,7T) = (9,18) or (18,50),

(b) (£,7) = (5m?,5m? + 5) for some integer m for which there exists integers
n,Y, Z such that m? —10n? = —1 and (5m? — 8)Y?2 =5 + 872,

(c) (%,T) = (m? m2+1) for some integer m for which there exists integersn,Y, Z
such that m? —2n? = —1 and (m? — 8)Y? =1+ 822.

The situation concerning case (a) of the above theorem is very satisfactory. We
examine the two possibilities for (X,7) in Subsection 3.3, and study the corre-
sponding extangential LEQs up to Euclidean motions. We explicitly classify all



INTEGERS: 23 (2023) )

LEQs with (X,7T) = (9,18); there is a single infinite family corresponding to solu-
tions of the negative Pell equation 2 — 2y? = —1. For (X, T) = (18, 50), we prove
that there is precisely one extangential LEQ); this isolated example has side lengths
(a,b,c,d) = (13,2,5,10) and is shown on the right of Figure 10.

We do not give a complete classification for case (b) of the above theorem. How-
ever, in Subsection 3.3 we consider m = 3, which is the smallest value of m for which
m?—10n? = —1 has a solution. Here (X, T) = (45,50), and we give explicit formulas
for infinitely many such LEQs. The side lengths of the first three members of this
family are given in Table 5. One sees that the lengths grow very rapidly. The next
possible value of m is m = 117; see Remark 30. Here (X,7T) = (5-117%,5-117%+5).
In Example 5, we exhibit the smallest possible extangential LEQ with this (X, T)
pair; it has perimeter = 3 - 10%7.

We do not know if there are any LEQs satisfying condition (c) of the above
theorem.

Open Problem. Does there exist an integer solution (m,n) of the negative Pell
equation m? —2n? = —1, for which the Diophantine equation (m? —8)Y? = 14822
has an integer solution for (Y, Z).

Even if there were such a solution, it would still be necessary to prove that there
are lattice vertices that realize the corresponding side lengths. We show at the very
end of the paper that if there is an extangential LEQ corresponding to case (c) of
Theorem 3, then its perimeter is at least 1078,

As a consequence of our study, we have the following.

Corollary 3. Up to Fuclidean motions, there is only one concave non-kite extan-
gential LEQ); it is the LEQ with vertices (0,0), (12,5), (10,5), (6,8) and side lengths
(13,2, 5,10).

Theorem 3 is proved by reducing it to the following number theoretic result.

Theorem 4. Let y,z, k € N with k > 16 and k > yz. Suppose that the numbers

2 2 ’
Y= 78(2 + k), ¥ o= ﬁ and x:= 7]{(2 + %)
k—16 k 8
are all integers. Then either
(a) (£,%) =1(9,9),(12,24), (16, 16), (24, 12), (10, 40), (40, 10) or (18,32),

(b) (X,%') = (5m?2,5) for some integer m for which there ewists integers n,Y,Z
such that m? — 10n%? = —1 and (5m? — 8)Y? =5 + 872,

(c) (£,%) = (m?,1) for some integer m for which there exists integers n,Y, Z
such that m? — 2n? = —1 and (m? — 8)Y? =1+ 8272.



INTEGERS: 23 (2023) 6

The proof of this theorem is established by writing the ratio % as 3, with
ged(u,v) = 1, and considering the 6 cases according to whether the pair (u,v) is
respectively (odd,even), (odd,odd), or (even,odd), and whether the 2-adic order of
the even number (respectively v, u+ v or u) is even or odd. Each of the six cases is
conducted by a series of contradiction arguments.

The paper is organized in two Sections. Section 2 covers tangential LEQs. Sub-
section 2.1 develops some general results true for all tangential quadrilaterals. Sub-
section 2.2 gives explicit examples: we present calculations of the incenters of LEQs
that are kites, and we give an infinite nested family of non-dart concave tangential
LEQs. Subsection 2.3 gives a series of lemmas on tangential LEQs leading to the
definition of the key functions o and 7, and their properties. In Subsection 2.4 we
give the proof of Theorem 1 and Corollary 1. Subsection 2.5 is the most substantial
part of Section 2. Here we prove Theorem 2 and Corollary 2. The final subsection
of Section 2, Subsection 2.6, gives more examples. In particular, we show that there
are infinitely many LEQs for each of the seven possible choices of (o, 7).

Section 3 treats extangential LEQs. Subsections 3.1 and 3.2 follow the general
plan adopted in Subsections 2.1 and 2.3 of Section 2; Subsection 3.1 presents some
general results for all extangential quadrilaterals, and Subsection 3.2 gives a series
of lemmas leading to the definition of the functions ¥ and 7', and their properties.
Subsection 3.3 treats extangential LEQs in the cases where (X%, T) = (9, 18), (18, 50)
and (45,50). Subsection 3.4 shows how Theorem 3 can be deduced from Theorem 4.
Subsection 3.5 is the longest subsection in the paper; here we prove Theorem 4.
This subsection also contains the proof of Corollary 3, see Remark 32. Finally, in
Subsection 3.6 we discuss the Open Problem presented above.

We will use the following notation. In this paper, a quadrilateral OABC' is
defined by four vertices O, A, B, C, no three of which are colinear, such that the
line segments OA, AB, BC,CO have no interior points of intersection; that is, our
quadrilaterals have no self-intersections. We always write the vertices O, A, B, C' in
positive (counterclockwise) cyclic order, and if O, A, B,C' is concave, then the la-
belling is chosen so that the reflex angle is at B. We use the notation K(OABC) for
area and P(OABC) for perimeter. Throughout this paper, for ease of expression, we
often simply write K for K(OABC), and P for P(OABC), and we abbreviate the
triangle areas K(COA), K(OAB), K(ABC),K(BCO) as Ko, Ka, Kp, K¢, respec-
tively. We denote the lengths of the sides OA, AB, BC,CO by the letters a, b, ¢, d,
respectively. The lengths of the diagonals OB, AC are denoted p, ¢, respectively;
see Figure 1. We use vector notation, such as AB. But we use the same symbol,
A say, for the vertex A and its position vector OA. Finally, by Euclidean motions,
we mean both the orientation preserving and orientation reversing kinds; that is,
we consider the group generated by translations, rotations and reflections. In this
paper, we employ the term positive in the strict sense. So N={n € Z | n > 0}.

We used Mathematica and Maple for many of the calculations and algebraic
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manipulations in this paper. The factorizations of large numbers conducted at
the end of the paper were performed using Dario Alpern’s integer factorization
calculator [5]. We remark that Alpern has a very nice continued fraction calculator,
and a quadratic Diophantine equation solver that we also found useful [6].

@)

Figure 1: Illustration of some of the notation used.

2. Tangential Quadrilaterals

2.1. Basic Notions for Tangential LEQs

It is well known and easy to see that a triangle is equable if and only if its incir-
cle has radius 2. A quadrilateral that has an incircle is said to be tangential, or
circumscriptible [29, 18, 23, 26]. Obviously, a tangential quadrilateral is equable if
and only if its incircle has radius 2. Pitot’s theorem says that a quadrilateral with
successive side lengths a,b, ¢, d is tangential if and only if the following equation
holds:

at+c=b+d (4)

(see [36], [10, p. 62—-64] and [25]). While Pitot’s Theorem is usually stated only for
convex quadrilaterals, it also holds in the concave case. Indeed, consider a concave
quadrilateral O ABC with reflex angle at B. Let A’ denote the point of intersection
of the side OA and the extension of side BC. Similarly, let C’ denote the point of
intersection of the side OC' and the extension of side AB. Let a,b,c,d denote the
lengths of OA, AB, BC,CO, respectively, and similarly, let a’,b’,c’,d" denote the
lengths of OA’, A’B, BC’,C'O. Then it is easy to see that Equation (4) holds if
and only if @’ 4+ ¢ =V + d’; see [10, Problem 2.62]. That is, OABC is tangential if
and only if OA’BC" is tangential.

Figure 2 gives an example of a concave tangential LEQ. Note that, as this example
shows, for a concave tangential LEQ O ABC, while the associated convex tangential
quadrilateral OA’ BC" is equable, it may fail to have integer sides or have its vertices
on lattice points.
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o 2 4 6 8 10 12 14 16

Figure 2: A concave tangential LEQ with side lengths 16,5,2,13.

For the rest of this subsection, OABC' denotes a tangential (convex or concave)
quadrilateral, with vertices in counterclockwise cyclic order, and a, b, ¢, d denote the
lengths of the sides OA, AB, BC, CO, respectively.

Proposition 1. If OABC' is tangential, then OABC' is a kite if and only if one of
the diagonals divides OABC into two triangles of equal area.

Proof. Obviously, if OABC' is a kite, then its axis of symmetry diagonals divides
OABC into two triangles of equal area. Conversely, as the triangle OAB has side
lengths a, b, p, Heron’s formula [33, Chap. 6.7] for the area gives

Ka=/s(s —a)(s = b)(s — p),

where s = %bﬂ’ is the semi-perimeter. Hence,

16K2 =(a+b+p)a+b—p)la—b+p)(—a+b+p)
— _(a2 _ b2)2 +2(a2 +b2)p2 _p4-

Similarly, from triangle OBC, we have 16K2 = —(c* — d?)? + 2(c? 4 d*)p? — p*.
Hence, subtracting,

2(a? — d* + v* — A)p? = 16(K3% — K2) + (a® — v*)? — (¢ — d*)%. (5)
Notice that

-+ - =(a—-d)(a+d) +(b-c)(b+c)
=(a—d)(a+d+b+c)=2(a+c)(a—d),

and

(a® = %)% = (¢ = d*)* = (a = b)*(a+b)* = (d — ¢)*(c + d)?
=(a—b*a+b+c+d)(a+b—c—d) =4(a—d)(a+c)la—Db)>
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So Equation (5) gives
(a+c)(a—d)p* = 4(K3 — K&) + (a — d)(a +c)(a = b)*. (6)

Now, assume that K4 = K. Then Equation (6) gives (a — d)p? = (a — d)(a — b)?.
Notice that p = £(a — b) is impossible, as otherwise the triangle OAB would be
degenerate. Hence, a = d. Moreover, as K4 = K¢, the points A, C are equidistant
from the line through O, B. So the triangles OAB and OBC' are congruent, and
hence OABC is a kite. Clearly, by considering triangles OAC and BC A, the same
argument would hold if Kp = Kp. O

It is well known that the incenter I of a convex tangential quadrilateral lies on
the Newton line N, which is the line passing through the midpoints of the two
diagonals; see [8, Chap. 7.5], [9, Chap. 2.7] and [13]. This is also true for concave
tangential quadrilaterals, because the midpoints of the three diagonals of a complete
quadrilateral are colinear (see [39] for 23 proofs of this fact). Let M4, Mo denote
the midpoint of the diagonals AC, OB, respectively; see Figures 3 and 4. Notice
that M4, Mo are distinct, and the Newton line unambiguously defined, if and only
if OABC is not a parallelogram.

Figure 4: The Newton line of a concave tangential quadrilateral.
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Proposition 2. If OABC is tangential and is not a parallelogram, then OABC' is
a kite if and only if the Newton line N contains one of the diagonals.

Proof. Tt is obvious that if OABC is a kite, then N is the axis of symmetry of
OABC and hence contains a diagonal. Conversely, suppose N coincides with one
of the diagonals, say OB. As My € N, we have K(OAM,) = K(COM4) and
K(ABMa) = K(BCMa4), and hence

K4 = K(OAM4) + K(ABM ) = K(COM4) + K(BCMy) = Kc.

Thus the diagonal OB divides OABC into two triangles of equal area. Then OABC
is a kite by Proposition 1. O

Remark 1. For further equivalent conditions for a tangential quadrilateral to be
a kite, see [19].

The radius r of the incircle, called the inradius, is given by the following obvious

formula:
K

a+c
We will be mainly interested in the equable case, where r = 2, but in this subsection
we consider the general case as it provides a useful comparison for results on the
exradius of extangential quadrilaterals, which we will consider below in Section 3.

Proposition 3. If OABC' is tangential, we have the following two expressions for
the incenter I:

faC—i-dA

a(B— A) —bA
2 Ko :

(a) I= () T=A+g=—7

Proof. Suppose A, C have coordinates (a1, as), (¢1, c2), respectively, let I = (i1, 12)
be the incenter. Considering the area of triangle AIO, we have ra = ajis — agiy.
Similarly, from the area of triangle COI, we have rc = —cyis + coi1. Hence,

c C2 —C1 12 12 a1Cy —ascy \C2 Q2 c
That is, I = § %, which is expression (a) in the statement of the proposition.

Similarly, by considering triangles BIA and OAI we obtain (b). O

Note that the above proposition holds in both convex and concave cases, but in
the latter case, with a reflex angle at B for example, the signed area Kp is negative.
For more on the incenter of tangential quadrilaterals, see [7].

Proposition 4. For a tangential equable quadrilateral OABC, one has

(K — (a+b)(Ko — (a +d)) = bd — ac.
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Proof. Equating the two expressions for I from the above proposition, with r = 2,
and taking the vector cross product by C on the right, gives

a(Ke — Ko) — bKop
K4 ’

s0o KoKg —dKa+aKe — (a+b)Ko =0. Thus, as K¢ = 2(a + ¢) — K 4, we have
KoKy —(a+d)K4 — (a4 b)Ko + 2a(a 4+ ¢) = 0. The required identity is then
obtained by factorizing, using the fact that 2a(a + ¢) = (a + b)(a + d) — (bd — ac)
since a+c=b+d. O

d= Ko+

Since the incenter I lies on Newton line, I is of the form AM4 + (1 — A\) Mo,
for some A € [0,1]. The following result will use the fact that for a (arbitrary)
quadrilateral OABC, one has the following elementary vector equation:

KoB=KcA+K,C. (7)

This equation is proved in [1], as an application of the vector triple product (a
generalization to higher dimensions is given in [2]). Alternately, one can simply
notice that the vector products AX (Ko A+ K4 C—Kp B) and Bx (Kg A+ K4 C—
Ko B) are both zero, so Equation (7) follows as A, B are linearly independent in
our case.

Proposition 5. If OABC is tangential but is neither a parallelogram nor a kite,
we have the following two expressions for the coordinate \:

B r(a —b)

- 2Kp —r(a+e)’

r(b—c)

(a) A 2K4 —r(a+c)’

(b) A=1-
Furthermore, if OABC' is a kite, then the first of the above expressions for A holds
if OABC' is not a rhombus and we relabel the vertices if necessary so that OB is
the axis of symmetry.

Proof. By definition, I = AM4 + (1 — A\)Mp = /\# +(1- )\)g, so using Equa-
tion (7) to eliminate B, we have

B )\Ko—i-(l—)\)KcAJr Ao+ (1= MN)Ky

I
2Ko 2Ko

C.

Comparing with Proposition 3(a) gives rd = AKo + (1 — A\) K¢ and ra = AKo +
(1 =X)Ka4, so
)\(KO — Kc> =rd— KC (8)
/\(Ko—KA)ZTa—KA. (9)

Adding Equation (9) to Equation (8) and using K4 + K¢ = r(a+c¢) gives A(2K¢o —
r(a+c)) =r(d—c). If OABC is not a kite, then by Proposition 1, Ko # Kp, so
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Family Equation M B n,i Ani
Ki | n?=52=4] 3(n+5)2,1) | n(2,1) ot (2,1) 1/5
K2 | n?-5%=1| 2n+5i)(2,1) | 4n(2,1) | 2(n+2i)(2,1) | 4/5
K3 | n?=2%=1| (n+2i)(2,2) | 4n(1,1) | 2(n+4)(1,1) | 1/2
K4 |20 = =1 (4n+3i)(3,3) | 12n(1,1) | 2(3n+2i)(1,1) | 8/9

Table 1: The four families of kites.

2Ko # r(a+c). If OABC is a kite but not a rhombus, and we relabel the vertices
if necessary so that OB is the axis of symmetry, then once again 2K # r(a + c).
In either case,

r(d —c) r(a —b)

A= 2Ko —r(a+c) - 2Ko —r(a+c)’

as required.
Subtracting Equation (9) from Equation (8) gives A(Ks—K¢) =r(d—a)+ K4 —
K¢c. It OABC is not a kite, then once again 2K # r(a + ¢) by Proposition 1, so
r(d —a) 2(b—c¢)

P A C A R S
P Ka— Ko 5KA—r(atc)

O

Remark 2. As we mentioned above, it is well known that for a tangential quadri-
lateral OABC), its incenter I lies on the Newton line. It is less commonly mentioned
that I lies between M4 and Mp; that is, it lies on the closed line segment between
My and Mp. This can be proved by an easy geometric argument. We will not
require this fact, though for equable tangential quadrilaterals, it follows from the
above proposition and Remark 7 below.

2.2. Examples of Tangential LEQs

Of course, the lattice equable kites are tangential. For each of the four families
K1 — K4 of [4, Theorem 1] we use Propositions 3 and 5 to compute the incenter
I,,; and the parameter A, ; for which I, ; = A\, ;M + (1 — /\n,i)% where M = M4.
We omit the details, which are completely routine. The results are given in Table 1.
Notice that in family K1, n + ¢ is even. Hence, I, ; is a lattice point for all the
families.

We will now exhibit an infinite nested family of non-dart concave tangential
LEQs. Let (u;,v;) be the i-th solution to the Pell equation u? — 3v? = 1, with
initial solution (u1,v1) = (2,1). From the standard theory of Pell equations, one
has the recurrences:

Uij+1 = 2u1 + S’Ui, Vi4+1 = Uy + 21)1'. (10)
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Uj (3 Al B Ai+1 a; bi C; dl
2 |1 (86) | (80) | (18,29) 10 | 6 | 26 | 30
74| (1824) | (8,0)| (56,90) 30 | 26 | 102 | 106
26 | 15 || (56,90) | (8,0) | (198,336) || 106 | 102 | 386 | 390
97 | 56 || (198,336) | (8,0) | (728,1254) || 390 | 386 | 1446 | 1450

Table 2: The first four members of the tangential family.

Let A; denote the point with coordinates (x;,y;) = (2u; + 4, 6v;), and let B be the
point (8,0). We will consider the lattice quadrilateral OA;BA;+1. To verify that
OA;BA; 41 has no self-intersection, it suffices to calculate the vector cross products
OA; x OA;41 and BA;11 x BA;, using the recurrence relations (10), and see that
they are both positive. We leave the details to the reader.

Let the lengths of the segments OA;, A;B, BA;+1, A;+10 be denoted a;, b;, ¢;, d;,
respectively. We have

a? = 2? +y? = 4u? + 16u; + 16 + 3607 = 16u? + 16u; + 4 = (du; + 2)°.

So a; = 4u; + 2 and d; = a;41. Similarly, the distance b; is given by
b? = (2u; — 4) + (6v;)% = 4u? — 16u; + 16 + 3607 = 16u? — 16u; + 4 = (du; — 2)%.
So b; = 4u; — 2 and ¢; = b;41. Thus OA; BA;;1 is tangential because

a; — b+ ¢ —d; = (du; +2) — (du; — 2) + (duipr — 2) — (dui +2) = 0.

The perimeter P(OA; BA;;1) of OA;BA; 11 is a; +b; +¢; +d;j = 8(u; +u;41), while
the area K(OAILBAH_l) of OA,'BAH_l is 4(yi+1 - yz) = 24(U¢+1 - ’Ui). Hence, using
the recurrence relations (10),

K(OAiBAi+1) — P(OAiBAiJrl) = 24(Ui+1 — ) — 8(’114 + UZ‘+1)
= 24(1“ + ’Ui) - 8(3ui + 3Ui) =0.

So OA;BA;1; is a LEQ. The vertices and side lengths of the first four members of
this family are given in Table 2. The first two members of the family are shown in
Figure 5.

By Proposition 3(b), the incenter I; of OA;BA; ;1 is calculated to be:

K(A,BO)
= (4 + 2u; + 2v;, 2u; + 6’Ui) =A; + (2’Ui, 2ui),

using u? = 1+ 3v?. In particular, the incenters I; are all lattice points. From
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0 B

Figure 5: The first two members of the family.

Proposition 5, for I; = A\iMo + (1 — A\;)Ma, a,,,, one has
N 1
" K(OA A1) — ((4ui +2) + (duigr — 2))
4 1

6(1 + 2u; + 2v;) — ((4u; +2) + 4(2u; +3v; —2)) 37

In particular, the family members all have the same value of the parameter \;. The
Newton line for the first member of the family is shown (dotted) in Figure 6.

2.3. Lemmata for Tangential LEQs

For this subsection, OABC denotes an equable tangential quadrilateral. In par-
ticular, it has inradius r = 2. Let 6 denote the interior angle of OABC at
A; see Figure 1. By the cosine rule, p?> = a® + b*> — 2abcosf. As |abcosf| =

Va2b? — a2b2sin2 0 = \/a2b? — 4K3, so

p? =a® + 0% +£2/a2? — (2K 4)2, (11)

where the sign of the square root depends on whether 6 is acute or obtuse. Similarly,
¢* = a® + d* £ 2/a2d? — (2Ko)?. (12)

The distances p, ¢ may fail to be integers (see [4, Theorem 4]), but as O, A, B, C are
lattice points, p?, ¢* are integers. So the following lemma is immediate from Equa-
tions (11) and (12), and does not require the equability or tangential hypothesis.

Lemma 1. The integers a?b? — (2K 4)? and a*d? — (2Ko)? are squares.
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Figure 6: First member of the family.

Lemma 2. If OABC is not a kite, one has

Ka—K Ko —-K
pgzw_’_(a_bf and q2zm
a—d a—b
Furthermore, if OABC is a kite with OB as its axis of symmetry, and if OABC is
not a rhombus, then the above formula for ¢* still applies and one has the following

formula for p?:

+ (a — d)%

2 2(a+c)*(a—D)
P =Ko —Kp

Proof. Arguing exactly as in Proposition 1 we reobtain Equation (6):
(a+c)(a—d)p® = 4(K3 — K&) + (a— d)(a +c)(a - b)*.

If a = d, then by the tangential hypothesis, b = ¢, so OABC' is a kite. Thus, if
OABC is not a kite, a # d and we have

P =A(K} — K2) + (a—b)*.

Then as K% — K2 = (Ka+ K¢c)(Ka — Ko) =2(a+ ¢)(Ka — K¢), from which the
required formula for p? follows. Similarly, the formula for ¢° is obtained by applying
Heron’s formula to triangles OAC and BC A.

If OABC is a kite with OB as its axis of symmetry, and is not a rhombus,
then @ = d,b = c and a # b, and the argument giving the formula for ¢ remains
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valid. For p?, we use the standard formula for the area of a kite: pg = 2K. So

p? =16(a+c)?/¢* = %, as required. O

Remark 3. If OABC is not a kite, then from the above lemma, using Equa-
tion (11),

8(KAa__(C;+ ) _p’- (; 0 _ s Va2b? — (2K 4)2,

which is an integer by Lemma 1. Similarly, w is an integer. If OABC is
a kite with OB as its axis of symmetry, and if OABC' is not a rhombus, then by

8(Ko—(a+tc))
a—b

the same reasoning, is again an integer.

At this point we pause to explain the investigation we are about to perform.
The integers S(KAa:(§+c))
key role in what follows. Using Proposition 5 (or Proposition 4) one could easily
directly show that these integers obey an important relation: their product is 8 times
their sum (see Lemma 5 below). This enables us to show that these integers are
restricted to a small set of possibilities (see Lemma 6 below). However, we will follow
a somewhat more circuitous route to this result. We proceed by developing results
that will lead to the functions o, 7 of Definition 1, given in the Introduction, which
hold for all tangential LEQs (kites as well as non-kites). This enables us to then
progress in a more natural manner, without having to appeal to the classification
of kites in [3]. Although it involves some unpleasant computations, this pathway
forward also has the advantage that it reveals certain important relations that will
be useful in what follows.

and 8(Koa:(§ +9)  defined above for non-kites, will play a

Lemma 3. The integer abed — 4(a + ¢)? is a square, and

ab+ cd + 2¢/abed — 4(a + ¢)?

16 4 (a — d)?

d—+b 21/ abed — 4 2
Ko = (a+ )+ (a— p) 24T beF 2y/abed — d(a )

16 + (a — b)2 ’

Ki=(a+c)+(a—d)

where the signs of the square roots in the formulas for Ko and K4 are opposite.

Remark 4. In the statement of the above lemma, the terms

ab+ cd + 2+/abed — 4(a+¢)? and ad + be F 2/ abed — 4(a + ¢)?

are positive. Indeed, using d = a — b + ¢, by the arithmetic mean—geometric mean
inequality, ab+cd > 2vabed > \/abed — 4(a + ¢)2. In particular, K4 < a+c if and
only if a < d.
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Proof of Lemma 3. The formulas for K 4 and Ko obviously hold when OABC'is a
rhombus. So, without loss of generality, we may assume that either OABC is not
a kite, or is a kite that is not a rhombus and has axis of symmetry OB. Then from
Lemma 2 and Equation (12),

4(KO—KB)_ad:q2—c12—oi2

p— 3 = ++y/a2d? — (2Kp)?
so squaring, using Ko + Kp = 2(a + ¢) and rearranging gives
16(Ko — (a +¢))? — 4ad(a — b)(Ko — (a+¢)) = —(a — b)* K3,

Let s := KO%‘Z“). Thus

165> + ((a — b)s + (a + ¢))? = 4ads. (13)
Hence, as? + 23s +~ = 0, where, using a +c = b +d,

a=16+ (a—b)?, p=—(ad+cb), v=(a+c)

Thus, as 32 — ay = 4(abed — 4(a + ¢)?) (using a + ¢ = b+ d again), we have

ad + ¢b £+ 2+/abed — 4(a + ¢)?

16 + (a — b)? ’

which gives the required formula for Ko. In particular, as s is rational, abed —4(a+
c)? is a square, as claimed. The formula for K4 is similarly obtained by equating
p? from Lemma 2 and Equation (11).

It remains to see that the signs of the square roots in the formulas for Ko and

K 4 are opposite. Let R = 24/abed — 4(a + ¢)2. Obviously, we may assume that
R # 0. Let us write

ab+cd+04R
K4 = 2 reeroant
a=l(ate)+(a=d 16 + (a — d)2
ad+bc+ooR
Ko = _pleroeT oot
o=(a+c)+(a )16+(a—b)2’

where d4,d0 are each £1. Usinga+c=b+d,

B ab+cd+0aR 16 — (ac+ bd) + 64 R
KA—(cH—b)—(d—a)+(a—d)—16+(a_d)2 =(d—a) 16+ (a—d)?

o _ad+bct+doR (16 — (ac+bd) +doR
Ko—(a+d)=(b—a)+(a b)—16—|—(a—b)2 =({b—-a) 16+ (a D)2 .

Notice also that (d — a)(b — a) = bd — ac. Hence, by Proposition 4,

16 — (ac+bd) + daR 16 — (ac+bd) + 0o R
: ~ 1 (14)
16 + (a — d)? 16 + (a — b)?
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Now,

16 — (ac+bd) + 04 R ) 16 — (ac+bd) — 4R

16+ (a — d)? 16 + (a — b)?2
(16— (ac+bd))>—R* (16 — (ac+ bd))? — 4(abed — 4(a + ¢)?)
(164 (a—d)2)(16 + (a — b)2 (16 + (a — d)2)(16 + (a — b)2) ’

and substituting d = a + ¢ — b one finds that this expression reduces to 1. Hence,
if 00 = d4, Equation (14) gives

16 — (ac+bd) + 0aR  20aR
16 + (a — d)2 16 + (a —b)

5 =0,

which can only happen if 16 — (ac+bd) + 4R = 0, as R # 0. But in that case, one
would have (16 — (ac + bd))? = R?, which is impossible, since we have already seen
that substituting d = a + ¢ — b one has

(16 — (ac + bd))* — R* = (16 4 (a — d)?)(16 + (a — b)?) > 0.
So 6o = —d 4, as claimed. O

A tangential quadrilateral is cyclic if and only if its area is given by K = v abed
[20, Theorem 4]. Hence, the integer abcd —4(a+¢)? in the above proposition is zero
if and only if OABC is cyclic. This motivates the following result.

Lemma 4. The sign of the square oot in the formulas for Ko is positive if and
only if B lies within the circumcircle of the triangle OAC; in particular, the sign
for Ko is positive if OABC' is concave.

Proof. In the notation of the above proof, let © = §p2+/abcd — 4(a + ¢)2, so

ad +bc+x
K = — _—
o=(a+c)+(a b)16+(a—b)2
ab+cd —x
KA_(G+C)+(a_d)m

From a standard criterion for a point to be within the circumcircle of a triangle (see
[16]), B is inside the circumcircle of the triangle OAC if and only if

p’Ko < d*Ka + d* K. (15)

First suppose that OABC is not a kite. Now, d’?K4 + a’K¢o = Ka(d? — a?) +
2a%(a + ¢), and by Lemma 2,

Kop® = Ko (16(KA —(ate) + (a — b)2> :

a—d
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Also, by Proposition 4, Ko K4 = (a+d)K s+ (a+b) Ko —2a(a+c). So Inequality (15)
can be written as £ > 0 where
E = Ku(d* — a?) +2d%*(a +¢)
3 (16((@ +d)Ks+ (a+b)Ko —2a(a+c) — (a+c)Ko)

—— +(a—b)2KO>.

Substituting the formulas for Ko and K 4, one has

a—d)(ab+ cd — x)
16 + (a — d)?
16 a—d)(ab+cd—=x

—H((a+d)<a+c+( 16)—1(—(a+—d)2 )>—2a(a—|—c)

(a —b)(bc+ ad + x)
16 + (a — b)? ))
a—b)(bc+ad+x))
16 4 (a — b)? '

E(d2a2)(a+c+( >+2a2(a+c)

+(b—c) <a+c+

—(a —b)? (a—i—c—i—(

Substituting d = a + ¢ — b one finds that the above expression reduces (rather
miraculously) to E = (a + ¢)z. Hence, as claimed, z > 0 if and only if B is inside
the circumcircle of the triangle OAC.

Now, consider the case where OABC' is a kite with axis of symmetry OB. Then
a=db=cKy=Kc=a+ c and Inequality (15) is: p’Ko < 2a%(a + ¢). By

2(a4-c)?(a—c) _ (a+c)?(a—c)
Ko—Kg Ko—(atc) *

Lemma 2, p?> = So the required condition is E > 0,

where
2a%(Ko — (a+¢)) 1% (a® + Ko — 2a*(a + ¢)

(a+c)(a—c) a? — 2

Substituting for Ko, and using d = a,b = ¢, one finds that the above expression

reduces to
_ —16(a+ ¢)? + 4a*c* + z(a® + ¢?)

E= (a+¢)(16 + (a — ¢)?)

Notice that the denominator of E is positive, and in the numerator, —16(a + ¢)? +
4a%c® = 2%, so the numerator is x(a® + ¢* + x). Now, a®? + ¢> + x > 0 since
(a®+c?)? —2? = (a® — )2+ 16(a+c)? > 0. Hence, z > 0 if and only if B is inside
the circumcircle of the triangle OAC. O

From this point on, we employ the functions o, 7 given in Definition 1 of the
Introduction.

Remark 5. From Definition 1 and Lemmas 3 and 4,

Ko =a+c+ (a—b)o, (16)
Ky=a+c+(b—o)r. (17)
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Remark 6. By Lemma 3, Lemma 4, and Proposition 5, if OABC is a tangential
LEQ that is not a rhombus, then A = %

Remark 7. By Remark 4, ¢ and 7 are both positive.

Remark 8. We saw in the proof of Lemma 3, in Equation (13), that for a # b, one
has, using a +c=b+d,

1602 4 ((d — ¢)o + (a + ¢))? = 4ado. (18)

It is easy to verify directly that this equation also holds when a = b. Similarly, the
following equation holds in all cases:

1672 4 ((b— )1 + (a + ¢))? = 4abr. (19)
Remark 9. Suppose 0 = 7 = 2. Then Equation (18) gives
16-22 + (2(d — ¢) + (a + ¢))* = 8ad.

In particular, (2(d — ¢) + (a + ¢))? is divisible by 8, and hence, being a square, it is
divisible by 16. In particular, a 4 ¢ is even. Furthermore ad must be even. Hence,
by a reflection in the line y = x if necessary, we may assume that a is even. Then
as a + ¢ is even, c is also even.

Suppose 7 = 3. Then Equation (19) gives

16 - 3% + (a + 3b — 2¢)? = 12ab.

In particular, a 4+ 3b — 2c¢ is even so a and 3b have the same parity, and we can
pose (3b —a)/2 = u and (3b + a)/2 = v. This gives 36 + (u + a — ¢)? = 3ab, so
36 + (u + ¢)? = 3ab — a® — 2ua + 4uc + 2ac = 6bc. Hence, u + c is divisible by 3,
say u + ¢ = 3k, so bc is divisible by 3. But 4 + k2 is not divisible by 3, so bc is not
divisible by 9. Thus precisely one of the numbers b, ¢ is divisible by 3. Hence, by a
reflection in the line y = x if necessary, we may assume that c is not divisible by 3,
and that b is divisible by 3. By the same reasoning, for ¢ = 3, we may assume that
c is not divisible by 3, and that d is divisible by 3.

Lemma 5. For 0,7 as defined in Definition 1, one has o +7 =oT.

Proof. As in the proof of Lemma 4, let © = 26+/abed — 4(a + ¢)?. Then cross-
multiplying, the required identity is £ = 0, where

E = (ad+bc+x)(164(a—d)?) — (ab+cd—z) (16 + (a—b)?) — (ad+bc+x) (ab+cd — ).
Expanding and using d = a + ¢ — b, one has
E = 2% + 4(4a”® + 8ac — a®bc + ab’c + 4c* — abc?).

Then replacing 22 by 4(abed — 4(a + ¢)?) and using d = a+ ¢ — b again gives E = 0,
as required. O
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Remark 10. Observe that 8¢ and 87 are integers. Indeed, if OABC' is not a kite,
then from Lemma 3,

80:8(1('0—(a+c))7 8T:8(KA_(CL+C)),

a—b a—d

which are integers by Remark 3. If OABC is a kite but not a rhombus, with for
example, axis of symmetry OB so a = d,b = ¢, then o is still given by the above
formula and is an integer by Remark 3, while 87 = ac — §+/a?c? — 4(a + ¢)?, which
is an integer by Lemma 3. In fact, if OABC is a kite that is not a rhombus,
then by [4, Theorem 1], OABC appears in Table 2, at the beginning of Subsec-
tion 2.2. Tts A value is thus either 1/5,4/5,1/2 or 8/9, and so here (o, 7) is either
(5,5/4),(5/4,5),(2,2) or (9/8,9), respectively, by Remark 6. If OABC is a rhom-
bus, then by [4, Corollary 1], OABC is either the 4 x 4 square or the equable
rhombus of side length 5. Furthermore, 8¢ and 87 are a? + v/a* — 16a2, which are
also integers by Lemma 3. For the 4 x 4 square, this gives (o,7) = (2,2). For
the rhombus of side length 5, if one chooses OB to be the longest diagonal, then
(0,7) = (2,5), while if OB is the shortest diagonal, then (o, 7) = (5, 3).
Lemma 6. For o,7 as defined in Definition 1, the only possibilities for the un-
ordered pairs {o,7} are {9, %}, {5,2}, {3,3} and {2,2}.

Proof. By Remarks 7 and 10, 0/ = 80, 7’ = 87 are positive integers and by Lemma 5,
o't = 8(¢’ + 7') which can be written as

(o —8)(1" —8) =25,
The only positive integer solutions of the above equation are then
{o’, 7'} € {{9,72},{10, 40}, {12,24},{16,16} },
giving the result announced. O

As mentioned in Remark 6, if OABC is a tangential LEQ that is not a rhombus,
then \ = % So Lemma 6 has the following corollary.

Corollary 4. There are only seven possibilities for the barycentric coordinate pa-

11214138 - _ 3k 5q9
rameter A, namely 5,5,%, 5,5, 9,4, corresponding to o = 2,3,5,5,3,9, 3, respec-
tively.

Remark 11. Consider a reflection in the line y = z, followed by a relabelling of the
vertices so they are positively oriented; that is, the vertices O, A, B, C are permuted
to O, C, B, A, respectively. It is easy to see that under this operation, o and 7 are
left unchanged, and the side lengths a, b, ¢, d are permuted to d, ¢, b, a, respectively.

Notice that for convex tangential LEQs (where we are not concerned about having
the reflex angle at B), under the rotation for which the vertices O, A, B,C are
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permuted to A, B, C, O, respectively, o and 7 are interchanged, and the side lengths
a, b, c,d are permuted to d, a, b, ¢, respectively. So, for the study of convex tangential
LEQs, up to Euclidean motions, we may assume that o < 7; that is, 7 € {2, 3,5, 9}.

Notice also for convex tangential LEQs, under the rotation for which the vertices
0O, A, B, C are permuted to B, C, O, A, respectively, o and T are also left unchanged,
and the side lengths a, b, ¢, d are permuted to c,d, a, b, respectively. Note that the
two permutations oy : (a,b,¢,d) — (d,c,b,a) and o9 : (a,b,¢,d) — (¢,d,a,b) are
involutions and their compositions give the Klein group Z/27Z x Z /27, under which
each letter can be moved to any of the four positions. So, for example, without
changing ¢ and 7, we may assume in the convex case that b is the smallest of the
side lengths. Note however that when o = 7 = 2, this potentially conflicts with the
requirement in Theorem 1 (and in the proof of Corollary 1 which uses Theorem 1)
that we also require a and ¢ to be even. As we saw in Remark 9, a + ¢ and ad are
even when o0 = 7 = 2. So by reflection we may suppose that a, c are even. Then by
applying o9 if necessary, we may assume that b < d.

In summary, for convex tangential LEQs we may assume the following:

(a) 7 €{2,3,5,9},
(b) a,c are even and b < d when 7 = 2,

(c) b is the smallest of the side lengths when 7 € {3,5,9}.

2.4. Proof of Theorem 1 and Corollary 1

Proof of Theorem 1. Lemma 6 gives 7 possibilities for the ordered pair (o, 7). Using
14+ 1 =1anda+c=>b+d, let us restate Equations (17) and (16):

Ka=a+c+ (b—o)r, (20)
2 (21)

Ko:a—i—c—l—(a—b)T_l.

We now consider the area restrictions:
o As K4 > 0, Equation (20) gives a + ¢+ (b — ¢)7 > 0, which gives part of (i).

e As K¢ > 0 and K¢ = 2(a+¢) — K4, Equation (20) gives a+c¢— (b—c¢)T > 0,
which gives the other part of (i).

o As Ko > 0, Equation (21) gives (a+¢)(7 —1) + (a —b)T > 0, which gives (ii).

e We also have Kp # 0 as otherwise ABC would be colinear. Thus Ko #
2(a + ¢) and Equation (21) gives (a — b)=== # a + ¢, which gives (iii).

T—1

Further, OABC is convex if and only if Ko < 2(a + ¢). As we have just seen, this
occurs when (a — b) =5 < a + ¢; that is, when (b +c¢)7 > a +c.
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Recall that from Remark 8,

1672 + ((b—¢)7 + (a + ¢))? = 4dabr, (22)
1602 + ((d — ¢)o + (a + ¢))? = 4ado. (23)

(a). If 7 € {2,3,5,9}, then Equation (22) gives 1672+ (tb+a— (7 —1)c)? = 47ab.
So b+ a— (1 — 1)c is even. If 7 = 2, then a,7b have the same parity since a is
even by assumption. If 7 € {3,5,9}, then (7 — 1)c is even, so a,7b again have the
same parity. Thus v = Tb;'a is an integer, and we have (27)% + (v — %‘10)2 = Tab.
2 — 4?2, we have Equation (1) as required.

Then since Tab = v

(b). This case is completely analogous to case (a). Let o € {3,5,9}; then
Equation (23) gives 1602+ (cd+a—(c—1)c)? = 4oab. So od+ais even and v = 2Lt
is an integer. We have (20)? + (v — 252¢)? = cad. Then since cad = v? — u?, we

have Equation (2) as required. O

Proof of Corollary 1. We use the notation of Theorem 1. By Remark 11, we may
assume that 7 € {2,3,5,9}, that a,c are even and b < d when 7 = 2, and that b is
the smallest of the side lengths when 7 € {3,5,9}.

Tb—a _ T1b+a
7 V= "3

As in the statement of Theorem 1, let u = . Rewriting Condi-

tion (i) of Theorem 1, we have

(T —1)e < 20, (24)
2u < (1 +1)c, (25)

and the convexity condition is
2u > —c(r —1). (26)

So by Inequalities (25) and (26), we have —%c <u< %Hc. When 7 = 2, as

b<d,wehave 2b < b+d=a+c,sou < %C. When 7 € {3,5,9}, as b is the smallest
of the side lengths, we have 76 < (7 — 1)c +a, so u = (b — a)/2 < Z5tc. Thus, in
all cases, we have

T—1 T—1
c<u<

c. (27)

Assume 7 = 2. By Inequality (27), we have u?> < 1¢2. Thus by Theorem 1,

1
16 + u? = v? — (v — 3¢)? gives
1 1
16+ —¢® > 16 + v = ve — —¢°
—|—4c > +u ve 4c,

from which it follows that
32 > ¢(2v — ¢). (28)

From Inequality (24), we have 2v > ¢. So Inequality (28) has only a finite number
of solutions. Indeed, one finds readily there are just 20 such pairs ¢, v with ¢ even
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and 2v > ¢ for which Inequality (28) holds. For only three of these pairs does the
equation 16 + u? = v? — (v — %c)2 have an integer solution for u with u 4+ v even;
these are (¢,v,u) = (4,2,6),(2,1,9),(8,4,6), corresponding to the sides (a,b, ¢, d) =
(4,4,4,4),(8,5,2,5),(2,5,8,5), respectively. The last two cases correspond to the
same LEQ, up to Euclidean motion.

Assume 7 = 3. By Inequality (27), we have —c < u < ¢. So 36+u? = v2—(v—c)?
gives 36 + ¢2 > 36 + u? = 2vc — ¢2, from which it follows that

18 > ¢(v —¢). (29)

By Inequality (24), we have v > ¢, so ¢,v — ¢ € {1,...,18}. One finds there are
just 58 pairs ¢, v with v > ¢ for which Inequality (29) holds. Of these, there is only
one where the equation 16 + u? = v? — (v — ¢)? has an integer solution u for which
v+ u =0 (mod 3), and such that for the resulting side lengths (a,b, ¢, d), one has
b = min{a,b,c,d}; this is the case (c,v,u) = (4,7,2), corresponding to the sides
(a,b,c,d) = (5,3,4,6).

Assume 7 = 5. By Inequality (27), we have —2¢ < u < 2c¢. So 100 + u? =
v? — (v — 2¢)? gives 100 + 4c® > 100 + u? = 4vc — 4¢?, from which it follows that

25 > ¢(v — 2¢). (30)

By Inequality (24), we have v > 2¢, so ¢,v — 2¢ € {1,...,25}. One finds there
are just 86 pairs ¢,v with v > 2¢ for which Inequality (30) holds. Of these, one
finds there is only one where the equation 100 + u? = v? — (v — 2¢)? has an integer
solution u for which (v + u)/5 is an integer, and such that for the resulting side
lengths (a, b, ¢, d), one has b = min{a, b, ¢,d}; this is the case (c,v,u) = (5,15, 10),
corresponding to the sides (a,b,¢,d) = (5,5,5,5).

Assume 7 = 9. By Inequality (27), we have —4c < u < 4c. So 324 + u? =
v? — (v —4c)? gives 324 + 16¢? > 324 + u? = Svc — 16¢2, from which it follows that

41 > ¢(v — 4c). (31)

By Inequality (24), we have v > 4¢, so ¢,v — 4¢ € {1,...,41}. One finds there
are 979 pairs ¢,v with v > 4c¢ for which Inequality (31) holds. Of these, one finds
there are only two where the equation 324 + u? = v? — (v — 4c)? has an integer
solution u for which (v + w)/9 is an integer, and such that for the resulting side
lengths (a,b, ¢, d), one has b = min{a, b, ¢, d}; these are the cases (¢, v,u) = (3,21,6)
and (5,23,1), corresponding respectively to the sides (a, b, ¢,d) = (15,3,3,15) and
(37,1,5,41).

This completes the proof of the corollary. O

2.5. Proof of Theorem 2

We follow the general strategy used in [42], but in our case we employ a slightly
different solution form for the Diophantine equations that appear in the statement
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of Theorem 2.

Lemma 7. Suppose 2%+ w? +u? = v? for integers u,v,w, z and that the prime de-
composition of ged(u, v, w, z) contains no term p* where p is congruent to 3 modulo
4 and k is odd. Then there are integers p,q, m,n such that

U—U:P2+q2a U+U=m2+n2, w=pm-+qn, z=pn—qgm.

Numbers u,v,w, z for which 2% + w? + u? = v? are said to form a Pythagorean

quadruple, and of course their study has a long history; see [35]. The above lemma
is essentially equivalent to a classical result which says that if 22 + w? +u? = v? for
integers u, v, w, z with ged(u,v,w, z) = 1, then supposing z,w are even, there are
integers p, ¢, m,n such that

v—u=2p"+¢%), vHu=2(m>+n), w=2pm+qn), z=20pn—qm).

This result, sometimes attributed to V. A. Lebesgue, is proved in many places; see
[12, pp. 28-37], [15], [31, p.14] and [38]. We require the slightly stronger formulation
of Lemma 7, which is readily deduced from the treatment given in [14, Section II].

We will also make use of a certain elementary fact which we give in the following
lemma. For convenience, let us make a definition.

Definition 3. We say that a positive integer k has the lattice preservation property,
or is a lattice preserver, if for every lattice point X for which %X has integer length,
the point %X is also a lattice point.

For example, it is easy to see that 2 and 3 are lattice preservers. Notice that
the set of lattice preservers is closed under multiplication. Hence, for example, 4
and 6 are lattice preservers. Recall that a hypotenuse number is a positive integer
that occurs as the length of the hypotenuse of some Pythagorean triangle. It is
well known that hypotenuse numbers are those numbers that have a prime factor
congruent to 1 modulo 4 [32].

Lemma 8. A positive integer k is a lattice preserver if and only if k is not a
hypotenuse number. So k is a lattice preserver if and only if k has no prime factor
congruent to 1 modulo 4.

Proof. If k is a hypotenuse number, say k2 = 22432, then %(x, y) has length 1 but it
is not a lattice point. So hypotenuse numbers are not lattice preservers. Conversely,
if k& is not a lattice preserver (so k > 2), then there exists a lattice point (z,y) such
that (z,y)/k has integer length, a say, but is not a lattice point. We may assume
without loss of generality that ged(z,y,k) = 1. We have 2% + y? = k2a%. Write
22 + 9% = k%a’? where 2’ = x/gcd(x,vy,a), etc. So ged(z’,y', ka’) = 1 and hence
2’ y', ka' is a primitive Pythagorean triple. So by [32, Theorem 3.20] for example,
all the odd prime factors of k are congruent to 1 modulo 4 and k is not divisible
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by 4. So as k > 2, we conclude that k has at least one prime factor congruent to 1
modulo 4 and so k is a hypotenuse number. O

Recall that by Remark 9, when working with tangential LEQs we may suppose
without loss of generality that c is even when o = 7 = 2 and that c is not divisible
by 3 when o or 7 equals 3.

Proof of Theorem 2. (a). Suppose t € {2,3,5,9}. Notice that a + ¢ = b+ d and
so from hypothesis (i), (d — a)t > —(a + ¢). Adding hypothesis (ii) gives 2dt > 0,
so d > 0. Furthermore, Equation (3) gives (v + u)(v — u) = v? —u? > 0, so as
v=(a+1tb)/2 > c(t —1)/2 > 0 by condition (i) of our hypotheses, v +u and v — u
are both necessarily positive. That is, a,b > 0. So, in all cases, a,b,c,d are all
positive.

The basic idea of the proof is to apply Lemma 7 to obtain integers p, ¢, m,n such
that

t—1
2

a=p’+¢, th=m>+n> pm+qn=v— ¢, pn —qm = —2t. (32)
Then we consider the Gaussian integers z := p + ¢i, w := m + ni, and let

(tz —w)>. (33)

Ht—1)

We call this the general case. Unfortunately, as we will see below, this procedure is
not always possible, and we will require two variations on this approach.

(Let us explain, in parenthesis, how the proposal of vertices of (33) can be un-
derstood. Obviously, A, B are suggested by (32). For a tangential LEQ, the areas
Ko, K4 are determined by 0,7 and the side lengths, by Remark 10. Then Equa-
tion (7) enables one to express C in terms of A and B. This gives a formula for
C that must hold if this construction is to produce a tangential LEQ. We suppress
this derivation of the formula for C, and focus on showing that it has the required
properties).

First suppose that ¢t = 2. Then Equation (3) is 16 +u? = v? — (v — %0)2. Clearly
ged(4,u, v, ¢) is either 1, 2 or 4, so we may apply Lemma 7, and obtain the general
case of the equations of (32) and (33).

Now, suppose that t = 3. Then Equation (3) is 62 + u? = v? — (v — 0)2. Ascis
not divisible by 3 by assumption, ged(6,u,v,c) is 1 or 2, and we may again apply
Lemma 7 and obtain the general case of (32) and (33).

Now, suppose that ¢ = 5. Then Equation (3) is 102 + u2 = v2 — (v — 2¢)?, and
as ged(10,u,v,¢) is 1,2,5 or 10, we could apply Lemma 7 in all cases. In fact, for
reasons that will become apparent later in the proof, we will directly apply Lemma 7,
and obtain the general case, only in the cases where u, v, ¢ are not all divisible by 5,
so ged(10,u,v,¢) = 1 or 2. Note that u, v, c are all divisible by 5 precisely when a
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and c are divisible by 5. In this case, let ¥ = v/, 2 = v/, £ = ¢’. Thus Equation (3)
can be written as 4+u'? = v"2—(v/ — 20’)2, and applying Lemma 7, we have integers

P, q, m,n such that
a=>5p*+q¢*), b=m?+n? pm—i—qn:é(v—%), pn —qm = —2.
Then let z := p + qi, w:= m + ni, and set
A =522, B =522 —w?, C’zi(&z—w)z. (34)

We call this the first exceptional case.

Now, suppose that ¢ = 9. Then Equation (3) is 182 + u? = v? — (v — 4¢)°.
If ged(18,u,v,¢) is not 3 or 6, we may apply Lemma 7 and obtain the general
case. If instead gcd(18,u,v,c) is 3 or 6, which occurs when ged(a,c) is divisible
by 3 but not 9, let § = v', 5 =, £ = ¢’. Thus Equation (3) can be written as
36+ u2 = v — (v/ — 4¢)?, and applying Lemma 7, we have integers p, ¢, m, n such
that

1
a=3p*+q¢%), 3b=m*+n? pm+qn = g(v—élc), pn — gm = —6.

Then let z := p + gi, w:= m + ni, and set

1 1
A =322 B =32 — §w27 C= ﬂ(Qz —w)% (35)

We call this the second exceptional case.

We now proceed to show that the points O, A, B,C define a tangential LEQ
OABC with successive side lengths a,b, ¢,d for which (o,7) = (ﬁ,t). We first
treat the general case of the equations of (32) and (33), and deal with the two
exceptional cases later. So we are assuming that for ¢ = 5, the integers u, v, c are
not all divisible by 5, and for ¢ = 9, we have that ged(18, u, v, ¢) is not 3 or 6.

Note that from the equations of (32), OA has length p?>+¢?> = a and A—B = %wQ,

which has length %(m2 +n?) = b. It remains to verify the following 7 requirements:
(Ra) C — B has length ¢, and OC has length d,

(Rb) the quadrilateral OABC has no self-intersections,
(Rc) OABC is equable,

(Rd) the points A, B,C are not colinear,

(Re) B is the only point at which the angle may be reflex,
(Rf) for OABC, one has 7 = t,
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(Rg) B and C are lattice points.

Let us make some preliminary calculations. Substituting z = p + qi,w = m + ni
and using the equations of (32), one has

20 — zZw = 2(gm — pn)i = 4ti, (36)

20+ zZw=2(pm—+gn)=2v—(t—Dec=a+c+t(b—c). (37)
Consequently,

22w? — Z2w? = (2w — Zw) (2w + Zw) = 4t(a + ¢+ t(b — ¢))i. (38)

Now, consider the signed areas Ko, K4, K¢, Kp. Recall that if Z, W are points
in the complex plane, the triangle OZW has signed area i(ZW — ZW)/4. Using
Equation (38), we have 4tK 4 = i(—2z?w? + z?w?) = 4t(a + ¢+ t(b — ¢)), so

Ki=a+th—(t—1)c. (39)
Using 2z = a, ww = tb and Equations (36) and (37), one has

4t — DKo = i((t2% —w?)(tz —w)? — (tz — w)*(tz2 — w?))
= it(zw — Zw)(—2t(a + b) + (t + 1) (2w + Zw))
= —4t*(=2t(a+b) + (t + 1)(a+c+t(b—c))
=4t%(t — 1)(a — tb + (t + 1)c),
Ke=a—th+ (t+1)c (40)
Using 2z = a and Equations (36) and (37), one has

4t — 1)Ko = i(2%(tz — w)? — (tz — w)?2?) = i(2w — Zw) (2w + Zw — 2ta)
= —4t(a+c+t(b—c)—2ta)) = 4t((2t — )a — tb+ (t — 1)c),

SO

KOZZ%T«%—1M—¢b+@—1k) (41)

Before calculating K g, note that t(t — 1)(C — B) = (tz —w)? — (t — 1)(tz2 —w?) =
t(z —w)?, so

C-B=

. 1(z—w)Q. (42)

Thus, using ww = tb and Equations (36) and (37), one has
4t — 1)Kp =i((z — w)?0? — (z — w)2w?) = i(—2w + Zw)(2th — 210 — Zw)
=4t(2tb — (a+c+t(b—c¢))) = dt(—a+tb+ (t — 1)c),
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S0
1
Kp = m(—a-ﬁ-tb—i—(t— 1)c). (43)
We now prove the requirements (Ra) — (Rg).
(Ra). From Equation (42), we have, using Equation (37),

(t—1)||C—B|| = |z —w|? = 22 + w — 20 — Zw

=a+th—(a+c+tlb—rc))=(t—1)c,
as required. Using Equation (37) again, we also have

tit —D)||C|| = |tz — w||* = 1?22 + ww — tzw — tZw = t2a + tb — t(2w + Zw)
=t’a+tb—t(a+th— (t—1)c)
={t*—tha— (> = t)b+t(t —)c=t(t — 1)d,

as required.

(Rb). To verify that the quadrilateral O ABC has no self-intersections, it suffices
to show that the respective signed areas K 4, K¢ of triangles OAB, OBC' are both
positive. The hypothesis (i) gives tb+a— (t —1)¢ > 0, so K4 > 0 by Equation (39).
Hypothesis (i) also gives a — tb+ (t + 1)c > 0, so K¢ > 0 by Equation (40).

(Rc). From Equations (39) and (40), we have K4 + K¢ = 2(a + ¢), as required.

(Rd). To verify that the points A, B, C are not colinear, it suffices to show that
Kpg # 0. But by Equation (43), (t —1)Kp = —a+tb+ (t — 1)¢) # 0, by hypothesis
(ii).

(Re). To see that B is the only point at which the angle may be reflex, it remains
to show that Ko > 0. The hypothesis (ii) gives (2a + ¢ — b)t > a + ¢, from which
we have (2t —1)a —tb+ (t — 1)c > 0, so Ko > 0 by Equation (41).

(Rf). If a # d, then Equations (17) and (39) give

T_KA—(CH-C) a+th—(t—1)c—a—c tb—c)

a—d a—d a—d =t

Thus by Lemma 6, 0 = %

If a # b, then Equations (16) and (41) give

> Ko —(a+¢) _ 2t—1la—th+(t—1Lc—(t—1)(a+c¢)

a—b (t—=1)(a—0)
ta —tb t

t—1(a—b) t-—1

Thus by Lemma 6, 7 = t.

Finally, if a = d and a = b, then OABC is a rhombus and a = b = ¢ = d.

But if @ = b, then u = %a,v = %a, and so by Equation (3), a = ¢ would give
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(262 + U002 = D% 2 2 5o g2 — 2 Fort— 9.3 2 9359, this would
give respectively a? = 82—17 25,18, 16, 18, 25, which is impossible for ¢t = %, %, 3,9. For
t = 2 we have a = 4, so OABC is the 4 x 4 square, which has (o,7) = (2,2), by

Remark 10. For ¢ = 5 and g, we have a = 5, so OABC is the rhombus of side

length 5, which has (o,7) = (%, 5) and (5, %), respectively, again by Remark 10.
(Rg). We now come to the most delicate part of the proof. Note that require-
ments (Ra)—(Re) were simply equations or inequalities, and did not use the values

of ¢, or the fact that certain variables are integers. Requirement (Rf) did use these

facts, but only in a very simple manner.

First suppose ¢t = 2. So B = 22 — w? and C = 1(2z — w)%. Now, 22, w? are
lattice points. And from above, %wz has integer length b. So by Lemma 8, %w2 is
a lattice point. Thus B is a lattice point. Similarly, (2z —w)? is a lattice point and
C= %(Qz — w)? has integer length ¢, so by Lemma 8, C'is a lattice point.

Now, suppose t = 3. So B = 2% — w? and C' = (32 — w)?. Now, 2%, w? are
lattice points. And from above, %w2 has integer length b. So by Lemma 8§, %wQ is
a lattice point. Thus B is a lattice point. Similarly, (3z —w)? is a lattice point and
C= %(32 — w)? has integer length ¢, so by Lemma 8, C'is a lattice point.

Now, suppose t = 5. So B = 22 — %w2 and C = 21—0(52 — w)?, where w =
m + ni. We claim that in the general case, m,n are multiples of 5. First note that
Equation (3) can be written as 10% + (v — 2¢)? = (v + u)(v — u). So as 5 divides

v 4+ u = 5b, it follows that v — 2¢ = 0 (mod 5). Hence, from the equations of (32),
ma =m(p® + ¢*) = p(pm + qn) — q(pn — gqm) = p(v — 2¢) + 10¢ =0 (mod 5).

Similarly, na = 0 (mod 5). So if @ #Z 0 (mod 5), we have m,n = 0 as required. If
a=0 (mod 5), then as v — 2¢ = 2+F4=4c — S(b_C%'HHC, and v —2¢ =0 (mod 5), so
5 divides a+¢, and thus ¢ = 0 (mod 5) and hence v = 0 (mod 5). So, as v+u = 5b,
we have that 5 divides u, v, c. But this is the first exceptional case, contrary to our

current assumption.

As m, n are multiples of 5, let m = 5m’,n = 5n/, w’ = m’+n'i. So B = 22 —5w'?,
which is obviously a lattice point, and C' = %(2 —w')?, which is a lattice point by
Lemma 8.

Now, suppose t = 9. So B = 2% — %wz and C = %(92 —w)?. Now, 22, w? are
lattice points. And from above, %w2 has integer length b. So by Lemma 8§, éwz is
a lattice point. Thus B is a lattice point. Similarly, (92 —w)? is a lattice point and
C = (32 — w)? has integer length d. Hence, as 72 = 2332 is a lattice preserver, C
is a lattice point by Lemma 8. This completes requirement (Rg).

We now treat the first exceptional case. So t = 5 and u, v, ¢ are all divisible by 5.

In the preliminary calculations part of the argument, analogous to Equations (36),
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(37) and (38), one has:

20 — Zw = 44, (44)
zu’)—i—éw:%(a—i—c)—&—(b—c), (45)
2R — Pt = (g(a +o) +4(b — 0))i. (46)

For the areas, using the above three expressions and 2z = a/5,ww = b, we find
exactly the same formulas for Ko, K4, Kp, K¢ as before; that is, we obtain Equa-
tions (41), (39), (43) and (40), respectively, with ¢ = 5.

Analogous to Equation (42), one has

5
CfB:Z(sz)z. (47)

For the proof of requirement (Ra), we have from Equation (47), using Equation (45),

4]|C — BJ| = 5||z — wl||® = 5(2Z + ww — 20 — Zw)
=a+50— (a+c+5(b—c)) =4,

as required. Using Equation (45) again, we also have

4|C| = ||52 — w||* = 5%2Z 4+ ww — 52w — 52w = 5a + b — 5(zw + Zw)
=ba+b—((a+¢)+50b—c)) =4a—4b+ 4c = 4d,

as required.

As requirements (Rb)—(Rf) only rely on the expressions for Ko, K4, Kp, K¢, and
as these are unchanged, the proofs of these parts need no amendment. It remains
to verify requirement (Rg). But B = 522 — w?, which is obviously a lattice point,
and C' = 1(5z — w)?, which is a lattice point by Lemma 8.

Finally, we treat the second exceptional case. So ¢t = 9 and ged(18,u,v,¢) is
3 or 6. In the preliminary calculations part of the argument, analogous to Equa-
tions (36), (37) and (38), one has:

zw — zZw = 121,
1
zw+zw:§(a+9b—8c), (48)
22w? — Z2w? = 4(a + 9b — 8c)i.

For the areas, using the above three expressions and zZ = a/3,ww = 3b, we find
the exactly same formulas for Ko, K4, Kp, K¢ as before; that is, we obtain Equa-
tions (41), (39), (43) and (40), respectively, with ¢t = 9.

Analogous to Equation (42), one has

C’—B:g(z—w)Q. (49)
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For the proof of requirement (Ra), we have from Equation (49), using Equation (48),

8||C — B|| = 3||z — wl||* = 3(22 + ww — 2w — Fw)
=3(a/3+3b—(a+9b—8¢c)/3) =a+9b— (a+ 9b — 8¢) = 8¢,

as required. Using Equation (48) again, we also have

24(|C|| = |92 — w||* = 9%2Z + ww — 92w — 9Zw = 27a + 3b — 9(2w0 + Zw)
= 27a + 3b — 3(a + 9b — 8¢) = 24a — 24b + 24c = 24d,

as required.

As requirements (Rb)—(Rf) only rely on the expressions for Ko, K4, Kp, K¢, and
as these are unchanged, the proofs of these parts need no amendment. It remains
to verify requirement (Rg). Now, A, z, w are lattice points. Thus, as A — B = %w2
is a lattice point by Lemma 8, so B is a lattice point. Finally, C = 21—4(92 —w)? is
a lattice point by Lemma 8 since 24 = 233 is a lattice preserver.

This completes the proof of Part (a).

(b). Suppose s € {3,5,9}. By hypothesis, b and ¢ are positive. Further, Equa-
tion (3) gives (v +u)(v —u) = v2 —u? > 0, so as v is positive by condition (i) of
our hypotheses, v +w and v — u are both necessarily positive. That is, a,d > 0. So,
in all cases, a, b, ¢, d are all positive.

We now proceed exactly as we did in case (a) by considering a general case and
two exceptional cases. The first exceptional case is where s = 5 and the integers
u,v,c are all divisible by 5. The second exceptional case is where s = 9 and
gcd(18,u, v, ¢) is either 3 or 6. In the general case, we apply Lemma 7 to obtain
integers p, ¢, m,n such that

2

a=p?+q¢° sd:m2+n2,pm+qn:v—s c, pn —qm = 2s. (50)

Then we consider the Gaussian integers z := p + ¢i, y := m + ni, and let
1
A =22 B=22— ——(sz—1y)?, = —y-. 51

2% z 3(5—1)(82 y) Y (51)
Note that A is a lattice point, and OA has length a, while OC has length d (we will
see later that C' is a lattice point). For t = 25, let
sz —y
s—1°

Notice that w has length (i.e., norm) given by

(s — 1)?*|w||* = s%a + sd — s(z7 + 2zy) = s°a + sd — 5(2v — (s — 1)c)
=s%a+sd—s(sd+a—(s—1)c) =s(s—1)(a—d+c) = s(s —1)b.
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So t—le has length b. Observe that for t = %5, we have B = 22 — %wQ and
A—-—B= %wQ has length b, exactly as in case (a). Moreover, we can write
G P Y (R ) e R
=—(sz—(s—Dw)* = z—w| = z—w
s s s—1 tt—1) ’

which is the same formula as in (33), in case (a). Now, compute:

-1 -1 s
D — Z = U — 2 = 72 —_ ) =
2 = Fw = —— 1(zy Zy) Py (gm — pn)i py

4i = 4ti,

1 — 1
20+ Zw = . (2(sz—y)+z(sz—y)) = 71(250, — 2§ — zZy)
s — s —

= sil(Qsa—(Qv—(s—l)c)): Sil(Qsa—sd—a—i—(S—l)c)

=a+c+

Sil(afd) =a+t+c+tla—d)=a+c+tb-rc),

22w? — 22w? = (2w — Zw) (2w + Zw) = 4t(a + c+t(b - ¢))i,
which are exactly the same as stated in Equations (36), (37) and (37) of case (a).
It follows that the areas Ko, Ka, Kp, K¢ are given by the case (a) formulas (41),
(39), (43) and (40), respectively. Thus the proof of requirements (Ra)—(Rf) hold by
the arguments used in case (a) and it remains to verify (Rg).

Let us first suppose s = 5. So C = %yz, where w = m + ni. We claim that m,n
are multiples of 5. First note that Equation (3) can be written as 102 + (v — 2¢)? =
(v 4+ u)(v—wu). So as 5 divides v + u = 5d, it follows that v — 2¢ = 0 (mod 5).
Hence, from (32),

ma =m(p* + ¢*) = p(pm + qn) — q(pn — gm) = p(v — 2¢) = 10¢ =0 (mod 5).

Similarly, na = 0 (mod 5). So if a # 0 (mod 5), we have m,n = 0 as required. If
a=0 (mod 5), then as v — 2c = 5d+Fa=ic — S(dfc;ra“, and v —2¢ =0 (mod 5), so
5 divides a+c¢, and thus ¢ = 0 (mod 5) and hence v =0 (mod 5). So, as v+u = 5d,

we have that 5 divides u, v, c. But this is the first exceptional case, contrary to our

current assumption.
As m,n are multiples of 5, let m = 5m/,n = 5n/,y’ = m’ +n'i. So C = 5y2,
which is obviously a lattice point. Furthermore, for s = 5, one has from (51) that
1 1
A-B=_—5z-y)=-(2—v)>
552 —¥)" = (=)
So as A — B has integer length b, and (z — 3/)? is a lattice, so A — B is a lattice
point by Lemma 8, and hence B is a lattice point.
Now, suppose s = 3 or 9. As y is a lattice point and C' = %yz has length d, so C'is
a lattice point when s = 3 or 9, by Lemma 8. For s = 3, we have A— B = %(3z—y)2



INTEGERS: 23 (2023) 34

and for s =9, we have A— B = %(92 —1)2. In both cases, A — B is a lattice point
by Lemma 8, and hence B is a lattice point.

We now treat the first exceptional case. So t = 5 and u, v, ¢ are all divisible by
5. Let ¥ =, =, £ = ¢. Thus Equation (3) can be written as 4 + u? =
A (T 20’)2, and applying Lemma 7, we have integers p, g, m,n such that

a=>50p*+¢*), d=m?+n? pm+qn= %(v—2c), pn — qm = 2.
Then let z := p+ qi, y := m + ni, and set
A =522 B =52~ i(Sz—y)z, C =12 (52)
We remark that B has other useful expressions:

5 1
B =y’ = (z-y)* = {(=y* +10yz = 52%).

Note that A has length a and C' has length d. Moreover, A — B = +(5z — y)? and
has length

1 — 1 1
Z(5z—y)(5z —y) = Z(5a+d— 5(29 + zy)) = Z(5a+d— (5d + a — 4c))
= %(4a—4d+40) =0,

and C — B = 2(z — y)? has length

g(z—y)(z—y) = g(%a—kd— (29 + zy)) = i(a+5d— (5d+a—4c)) =c.
So requirement (Ra) is satisfied. Moreover, A = 522 and C' = y? are obviously
lattice points, —y? + 10yz — 522 is a lattice point and B = i(—y2 + 10yz — 522)
has integer length b, so B is a lattice point by Lemma 8. So requirement (Rg) is
satisfied.
For our preliminary calculations we will use z and y, rather than z and w as we
did before. We have

2y — zy = —2(pn — gm)i = —44,
1 1
2§+ zy = g(5d+a—4c) = g(Ga—Sb—i-c),
—4
297 — 22y = ?(6a — 5b+ ¢)i.

These relations are also different from the Equations (44), (45) and (46) we ob-
tained in the first exceptional case of case (a). Nevertheless, using the above three
relations together with the equations of (52), we find exactly the same formulas
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for Ko, K4, Kp, K¢ as before; that is, we obtain Equations (41), (39), (43), (40),
respectively, with ¢t = %. As requirements (Rb)—(Rf) only rely on the expressions
for Ko, K, Kp, K¢, and as these are unchanged, the proofs of these parts need no
amendment.

Finally, we treat the second exceptional case. So s = 9 and ged(18,u,v,¢) is 3

or 6. Let 5 =u/, 5 =7 ¢’. Thus Equation (3) can be written as

5=
36 4+ u? = v — (v — 4¢)°,

and applying Lemma 7, we have integers p, g, m,n such that

1
a=3p*+q¢%), 3d=m?>+n? pm+qn = —(v—4c), pn — gm = 6.

3
Then let z := p + qi, y :== m + ni, and set
1 1
A: 2 B: 2 - _ 2 — 2.
327, 3z 24(9z y)<, C 3Y
Observe that L ) L
_t2_ 2 N2 _ L. 2 0.2
B= 3Y 8(2 Y) 24( y° + 18yz — 927).

Note that A has length a and C has length d. Moreover, A — B = 5;(9z — y)? and
has length

S 1

(92 —y)(92 —y) = ﬂ(27a+3d—9(zy+2y)) =3 9a +d— (9d + a — 8¢))

1

24
1

= §(8a —8d+ 8¢) = b,

and C' — B = 3(z — y)? has length

3 3.1 1
g(z —y)(z—y) = g(§a+3d— (2 + zy)) = g(a—|—9d— (9d+a —8¢)) =c.

So requirement (Ra) is satisfied. Obviously A is a lattice point, and B, C' are lattice
points by Lemma 8. So requirement (Rg) is satisfied.

We have

2§ — zy = —2(pn — qm)i = —124,
1 1
2y+2zZy = §(9d+a—8c) = §(10a— 9 +c),
225? — 22y* = —4(10a — 9b + ¢)i.

Using these relations together with the equations of (52), we find exactly the same
formulas for Ko, K4, Kp, Ko as before; that is, we obtain Equations (41), (39),
(43), (40), respectively, with ¢t = 2. As requirements (Rb)—(Rf) only rely on the
expressions for Ko, K4, Kp, K¢, and as these are unchanged, the proofs of these
parts need no amendment.

This completes the proof of Part (b), and the theorem. O
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Proof of Corollary 2. We use the terminology and results from the proof of Theo-
rem 2. By Remark 6, A\ = %, SO

I A+C)+(e-1)B _ (1-1)(A+C)+B
20 27 '

First suppose 7 = 2. Then I = 4+¢+8 50 by (33),

1222+sz%w2+%(227w)2 _2 W
4 2

Now, 2% = A is a lattice point and 22 = ((pm — gn) + (pn + gm)i). We have
2w = (pm—qn)+ (pn+qgm)i and by (32), we have 2b = m?+n?. So if b is even, then
m2+n? =0 (mod 4) and hence m, n are both even. In this case =
and hence I is a lattice point. So we may assume that b is odd and that m,n are
both odd. Then by (32), modulo 2, we have pn+gm = pm—gn = pn—qgm = —4 = 0.
So once again, I is a lattice point.

Now, suppose 7 = 3. Then I = W, so by (33),

is a lattice point,

I:2z2+%(3z—w)2+22—%w2 5  2ZW

6 c T

We have zw = (pm — qn) + (pn + gm)i and by (32), we have 3b = m? + n2. So
m?+n? =0 (mod 3) and hence m, n are divisible by 3. So zw is divisible by 3 and
thus [ is a lattice point.

Similarly, if o = 3. Then [ = 3B o by (51),

[:z2+§y2+222—%(32—y)2 _
6 37

We have zy = (pm — qn) + (pn + gm)i and by (50), we have 3d = m? + n2. So
m? +n? =0 (mod 3) and hence m,n are divisible by 3. So zy is divisible by 3 and
thus I is a lattice point.

5d—2

4(A+C)+B
10 2

Now, suppose 7 = 5. Then I = . First assume that 242
not all divisible by 5, so we are in the general case. Then by (51),

,C are

422 + L (52 — w)? + 2% — tw? 5 2W
= =z

10 5

We have zw = (pm — gn) + (pn + gm)i. It was proved in the proof of Theorem 2
that in the general case, m,n are divisible by 5. So zw is divisible by 5 and thus I
is a lattice point. Now, consider the exceptional case. By (34),

_4A+C)+B 20224 (52 —w)? +52% —w?
B 10 B 10

which is clearly a lattice point.

1

=522 — Zw,
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(A+C)+4B 5b—2
10

. First assume that 51’%2, 2= c are

Now, suppose ¢ = 5. Then I = 5

not all divisible by 5, so we are in the general case. Then by (33),
224 ty? +422 — (b2 —y)? 2w

I = = .
10 5

We have zw = (pm — gqn) + (pn + gm)i. It was proved in the proof of Theorem 2
that in the general case, m,n are divisible by 5. So zw is divisible by 5 and thus I
is a lattice point. Now, consider the exceptional case. By (52),

I (A+C)+4B 522 +y* +202% — (52 — y)?
B 10 B 10

which is clearly a lattice point. O

= zY,

Example 1. The convex tangential LEQ with vertices (0, 0), (40, 9), (36, 12), (35,12)
and side lengths 41,5,1,37, has incenter (%, 10), by Proposition 3. Similarly,
the concave tangential LEQ with vertices (0,0), (16, 63), (12,60), (11,60) and side
lengths 65,5, 1,61, has a non-lattice point incenter (%, 58). Notice that by Propo-
sition 5, one finds that A = % in both of these examples; that is, 7 = 9.

Example 2. The proof of Theorem 2 was complicated by the two exceptional cases.
Let us show that such cases really do occur. Further, one might wonder whether
it is possible to remove this inconvenience by taking a reflection in the line y =
and thus interchanging a with d and b with ¢. Our examples show that this is not
always possible.

Consider the tangential LEQ with vertices (0, 0), (35, 120), (32,116), (32,126). It
has 7 = 5 and the side lengths a, b, c,d are 125,5, 10, 130, respectively. Here u =
(5b —a)/2 = =50,v = (5b — a)/2 = 75,¢ = 10. So u,v,c are all divisible by 5,
which is the first exceptional case. Interchanging a with d and b with ¢ would give
new values (u,v,c) = (—40,90,5) but again u, v, ¢ are all divisible by 5. Similarly,
consider the tangential LEQ with vertices (0,0), (231, 108), (228, 108), (240, 117). It
has 7 = 9 and the side lengths a, b, c,d are 255, 3,15, 267, respectively. Here u =
(90 —a)/2 = —114,v = (9b — a)/2 = 141. So ged(18,u,v,c) = 3, which is the
second exceptional case. Interchanging a with d and b with ¢ would give new values
(u,v,c) = (—66,201,15) but again ged(18,u,v,c) = 3.

2.6. Infinite Families of Tangential LEQs

As we saw in Subsection 2.2, the four infinite families K1 — K4 of kites from [4, The-
orem 1] gave examples of tangential LEQs with (o, 7) equal to (5,5/4), (5/4,5), (2,2)
and (9/8,9), respectively. Also in Subsection 2.2, we exhibited an infinite nested
family of tangential LEQs with (o,7) = (3,3/2). In this final subsection we ex-
hibit infinite families with (o,7) = (3/2,3) and (9,9/8), thus showing that there
are infinitely many tangential LEQs in each of the seven cases of Theorem 1. The
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method employed can also be used to give further examples in the cases where (o, 7)
is (5,5/4),(5/4,5),(2,2),(9/8,9) and (3,3/2). While by no means comprehensive,
we hope the examples in this subsection will convey the impression that tangential
LEQs are quite abundant.

First observe that for 7 = 3, Equation 1 of Theorem 1 is:

62 +u? =02 — (v—0c)>. (53)

So this equation can be solved by fixing u, and then expressing 62 4u? as a difference
of two squares. Recall that an integer can be written as a difference of two squares
if and only if it is odd or a multiple of 4; see sequence A100073 in OEIS [37]. Clearly
62 +u? # 2 (mod 4), for all u. Thus for every integer value of u, there are integers
v, ¢ for which 62 + u? = v? — (v — ¢)?. (Note that we are interested in solutions
v € N and u € Z). However, we must also impose the restrictions of Theorem 2.
We require u + v = 0 (mod 3), ¢ > 0, ¢ is not divisible by 3, as well as the three
conditions (i) — (iii):

(i) 3lce—b| <a+c, (ii)) 3(a+d) >a+c, (iii) 3(b+c¢)#a+ec.
For convenience we separate (i) into two conditions:
(ia) 3(c—b) <a+c, (ib) 3(b—c)<a+ec.

3b—a _ 3b;ra as:

Notice that the conditions can be rewritten in terms of u = =54, v =
(ia) ¢ <w, (ib) u < 2¢, (il) 3u < (2v+0¢), (iii) u # —ec.

It is not true that for every integer value of u, there are integers v, ¢ for which
62 + u? = v2 — (v — ¢)? and the above restrictions hold. For example, for u = 4,
the only solutions are v = 14,¢ = 2 and v = 14, ¢ = 26, but (ib) fails for the first
solution and (ia) fails for the second.

One infinite family of solutions is as follows: for any negative integer x, let
u = 6z — 1. Then it is easy to check that v = 6(322 —x +3) + l,c = 1 is a
solution to Equation (53). Note that u +v = 0 (mod 3). Condition (ia) is true
for all . Conditions (ib) and (iii) hold as z < 0. Condition (ii) can be written as
622 — 5z + 7 > 0, which is true for all real . Notice that this infinite family has
the values:

a=182> —1224+19, b=62>4+6, c=1, d=122>—12z+ 14.

Another infinite family of solutions is obtained by taking ¢ = 2 and for any integer
r < =3, letting u = 62 — 2 and v = 922 — 6z + 11. This family has the values:

a=922—-120+13, b=322+3, ¢=2, d=6z%—12z+12.
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We now turn to (o,7) = (9,9/8). First observe that for o = 9, Equation (2) of
Theorem 1 is:
182 + u? = 0% — (v —4c)?. (54)

We require v +v =0 (mod 9) and ¢ > 0, as well as the four conditions:
(ia) 9(d —a) < 8(a+¢), (ib) 9(a —d) < 8(a+ ¢),

(ii) 9(a +d) > 8(a +¢), (iii) 9(a + 2¢ —d) # 8(a + ¢),

9d—a __ 9d+a
- 2

which can be rewritten in terms of u = =5-%, v as:

(ia) 8v+4c > u, (ib) u > —4e, (ii) v > 4e, (iii) w # 5c.

One infinite family of solutions is as follows. For any integer x > 1, let u = 6z — 1.
Then it is easy to check that v = 6(32% — z + 27) + 1,¢ = 1 is a solution to
Equation (54). Note that u +v = 0 (mod 9). Condition (ia) is true for all z.
Conditions (ib) and (iii) hold as z > 1. Condition (ii) can be written as 62% — 2z +
53 > 0, which is true for all real z. Notice that this infinite family has the values:

a=2(92> — 6x+82), b=162> 122+ 147, c=1, d=2z>+18.

3. Extangential Quadrilaterals

3.1. Basic Notions for Extangential LEQs

An extangential quadrilateral is a quadrilateral with an excircle, that is, a circle
exterior to the quadrilateral that is tangent to the extensions of all four sides [21, 22,
24]. Analogous to Pitot’s Theorem, one has the following result [36]: a quadrilateral
with successive side lengths a, b, ¢, d is extangential if and only if it has no pair of
parallel sides and

la —c| =1b—d.

As for Pitot’s Theorem, the above criteria is usually only stated for convex quadrilat-
erals, but also holds in the concave case. Indeed, if OABC is a concave quadrilateral
with reflex angle at B, let A’ (respectively C’) denote the point of intersection of
the side OA (respectively OC) and the extension of side BC' (respectively AB).
Let a,b, ¢, d denote the lengths of OA, AB, BC, CO, respectively, and similarly, let
a',b',c,d denote the lengths of OA’, A’B,BC’,C'O. Then a +b = ¢+ d if and
only if @’ + b = ¢/ +d'. This follows from a result sometimes referred to Urquhart’s
quadrilateral theorem, which has a long and interesting history; see [36, 34, 17].

A quadrilateral OABC with successive side lengths a,b, ¢, d can have at most
one excircle and when one exists, its radius r., called the exradius, is given by the

K

formula r, = Toeql [21, Theorem 8]. By relabelling the vertices if necessary, we
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will suppose throughout this paper that the excircle lies outside the vertex B. In
particular, the extangential hypothesis is now a + b = ¢ + d, and from the proof of
[21, Theorem 8], one has a > ¢ and

K

a—cC

re = (55)
For an extangential quadrilateral, one of the diagonals L separates the sides into
two pairs of equal sum, and the excircle is located outside one of the vertices joined
by L (for kites L is the axis of symmetry). In fact, of these two vertices, the excircle
is located outside the vertex at which the quadrilateral makes the largest angle [21].
For concave extangential quadrilaterals, the excircle is located outside the vertex
with the reflex angle. Obviously, extangential quadrilaterals cannot have a pair of
parallel sides; in particular, no trapezoid is extangential and no parallelogram is
extangential even though parallelograms satisfy the a + b = ¢ + d condition.

We remark that there is a strong relationship between tangential and extangential
quadrilaterals. Recall from Equation (4) that a quadrilateral OABC' is tangential if
and only if a + ¢ =b+d. If OABC is a convex quadrilateral, and if B’ denotes the
reflection of B in the perpendicular bisector of AC, then the quadrilaterial OAB’C
is extangential if and only if OABC is tangential. Moreover, equability is preserved
by this construction. However, notice that if OABC' is a LEQ, OAB’C may fail to
have its vertices on lattice points, as in Figure 7. When O ABC is concave, the same
construction can be made, but it can happen that OAB’C has self-intersections, as
in Figure 8.

Analogous to Proposition 1, we have the following result; its proof is very similar
to that of Proposition 1.

Proposition 6. If OABC is extangential with excircle outside B, then OABC is a
kite if and only if the diagonal OB divides OABC' into two triangles of equal area.

Proof. Obviously, if OABC' is a kite, then its axis of symmetry diagonal divides
OABC into two triangles of equal area. Conversely, applying Heron’s formula to
triangle OAB gives

16K%2 =(a+b+p)a+b—p)(a—b+p)(—a+b+p)
= —(a® = "2 +2(a® + b*)p? — p*.

Similarly, from triangle OBC
16K2 = —(c* — d*)? + 2(c* + d*)p* — p*.
Hence, subtracting,

2(a® + 0% — & — d®)p? = 16(K3% — K2) + (a® — v*)* — (* — d*)%. (56)
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o 1 2 3 1 5 6 T 5 9 10 11 12 13 11 15 16 IT—s_ 19 20

Figure 7: Tangential to extangential convex quadrilaterals.

o) ] 1 I T i i i W 3 o)

Figure 8: Self-intersections can occur in the concave case.

Notice that, using a + b = ¢ + d,
A+ - —d*=(a—d)(a+d)+(b—c)(b+c)=2(a—c)(a—d),
and

(a® =%)? = (¢* = d*)* = (a = b)*(a +b)* — (d — ¢)*(c + d)”
= 4(a —c)(a —d)(a +b)>.
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So Equation (56) gives

(a—c)(a—d)p? = 4(K3 — K&) + (a —c)(a—d)(a+b)>* (57)

Now, assume that K4 = Kc. Then Equation (57) gives (a — ¢)(a — d)p? = (a —

¢)(a — d)(a — b)?. Notice that p = &(a — b) is impossible, as otherwise the triangle
OAB would be degenerate. Hence, either a = d or a = ¢. If a = ¢, then by the
extangential hypothesis, b = d and so OABC'is a parallelogram, which is impossible.
So a = d. Note that as K4 = K¢, the points A, C' are equidistant from the line
through O, B. So the triangles OAB and OBC are congruent, and hence OABC' is
a kite. O

Like the incenter of a tangential quadrilateral, the excenter of an extangential
quadrilateral lies on the Newton line N joining the midpoints of the two diagonals.
We have not seen this stated explicitly in the literature, but the proof in the tangen-
tial case is readily adapted. For example, the vector proof of Anne’s Theorem given
in [13, Lemma 1] is valid as is, for signed areas, as the authors indicate, and then [13,
Theorem 3] can be easily modified, with two positive areas and two negative areas.
Since the excenter I, lies on the Newton line, I, is of the form A.M4 + (1 — A\.) Mo
for some A, € [0, 1], where we recall M 4, Mo refer to the midpoints of the diagonals
AC, OB, respectively.

For the rest of this subsection, OABC denotes an extangential (convex or con-
cave) quadrilateral, with vertices in counterclockwise cyclic order, and a, b, ¢, d de-
note the lengths of the sides OA, AB, BC,CO, respectively. We suppose further-
more that the excircle lies outside the vertex B. In particular, the extangential
hypothesis is now a + b = ¢ + d, and from the proof of [21, Theorem 8|, one has
a > c.

Remark 12. By reflecting in the line y = x if necessary, we may always assume
that @ > d. In this case, we have a —b > d —b =a — ¢ > 0; thus a > b. Hence,
a = max{a, b, ¢, d}. Similarly, b = min{a, b, ¢, d}.

For tangential quadrilaterals, equability is equivalent to the condition that the
inradius is 2. For extangential quadrilaterals, the equability condition of Equa-
tion (55) is equivalent to the condition

ro = 22t (58)
a—c
Note that if OABC is not a kite, then by Proposition 6, K4 # & and Ko # &.
So, for equable extangential quadrilaterals that are not kites, K4 # a + b and
Ko # a+b. In fact, one has Ko # a + b even when OABC is a kite (with its
excircle outside the vertex B). Indeed, otherwise OABC would be a thombus, and
no rhombus is extangential. This will be important in Proposition 10 below.
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Analogous to many results for tangential quadrilaterals, there are very similar
results for extangential quadrilaterals. Indeed, analogous to Propositions 2, 3, 4
and 5 of Section 2, we have the following four analogous propositions. We omit the
proofs which are essentially the same as those of the propositions of Section 2.

Proposition 7. If OABC is extangential, then OABC is a kite if and only if the
Newton line Nz contains one of the diagonals.

Proposition 8. If OABC is extangential, we have the following two expressions
for the excenter I.:

1o aC +dA a(B—A)+bA
@ L=5 =g () L=ds 3T
Proposition 9. If OABC is extangential, we have:
2
Te Te e
(KAfg(a*b))( O*E(Ger)) Z( ac — bd).

Proposition 10. If OABC is extangential but is not a kite, we have the following
two expressions for the coordinate A.:

Te c—b
2 Kg—(a+b)

(a) )‘e:ri' atb

> Ko—(@rp P Ae=1-

Furthermore, the first of the above expressions for A is valid if OABC' is a kite.

Example 3. Apart from the rhombus of side length 5 (K1, n = 2) and the 4 x 4
square (K3, n = 1), the lattice equable kites of [4, Theorem 1] are extangential.
For each pair n and j, to determine the exradius 7., ;, the excenter I. ,, ; and the
parameter A, ;, one can employ Equation (58) and Propositions 8 and 10. Here
I =AM+ (1—X.)%, where M = M 4. We omit the details, which are completely
routine. The results are given in Table 3. Notice that unlike the incenters, the
excenters are not necessarily lattice points.

Case Equation M B Te Tom; Nems
K1 | n®=52=4| 3(n+55)(2,1) | n(21) |2 n(n+j> 2,1) 5@;‘2
K2 | n® =557 =1 (2n+55)(2,1) | 4n(2,1) | % ”<”+2J (2,1) 573;‘;
K$ | n?-22=1| (n+2§)(2,2) | 4n(1,1) | 2| 208y | o2y
Kf | 2m®—j2=1| (n+3j)(3 3) | 12n(1,1) | 32 | 2Gu22)(q ) | 200

Table 3: The four kite families.

Example 4. Consider the convex extangential LEQ shown on the left of Figure 10;
its vertices are (0, 0), (21, 20), (20, 20), (0,5) and the side lengths are 29, 1,25,5. The
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Figure 9: Kite with side lengths 3 and 15 (K4, n = j = 1).

exradius is 7, = £~ = 15. By Proposition 8, the excenter I, is (15,35), and by

Proposition 10, t}fe goordinate Ae of the excenter is 10.

Similarly, a concave extangential LEQ is shown on the right of Figure 10; its
vertices are (0,0),(12,5),(10,5),(6,8) and the side lengths are 13,2,5,10. The
exradius is 7, = {f_(c = 15 By Proposition 8, the excenter I, is 3(9,7), and by

25

Proposition 10, the coordinate A. of the excenter is 5.

3.2. Lemmata for Extangential LEQs

For this subsection, OABC' denotes a non-kite extangential quadrilateral with suc-
cessive sides a,b,c,d and with its excircle outside the vertex B, so a > c¢. In
particular, it has exradius r, = % As explained in Remark 12, we may assume
a = max{a, b, c,d} and b = min{a, b, c, d}.

The approach adopted in this subsection is the same as that of Subsection 2.3, and
the results obtained are analogous, but the calculations are often more complicated.

For the convenience of the reader, we repeat Equations (11) and (12):
p? =a® + 0> £2/a20? — (2K ,)2, (59)
¢* = a® 4+ d* £2\/a2d? — (2Kp)?, (60)
where p, g are the lengths of the diagonals OB, AC, respectively. As O, A, B, C' are

lattice points, p?, ¢* are integers, so by Lemma 1, the integers a?b? — (2K 4)? and
a’d?® — (2Kp)? are squares.
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Lt

3 6 9 12

Figure 10: Extangential LEQs; convex(left) and concave(right).

Lemma 9. One has
Kis— K Ko — K
p2:8(a+b)( A C)+(a+b)2 and q2:8< o B)+(a—d)2.
(a—c)(a—d) a—c

Proof. As OABC is not a kite, by hypothesis, we have a # d. Arguing exactly as
in Proposition 6 we reobtain Equation (57):

(a—c)(a—dp?* = 4(K3 — K&) + (a = d)(a — c)(a+b)*,

and since OABC' is extangential and hence not a parallelogram, a # c¢. Thus, as
K2 —K: = (Ka+Kc)(Ka—Kc)=2(a+b)(Ka— K¢), we obtain the required
formula for p?.

Similarly, by applying Heron’s formula to triangles OAC and BC A, we obtain

2(d? — 2 +a® —b*)¢? = 16(K3 — K3) + (d*> — a®)? — (b — ¢*)2.
Simplifying as in Proposition 6 gives
(a—c)(a+b)g* =8(a+b)(Ko—Kg)+ (a+b)(a—c)la—d)?
from which the required formula for ¢? follows. O

Remark 13. From the above lemma, using Equation (59),

8a+b)(Ea—(a+b) p*—(a+b)® _ —ab + \/a?h? — (2K 4)?
(a—c)(a—d) 2 |

which is an integer by Lemma 1. Similarly, w is an integer.
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Lemma 10. The integer abed — 4(a + b)? is a square, and
—(ab+ cd) £ 24/abed — 4(a + b)?
16(a+b)2+ (a—c)2(a —d)2 ~’

bc F 2 —4 2
Ko:(a+b)+(afc)ad+ c F 2+/abed — 4(a + b)

16 + (a — c)? ’

Ki=(a+b)+(a—c)(a—d)(a+Db)

where the signs of the square roots in the formulas for Ko and K 4 are opposite.

Remark 14. In the statement of the above lemma, the terms

ab + cd £ 2+v/abed — 4(a + b)?2  and ad + be F 2+/abed — 4(a + b)?

are strictly positive. Indeed, using d = a + b — ¢, by the arithmetic mean—geometric
mean inequality, ab+ cd > 2v/abed > \/abcd —4(a+ b)?. In particular, K4 < % =
a + b if and only if @ > d, which is opposite to the situation for tangential LEQs;
see Remark 4.

Proof of Lemma 10. From Lemma 9 and Equation (60),

(Ko — K Pt d

Mo —Kp) _oq- T4 —T _ Jo2P — (Ko,
a—cC 2

Ko—(atb)

so setting s := , squaring, and using Ko + K = 2(a + b) gives

as? —2Bs+v =0,
where
a=16+(a—c)?, B=ad+bc, ~v=(a+Db)>
Thus, as 8% — ay = 4(abed — 4(a + b)?) (using a + b = ¢ + d again), we have

ad + be £+ 2+/abed — 4(a + b)?

16 + (a — ¢)? ’

which gives the required formula for K. In particular, as s is rational, abed —4(a+
b)? is a square, as claimed.

The formula for K4 is similarly obtained by equating p? from Lemma 9 and
Equation (59). We have

Ma+b)(Ka=Ko) 0 p?=a? =0 | ey
CETICET) +ab= 5 +1/a2h? — (2K 4)2.

Define ¢ := %. One obtains at? + 26t + 7 = 0, where

a=16(a+b)*+ (a —c)*(a—d)?, B = (a+Db)>*(ab+cd), 7= (a+Db)™
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One has
B? — a7y = 4(a + b)*(abed — 4(a + b)?),
SO
—(a+ b)*(ab + cd) + 2(a + b)*+/abed — 4(a + b)?
16(a+b)2 + (a — ¢)%(a — d)? ’
which gives the required formula for Ko.
It remains to see that the signs of the square roots in the formulas for Ko and

K4 are opposite. Let R = 24/abed — 4(a + b)2. Obviously, we may assume that
R # 0 and a # c. Let us write

t:

~(ab+cd) + 64R
(a+b)%+ (a—c)*(a—d)?

KA:(a—|—b)—|—(a—c)(a—d)(a+b)16

ad+ bc+ o R

Ko=(a+b)+(a—c)m,

where d4,d0 are each £1. Usinga+b=c+d,

KA_(a +;)£ctc— b)
B b—c —(ab+cd)+0aR
= (a+1) (a—c+(a_c)(a_d)l6(a+b)2+(a—c)Q(a—d)2>
_(a+b)(d—a) 16(a+ b)?2 + (a — ¢)?(ac + bd) — (a — ¢)?64R
N a—c 16(a + b)2 + (a — ¢)2(a — d)? ’
(a+b)(a+d)  (a+b)(c+d) ad +bc+ 6oR

Ko~ a—c T a—c +la=c) 16 4 (a — ¢)?
_ —1 16(a+ b)? + (a — ¢)*(ac + bd) — (a — ¢)?6oR
Ca-—c 16 + (a — ¢)? ’

Notice also that (a + b)(d — a) = bd — ac. Hence, by Proposition 9,

X —(a—c)*aR X —(a—c)%00R _ )
16(a+b0)2+ (@a—c)32(a—d)? 16+ (a—c)? (a+0)7, (61)

where X = 16(a +b)? + (a — ¢)?(ac+ bd). Now, substituting d = a + ¢ — b one finds
that

X —(a—¢)?0aR -X+(a_c)26AR:(a+b)2
16(a+b)2+ (a—c)2(a—d)?2 16+ (a — c)? '
Subtracting from Equation (61) gives
(X —(a—¢)*54R) - (a —¢)*(6a +00)R = 0. (62)

Note that X — (a — ¢)204R # 0 as otherwise X2 = (a — ¢)* R? which would give

(16(a + )% + (a — ¢)*(ac + bd))* — (a — ¢)*(abed — 4(a + b)?) = 0,
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and hence
(a+)*(16 + (a — ¢)*)(16(a+b)* + (a — )*(b — ¢)*) =0,
which is impossible. So from Equation (62), we have 04 = —d0, as claimed. O

Lemma 11. The sign of the square root in the formulas for Ko s positive if and
only if B lies within the circumcircle of the triangle OAC; in particular, the sign
for Ko is positive if OABC' is concave.

Proof. In the notation of the above proof, let © = §p2+/abed — 4(a + b)?, so

—(ab+cd) —x

Ka=(a+b)+(@=c)a=d)la+ ) mr—m o a2

ad +bc+x

Ko=(a+b)+(a—c)m.

From a standard criteria for a point to be within the circumcircle of a triangle (see
[16]), B is inside the circumcircle of the triangle OAC if and only if

p’Ko < d*Ka + d* K. (63)
Now, d?K 4 + a’Kc = Ka(d? — a?) + 2a*(a + b), and by Lemma 9,

16(a +b)(Ka — (a+10))
(a —c)(a—d)

Kop® = Ko ( + (a+ b)2) .

So Condition (63) can be written as E > 0 where

16(a+b)(Ka — (a+10))
(@ —c)(a—d)

E:KA(d2—a2)+2a2(a+b)—Ko< +(a+b)2).

Substituting the formulas for Ko, K4 and z, one finds upon simplification that
E =20p(a + b)\/abced — 4(a + b)?.

Hence, as claimed, §p > 0 if and only if B is inside the circumcircle of the triangle
OAC. 0

Definition 4. Let
S ad + be + 26+/abed — 4(a + b)?
B 16 4 (a — ¢)? ’

b+ cd + 26+/abed — 4(a + )2
T = §(q 1 p)2 . 2ot cdt 2yabed —4a+b)

16(a+0)2+(a—c)2(a—d)? "’

where § = 1 if B lies within the circumcircle of the triangle OAC, and § = —1
otherwise.
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Remark 15. Observe that ¥ and T are positive integers. Indeed, from Lemma 10,

_ 8(Ko — (a+1b)) _ 8(a+b)((a+b)— Ka)
%= a—c ’ r (a—c)(a—d) ’

(64)

which are integers by Remark 13, and they are positive by Remark 14. Furthermore,
from Lemma 2,

S= (@ (a—dP),  T= (a+b? ).

In the notation of the proof of Lemma 10,
a¥? — 1643 + 64y = 0, (65)
where a = 16 + (a — ¢)?, B=ad + bc, v = (a + b)? = (¢ + d)?, and
aT? — 16T + 647 = 0,
where @ = 16(a + b)? + (a — ¢)?(a — d)?, B = (a + b)%(ab + cd), and 7 = (a + b)*.
Lemma 12. For X,T as defined in Definition 4, the following relations hold:
(a) BT =82 (T - ),
(b) 22T = (a +b)%(X —8) — (b —¢)*T.

Proof. (a). As in the proof of Lemma 11, let = 26y/abcd — 4(a + b)2. Then

cross-multiplying, the required identity is £ = 0, where

E =(ad + bc + z)(16(a + b)* + (a — ¢)*(a — d)?)
—(a+0b)*(ab+ cd + z)(16 + (a — ¢)*) + (a — ¢)*(ad + be + z)(ab + cd + z).
Expanding and using d = a + ¢ — b, one has
E = (a—c)*(4(4(a +b)* — abed) + 2?).

Then replacing 22 by 4(abed — 4(a + b)?) gives E = 0, as required.
(b). From Definition 4, since (a — ¢)? = (a — ¢)(d — b) = ad + bc — ab — cd,

(a+b)2(16 + (a — ¢)*)X — (16(a + b)? + (b — ¢)*(a — ¢)*)T
=8(a +b)*(ad + bc — ab — cd) = 8(a + b)*(a — ).
Part (b) follows by applying Part (a). O
Remark 16. As ¥ and T are positive, Lemma 12(a) gives ¥ < T'. Furthermore,
2
as T — ¥ < T, Lemma 12(a) gives ¥ < 8LatY " and Lemma 12(b) gives 2T <

(a—c)2’

(a+ )28 < (a+b)?. In particular, ¥ > 8.
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Remark 17. From Equation (64),

1
Ko = (a—|—b)—|—§(a—c)2, (66)
(a—c)(a—d)
Ka= b) — ———=T 67
2= o) - GO (67)
Then by Proposition 10, the parameter A, and the exradius 7. are related to X by
2
VS Gl M
(@ —c)?

Using Lemma 12(a), we can also write

T

Ae:ﬁ.

Remark 18. We have the non-degeneracy condition Kp # 0 as otherwise ABC
would be colinear. Thus Ko # 2(a + b) and Equation (66) gives ¥ # 84Eb. Hence,
by Lemma 12(a), we have

S(T — %) # 8T.

Notice also that OABC' is concave if and only if Ko > 2(a + b), that is, from
Equation (64), when ¥ > 8942,

a—c

Lemma 13. For X, T as defined in Definition 4, one has (¢ — b)T < (a — b)X.

Proof. From the assumption that the vertices O, A, B,C are positively oriented
and the assumption that if OABC' is concave then the reflex angle is at B, we have
K4 > 0. So Equation (67) gives 8(a + b)> > (a — ¢)(a — d)T. Lemma 12(a) gives
8(a+b)? = (a—c)? L. Hence, as T—X > 0 by Remark 16, and using a+b = c+d,
we obtain (a —c¢)X > (¢—b)(T —X). Rearranging this gives the required result. [

Lemma 14. The integers ¥ and T, defined in Definition 4, both divide 8(a + b)2.

Proof. From Equation (65), 1—160522 — B + 4y = 0, where a = 16 + (a — ¢)?,

B =ad+bc, v = (a+b)% So %6a22 is an integer, and hence %(a —¢)?%?% is an

integer. So i(a — ¢)X is an integer, and hence %aZ is an integer. Hence, as
1
16(a +b)* = 167y = (—Zaz +4B)%,

¥ divides 16(a + b)%. So if 3 is odd, then X divides (a + b)%2. If ¥ is even, then
as 3%0422 — %BZ +2v =0, so 3%0422 is an integer, and hence 3%((1 —¢)?%% is an
integer. It follows that g;(a — c)?%? is an integer. So §(a — ¢)X is an integer, and

hence %aZ is an integer. Hence, as

8(a+b)* = (—éaZ +28)%,
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Y divides 8(a + b)2.
By Lemma 12(a), we have 8(a + b)*(£ — %) = (a — ¢)?. Since 8(a + b)?< is an
integer, it follows that 8(a + b)? 7 is also an integer. O

3.3. Explicit Examples of Extangential LEQs

In this subsection we exhibit non-kite extangential LEQs in the three cases with
(2,7T) equal to (9,18), (18,50) and (45,50), respectively. Let us define h := %+ 5o
that h = \/XT/(8(T — X)) by Lemma 12(a). Note that A > 1, but as we will see,
h may fail to be an integer.

We have

b= (h—1)a — hc. (68)

In particular, b > 0 gives a > h}jlc and since b < ¢, we have a < %C' From

Equation (65), a¥? — 163% + 64y = 0, where a = 16 + (a — ¢)?, 8 = ad + be,
v = (a+b)? = (c+d)?. Using Equation (68), substituting d = a + b — ¢ and solving
for a gives

 64ch? — 16¢8 4 ¢X? £+ 4,/2¢22(8h% — X)(T — 8) — (X — 8h)2%?
“= (X — 8h)2 '

We claim that % > %c. Indeed, cross multiplying and simplifying,
the claim is (8h% — X)(X — 8) > 0, which is true since X < 8h% by Remark 16 and

> > 8, also by Remark 16. Hence, since a < %c, it follows that

_ 64ch? — 168 4 ¢X? — 4,/2¢?X(8h% — X)(T — 8) — (¥ — 8h)2%?
“= (X — 8h)2 '

(69)

We first classify the extangential LEQs with (X,7) = (9,18). Note that this
is one of two cases in Theorem 3(a). Suppose we have an extangential LEQ with

a>c>band X=9,T=18. So h= ,/% = %, and from Equation (68),
b= %(a —3¢). (70)
Hence, a > 3¢ and since b < ¢, we have a < 5¢. From Equation (69),
a=9c—4v2c% - 9. (71)

Working modulo 3, the fact that 2¢> — 9 is a square gives us that c is divisible by
3, say ¢ = 3v. Then v satisfies the negative Pell equation

u? — 2% = —1, (72)
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for some positive integer u. Then Equations (70) and(71) give
(a,b,c,d) = 3(9 — 4u, 3v — 2u, v, 11v — 6u). (73)
It is well known that the solutions (u;,v;) to Equation (72) are given recursively by
uj+1 = 3u; + 4vj, Vjt1 = 2uj + 3vj, (74)

with initial values (u1,v1) = (1,1).
We now define the vertices of our quadrilaterals. Let

3
5 (9u] — 81}]‘ — 7, 9Uj — 81}j + 7) y

Aj =
Bj:6(3uj—3vj—2,3uj—311j+2),

3
C; = B (11u; — 12v; — 7, 11u; — 12v; + 7).

Note that A;, B;j, C; are lattice points as u;, v; are odd, as one can see from the re-
cursive formula (74). We will consider the quadrilateral OA;B;C;. Let a;,b;,¢;,d;
denote the lengths of the sides OA;, A;B;, B;C;, C;0y, respectively. The distance
a; is given by

9 9
al = 1 ((9u; = 8v; — 2+ (9uj — 8v; +7)%) = 5(81u? — 144u;v; + 6407 + 49)

= g(smi — 144u;v; + 6407 +49(207 — u?))  (by Equation (72))
= 2(32@ — 144u;v; + 16207)

= 9(91)j — 4u]-)2.
So aj = 3(9v; — 4u;). Similarly, the other side lengths are as follows:

bj = 3(31}]' — 2u]'), C; = 31}]‘, dj = 3(111}]‘ - 6Uj),

as anticipated by Equation (73). So the perimeter of OA;B;Cj is aj+bj+c¢;+d; =
36(2v; — u;j).

The area of OA;B; is %HO—A; X O—B;H = 9(5v; — 3u;). The area of OB;C; is
%HO—B]> X O—C;H = 9(3v; — u;). Notice in passing that the signed areas of OA;B;
and OB;C; are both positive, as one can see recursively using Equation (74), so
OA;B;C; has no self-intersection. The area of OA;B;C; is 9(5v; — 3u;) + 9(3v; —
uj) = 36(2v; — u;), so OA;B;C; has equal area and perimeter, i.e., it is equable.
Thus OA;B;C; is a LEQ. Furthermore, OA;B;C} is extangential because a; +b; =
Cj + dj.

The first member of this family, corresponding to the initial condition (uq,v;) =
(1,1), is the kite with side lengths 15,3, 3,15 shown in Figure 9. The vertices and
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U vj A4 B; Cj a; bj Cj dj
7 | 5 (24,45) (24,48) (15,36) 50 | 3 | 15 | 39
41 | 29 | (195,216) | (204,228) | (144,165) | 201 | 15 | 87 | 219
239 | 169 || (1188,1209) | (1248,1272) | (891,912) | 1695 | 87 | 507 | 1275
1393 | 985 (6975,6996) | (7332,7356) | (5244,5265) | 9879 | 507 | 2955 | 7431

Table 4: Four members of the (X,T) = (9, 18) family.

side lengths of the next four members of this family are given in Table 4. The case
(ug,v2) = (7,5) of the family is shown in Figure 11.
The exradius of OA;B;C}; is 1ej = K(OA;B,0)

aj;—Cy

. Substituting the values gives

Te,; = 3 for each j. Then by Proposition 8, the excenter is I, ; = % %jgji, which

simplifies to 15(1, —1) 4+21(u; +7v;)(1,1). In particular, the excenter of each family

member is a lattice point. By Proposition 10, the coordinate A. ; of the excenter is
Aej = 3(a;+b;)

2K(OAJ Cj )73((1]' —Cj
Remark 19. By Remark 18, an extangential LEQ OABC' is concave if and only if
3> 83%12; that is, if and only if ¥ > 8h. For the above family, with (3,7T) = (9, 18),
we have h = % So all members of this family are convex.

3 Substituting the values gives A, ; = 2 for each j.

Now, suppose we have an extangential LEQ with a > ¢ > b and ¥ = 18,7 = 50.
Note that this is the other case in Theorem 3(a). So h = ,/% = 13 and
Equation (68) gives

b= %(7@ — 15¢). (75)
Hence, a > 15/7c and since b < ¢, we have a < 23¢/7. From Equation (69),
a = 29c¢ — 124/5¢% — 4. (76)
So ¢ satisfies the Pell-like equation
u? — 5c? = —4, (77)
for some positive integer u. Then Equations (75) and (76) give
(a,b,c,d) = (29¢ — 12u, %(470 —21u),c, %(1030 — 45u)). (78)

From [28], the solutions to Equation (77) are (u;,¢;) = (Laj—1, Fa;—1), where L;
is the j-th Lucas number and Fj is the j-th Fibonacci number. (Recall that the
Lucas and Fibonacci numbers satisfy the same recurrence relation but with different
initial conditions: Fy = F» = 1 while L; = 1, Ly = 3). Hence, Equation (78) gives
the potential solutions

47 103 21 45
S - L (2. 50.).

(aj,bj,c¢5,d;) = Faj1(29, 5 5

(79)



INTEGERS: 23 (2023) 54

Figure 11: The case j = 2 of the (X,7T") = (9, 18) family.

From Lemma 13, T(¢c — b) < X(a —b). So 50(c — b) < 18(a — b) and thus from
Equations (75) and (76), 51¢ > 23u, which is

51F2j,1 > 23L2j,1. (80)

Now, Fg = 8,Lg = 18 and Fy = 13, Ly = 29, and thus 51Fg < 23Lg and 51F; <
23L7. Tt follows from the Lucas and Fibonacci recurrence relation that Inequality
(80) only holds for j = 1,2,3. For ¢ = 1,2 one finds using Equation (79) that
a; < dj, contrary to our hypothesis. So the only possibility is j = 3, which gives
the solution (a,b,c,d) = (13,2,5,10), which is the concave LEQ that we saw in
Subsection 3.2, shown on the right of Figure 10.

Now, suppose we have an extangential LEQ with a > ¢ > b and ¥ = 45,T = 50.
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Note that this is the case m = 3 in Theorem 3(b). So h = ,/% = L and
Equation (68) gives

b= %(1361 — 15¢). (81)

Hence, a > 15/13c and since b < ¢, we have a < 17¢/13. From Equation (69),
a= %(1090 — 124/74c? — 25). (82)
So ¢ satisfies the Pell-like equation
W? — 74¢* = —25, (83)

for some positive integer W. The solutions to this equation are not readily enu-
merated, and moreover, some solutions do not result in LEQs. For example, for
the solution W = 5927, ¢ = 689, one obtains the non-integer value a = % from
Equation (82). We will restrict ourselves to constructing a particular infinite family
of LEQs for which ¢ is divisible by 5. Set w = 5u,c¢ = 5v, so that Equation (82)
gives the negative Pell equation u? —74v? = —1. Let us denote its solutions (uj,v5),
where (u1,v1) = (43,5) and (ug,vy) = (318157, 36985). So

2 2 _
j—74vj = —1.

The solutions (u;,v;) are well known; see entries A228546 and A228547 in [37]. In
particular, they satisfy the second order recurrence relation

X0 =T398X,41 — X;. (84)

It follows from this recurrence relation and the initial conditions that u; is divisible
by 43 and v; is divisible by 5 for all j. Let z; = u;/43,y; = v;/5, so

43%27 - T4-25yF = —1,

and (z1,71) = (1,1) and (x2, y2) = (7399, 7397). Note that (x;,y;) also satisfies the
recurrence relation of Equation (84). We have ¢; = 25y, and from Equation (82),
a; = £(109¢c; — 60u;) = —12 - 43z; + 545y;. Then from Equation (81), b; =
%(13% — 15¢;) = —33b4x; + 3355y;. Thus, as d; = a; + b; — ¢;,

(a;,bj,¢j,d;) = —;(516,3354,0, 3870) + y, (545, 3355, 25, 3875).  (85)

In particular, (a;,bj,c;,d;) are determined by the recurrence relation (84) with
(a1,b1,¢1,d1) = (29,1,25,5) and (ag, be, ca,ds) = (213481, 689, 184925, 29245). The
first three members of this family are shown in Table 5.

We have shown above that if an extangential LEQ with side lengths a, b, ¢, d has
(3,T) = (45,50) and c is divisible by 5, then (a,b,¢c,d) = (a;,b;,¢;,d;) for some
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a; bj ¢ d;
29 1 25 5
213481 689 184925 20245
1579332409 | 5097221 | 1368075125 | 216354505

Table 5: Side lengths of three members of the (X,7) = (45,50) family.

J, where (aj;,b;,c¢;,d;) is given by Equation (85). We now show that conversely,
for each j, the 4-tuples (aj,b;,¢;,d;) given by Equation (85) are realized by the
side lengths of an extangential LEQ. We mention in passing that the difficulty in
determining suitable vertices is two-fold. Firstly, the quadrilaterals in this family
grow so fast that we only had three examples to base our study on, and secondly,
the pattern of the vertex coordinates is considerably more complicated than in the
(X,T) = (8,18) family exhibited above.

To define the vertices, we will employ the following two first-order recurrence
relations in two variables

Tjp1 = 18z, + 25y;, Yi+1 = 25T, + 8yj, (86)
Tj41 = 68z, + 35y;, Yi+1 = 35x; + 18y;, (87)
under various initial conditions. We identify the 2-tuple (x,y) € Z? with the Gaus-

sian integer x + yi € C, and we use the notations interchangeably, according to
convenience. Consider the following families, for all j > 1:

a) Zq,j = Tq,j + Ya,;i satisfies Equation (86) with z,1 = 5+ 21,

(
(b) zp; = xp; + yp, ;i satisfies Equation (86) with 21 = 7,

(¢
(d

Zej = Te,j T Ye,;4 satisfies Equation (87) with z.1 =2 +1,

)
)
)
) za,; = Ta,j + Ya,;i satisfies Equation (87) with zq1 = 1.

Let p : Z?> — Z? denote the reflection in the line y = x, so p(z,y) = (y,) or
equivalently p(z) = iz, where z denotes the complex conjugate of z. Let p’ denote

the j-th iterate of p under composition, so p/ = p if j is odd and p? = id otherwise.
We now define the vertices. Set

Aj = P2 B;=A; + pj+1zg7j, C; = 5pj237j, B;- =05+ 5pjzij.

a3’

The first three members of this family are shown in Table 6; the LEQ given in the
first row is shown on the left of Figure 10.
We will establish the following properties:

(i) Bj = B for all j,
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o7

4

B

Cj

(21, 20)
(124080,173719)
(1285155641, 917968320)

(20, 20)
(124480,174280)
(1289303420, 920931020)

(0, 5)
(16995,23800)
(176054900, 125753505)

Table 6: Vertices of three members of the (X

T) =

(45,50) family.

(ii) The areas Ka,, K¢, of triangles OA;B; and B;C;O are positive (and hence
OA;B;C; is a non-self-intersecting, positively oriented quadrilateral),

(i) OA;B;C; has the side lengths a;,b;, c;, d; given by Equation (85),

iv) a; +b; =c¢; +d;; ie., OA;B;C; is extangential,
j T 0 = Cj T a Bt

v) a; +b;+c;+d; =Ky + Ko, ;ie.,, OA;B,;C; is equable.
j T 0j T Cj T dj j I D5

The proofs of these properties will use the following technical results.

Lemma 15. Suppose the sequence z; = (xj,y;) satisfies either Equation (86) or

Equation (87).

(a) Zj42 = 86Zj+1 + Zj,

)
(c) zgﬁjﬁ = 739827 ;11 —
(d) Zg,j+2 = 7398 Zg,j+1 -
(e) Z?,j+2 = 7398 Zr?,jJrl
(f) 2340 = 739827 ;1 —
Proof.
Zj41 = Mz;, where

then zj49 = tr(M)z;41

Zd

Then for all j > 1,

»J

a f
M_<v 5)’

and 68 - 18 — 352 =78 -8 — 252 = —

(b). From (a) we have |27, ,| = (86z;11 + z;)* +

— (=1)7(4900 — 3500i).

zg’j + (— ) /(17500 — 245004),
22+ (~1)7(2500 — 35004),
2, — (~1)3(700 — 500%),

. (a). It is easy to see that if z; (regarded as a 2-tuple) satisfies the relation

— det(M)z;. The result follows as 68 + 18 = 78 + 8 = 86

(86y;+1 + y;)?, so

|23 ol = 862 |2 1| + |23 | + 172(xj 4125 + y5u;)-
Assume first that Equation (86) holds. Then using Equation (86) twice,

|25l = 1251 =

(z ?+1 + ZUJQ'+1) -
= (687 + 35% —

(zF +v7)

= 86(68z7 + 70x;y; + 18y7)
= 86(zj1125 + Yj+1%5),

1a? + (35> + 187 — 1)y? +2
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50 |27 o] = (862 +2)|27, 1| |27 = 7398 |22, |—|27], as required. A similar argument
applies when Equation (87) holds.

(c). From (a) we have 22 ;,, = 739622 ;, + 17224,541%a,5 + 22 ;. So we are
required to show that 172z, j1124,; + 2;;3’]. = 222,j+1 + (—1)7(17500 — 24500¢), or
equivalently, using Equation (86), 5z2 ; — 144 j9a; — 5ya ; = 35(—1)7, for all j.
In matrix notation, the condition is z;Qz! = 35(—1)7, where z; = (Za,j,Ya,), 2’
denotes the transpose of z, and

5 =T
o=(5 T

One readily verifies that this condition holds for j = 1, where z; = (5,2). Now, using
Equation (86) and setting M = <;§ 285>’ we have 2j11Q25,; = (2;M)Q(Mz}) =
—szz;f, since MQM = —Q. So the required result follows by induction. This
proves (c).

Part (d) is proven in the same manner; only the initial condition is different. For
parts (e) and (f), one repeats the argument using the matrices

7T -5 68 35
Q:(—5 —7)’ M:(35 18)'

Once again, the argument works because MQM = —@Q. O

Remark 20. It is well known that if a sequence r; satisfies a second-order ho-

mogenous recurrence relation, then r? satisfies a third-order recurrence relation,

J
but in certain exceptional circumstances, 7']2
relation, which is typically non-homogeneous [11]. In this respect, Lemma 15 is

perhaps somewhat surprising.

may satisfy a second-order recurrence

(i). We have By = (5 + 2i)? + 4% = 20 + 20i and B} = 5p((2 +4)? + 1?) = By,
while By = p((78 -5+ 252+ (25 -5+ 8 - 2)i)? + (25 + 8i)?) = 124480 + 1742801,
and Bb = 5((68 -2 4 35 + (35 - 2 + 18)i)? + (68 + 35i)?) = By. From Lemma 15(c)
and (d), we have for all j,

Bjio = T398p(Bj 1) — Bj + (=1)7 p?T1(17500 — 24500i + 2500 — 35004)
= 7398p(Bj11) — B; + (—1) p’t1(20000 — 280005),

and from Lemma 15(e) and (f), we have

Bj, o =T398p(Bj,,) — Bj — (—1)’5p’ (700 — 500 + 4900 — 35004)
= 7398p(Bj11) — B; — (—1)7p/ (28000 — 20000i) = Bj ;2.

Hence, B; = B for all j.
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(ii). Regarding A; and B; as complex numbers, one has K4, = 4(A;B; — A;B;).

Hence, when j is odd,
{ _ _
Ka, = Z(zg,jzl?,j — 24 20.3) = (Ta¥sj — T,3Ya.5) (TaToj + Ya,jYb.5)s
while when j is even,
] _ _ v, _
KAj = 1(0(223)0(213]) - P(Zg,j)ﬂ(zg,j) = 1(323213] - 233253)
= —(@a Y5 = Tv.3Ya,;)(Ta,jTb.j + Ya,jYb.5)-

It is easy to see that x4 ;T j + Ya,j¥p,; > 0. Moreover, T4 jys.; — Tp j¥Ya,; is the area
K; of the parallelogram P; spanned by 2, ; and zp ;. So we are required to show
that (—1)7*1K; > 0 for all j. For j = 1, one has K; = 5. Furthermore, P;;; is the

image of P; under the linear transformation with matrix M = <;§ 285)’ which

has determinant —1. Hence, K; = (—1)7*15, giving the required result.
A similar reasoning applies for K¢,. Here

. 1 B N X
Ko, = (—1)25 (22 ;25 ;=72 ;25 ;) = (1Y 25 (e jya—Td,jYe) (Te jTd,j+Ye jYd,5)-

4
Setting K; = %c jYd,j — Td,;Ye,j, one argues as before, using K; = —4 and the fact
68 35 .
that <35 18> has determinant —1.

(iii). As observed above, the lengths (a;,b;,¢;j,d;) are determined by the recur-
rence relation of Equation (84) with

(al, bl, Ci, dl) = (297 1, 25, 5) and (CLQ, bg, Co, dg) = (213481, 689, 184925, 29245).

The side OA; has length |zf” . Hence, as |22 ,| = 29 and from Equation (86),
|22 5] = (78-5425-2)% 4 (25-5+8-2)% = 213481, so Lemma 15(b) gives |0 A;| = a;
for all j. By the same reasoning, the sides A;B;, B;C;, C;0 have lengths b;, c;, d;,
respectively.

(iv). We have a; +b; = |22 ;| + |z§]| and ¢; +d; = (]22;] + \z§J|) So a; +b; and
¢; + d; satisfy the recurrence relation of Equation (84), by Lemma 15(b). Hence,
since a; +by = 30 = ¢ +dy and az+by = 214170 = ca+dy, we have a; +b; = c; +d;
for all 7, as required.

(v). As we saw above, a; + b; + ¢; + d; satisfies recurrence relation (84) and
ay + b1 +c1 + dl =60 and as + bg + co + d2 = 428340. From above,

KAJ» = (*Ujﬂi(zijzl?,j - Zg,jzl?,j)a ch = (*1)j25 i(zijfg,j - 53,j23,j)~
One finds easily that K4, + K¢, = 60 and K4, + K¢, = 428340. So it remains to
show that K4, + K¢, satisfies Equation (84). In fact, we will show that K, and
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K¢, both satisfy Equation (84). As we saw in the proof of property (ii),

Ka, = (=1 (@a jybj — T, jYa.5) (Ta T + Ya,jUbj);

and (—=1)7" (24 jYp; — TbjYa,j) = 5. So we will show that r; := x4 jTp; + Ya,;Ub.j
satisfies Equation (84). Using Equation (86) three times, we have

Tj+2 = 670924 j 112,541 + 21502p j11Ya,j+1 + 2150Zq j+1Yb,5+1 + 689Ya j+1Ub,j41
= 49633181, jxp; + 159057002 jya j + 1590570024 jyp j + 5097221y, ;b
= 7398Tj+1 — Ty,

as required. The proof that K¢, satisfies Equation (84) is obtained in exactly the
same manner, using Equation (87).

Remark 21. We have just determined all extangential LEQs with side lengths
a,b,c,d that have (X,T) = (45,50) and ¢ is divisible by 5. However, there are
extangential LEQs with (X,T) = (45,50) for which ¢ is not divisible by 5. Here
are two examples: the LEQ with vertices A = (6300,4505), B = (6320, 4520), C =
(861,620) and side lengths 7745,25,6709,1061, and the LEQ with vertices A =
(33303495, 46624900), B = (33410980,46775380), C = (4562280, 6387199) and side
lengths 57297505, 184925, 49633181, 7849249.

Remark 22. By Remark 18, an extangential LEQ OABC is concave if and only
ity > 8% = 8h. As we saw above, for extangential LEQs with (X,T) = (45, 50),
we have h = 2. So all extangential LEQs with (X,T) = (45,50) are convex.

3.4. Theorem 3 from Theorem 4

As in the previous subsection, let OABC be a non-kite extangential LEQ with sides
a,b,c,d and with its excircle outside the vertex B. As explained in Remark 12, we
may assume a = max{a,b,c¢,d} and b = min{a,b,c,d}. We introduce some new
variables.

Definition 5. Let xt = a+ b,y =a —c,z = ¢c—b. By Lemma 14, ¥ and T both
divide 822. Define k by 822 = kT. By Remark 16, ¥ < T. Let ¥/ =T — X.

From our previous observations we now extract four important consequences.

e By Lemma 12(b), 16222 = k2?(X —8) —82%2%,s0 ¥ = &:77'?:). In particular,
k> 16.
e By Lemma 12(a), 822%' = y?XT = 18z%y?%, so ¥/ = sz and thus T =
_ (k4%
Y4+ ==

E(E4%)

e From the definitions, x = 3
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e By Lemma 13, (¢ —b)T < (a—b)%, so by (b), z(k +y?) < k(y + z) and hence
yz < k.

It follows that the hypotheses of Theorem 4 are satisfied. So one of the following
holds:

(a) (2,%) = (9,9), (12,24), (16, 16), (24, 12), (10, 40), (40, 10) or (18,32),

(b) (X,%') = (5m?,5) for some integer m for which there exists integers n,Y, Z
such that m? — 10n2 = —1 and (5m? — 8)Y? =5 + 822,

(c) (,%') = (m?,1) for some integer m for which there exists integers n,Y, Z
such that m? — 2n? = —1 and (m? —8)Y? =1+ 822.

In case (a), we have
(3,T) = (9,18), (12, 36), (16, 32), (24, 36), (10, 50), (40, 50) or (18, 50).

Note that in the cases (X,T) = (12, 36), (16, 32), (24, 36), (10, 50), (40, 50), we have
X(T —X) = 8T, so these are all degenerate cases which are excluded by Remark 18.
Thus (3,T) = (9, 18) or (18,50), as required.

In case (b), we have (3,7) = (5m?,m? + 5), and in case (c), we have (3,7T) =
(m2,m? + 1), as required.

3.5. Proof of Theorem 4

The proof of Theorem 4 will occupy us for most of the rest of this paper. The
general strategy is to analyse the different possibilities for the ratio ¥'/%. Suppose
¥ = 2%, where u,v € N and ged(u,v) = 1. From the definition of ¥, we have
vy? = uk. Then the assumption k > yz gives vy? > uyz so vy > uz. From the
definition of x, we have

x:\/k(zng):\/y%u;v); (88)

From the definition of X, we have
S(vy? — 16u) = 8(uz? + vy?). (89)
Throughout this subsection, we use the following notation.

Definition 6. For an integer n, we let f(n) denote the square-free part of n, and
write n = f(n)s?(n).

Since vy? = uk and ged(u,v) = 1, we have that f(u)s(u) divides y, say y =
f(u)s(u)y'. So vy > uz gives
vy’ > s(u)z. (90)
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Furthermore, y? = f(u)uy’? and Equation (89) gives
S(vf(u)y? - 16) = 8(=* + vf(u)y™), (91)

and from Equation (88) we have

N [ (CICRD
8

. (92)
We split the problem up into 6 cases:

1. u is odd, v is even and the 2-adic order of v is even.

2. w is odd, v is even and the 2-adic order of v is odd.

3. w is even, v is odd and the 2-adic order of u is even.

4. u is even, v is odd and the 2-adic order of u is odd.

5. u and v are both odd and the 2-adic order of u + v is even.

6. v and v are both odd and the 2-adic order of u 4 v is odd.

In each case, we make several change of variables. These will be introduced as we

go along, but for the convenience of the reader, we summarize the main variables
in Table 7.

™
g

Case

Yy z
Lo 2f(u+o)f(ww? | fl)s@)w | flw)s@)fv)y” | flv)s)f(u)2"
2| 2f(uto)flww? | 5f()s)w’ | 3f(u)s(u)f(v)y" %f v)s(v) f(u)z"
3| 2f(uto)f(ww? | flu)s()w' | flu)s(u)f(v)y” %f(v)S(’U)f(U)Z/
4| sfluto)fw® | flo)s(w' | flu)s()fv)y” | 5f(0)s(v)f(u)’
5| 2f(uto)fww? | fo)s@)w’ | flu)s(u)fw)y” | fv)s(v)f(u)
6 | sfluto)f@w® | fl)s@w | flu)s@)f)y” | fv)s@)f(w):

Table 7: Variable changes.

Remark 23. There are 29 lemmas in the following proof. For each of these, the
stated result is only valid under the assumptions of the particular case (1 through 6)
in which the lemma occurs. In each lemma, the function f is defined in Definition 6,
the variables u, v are as defined at the start of this subsection, and the variables w’
and y” are given in Table 7 for the particular case in question.

Case 1. Assume u is odd, v is even and the 2-adic order of v is even.

We will show that in this case, (3, %) = (40, 10) is the only possibility.

As z is an integer, and as u,u + v are relatively prime odd integers, from Equa-
tion (92) we can write ¥ = 2f(u + v) f(u)w?, for some w. Note v divides ¥ as
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vY = u¥ and ged(u,v) = 1. So v divides 2w?, and thus as the 2-adic order of v
is even, v divides w?. Hence, f(v)s(v) divides w. Thus, setting w = f(v)s(v)w’ we
have ¥ = 2f(u + v) f(u) f(v)vw'? and Equation (91) gives

Flut o) P f@pon(wf 0y — 16) = 4(* +of ™). (99)
Thus vf(u) divides 422, so f(v)s(v)f(u) divides 2z, say 2z = f(v)s(v)f(u)z’. So
Inequality (90) gives 2vy’ > s(u)f(v)s(v)f(u)z’ and hence
25(v)y" > f(u)s(u)?, (94)
and Equation (93) gives
fluto)fo)w(wf(u)y? —16) = f(v)f(u)z"? + 4y, (95)

Hence, f(v) divides 4y’2. Since the 2-adic order of v is even, f(v) is odd, so f(v)
divides y'. Let 3/ = f(v)y”. Then Inequality (94) gives 2f(v)s(v)y” > f(u)s(u)z/,
and Equation (95) gives f(u + v)w?(vf2(v)f(u)y"? — 16) = f(u)z’? + 4f(v)y">.
From this last equation, notice that as v is even and f(u) is odd, 2’ must be even,
say z' = 22". Then Inequality (94) gives f(v)s(v)y” > f(u)s(u)z” and so

o ()" > uf ()", (96)
and Equation (95) gives
Flu+ vy (of2 (o) f (u)y" — 16) = 4(f ()" + f()y"). (97)
Note that from the left-hand side of Equation (97), we have
vf?(v) fu)y" > 16.
Furthermore, Inequality (96) and Equation (97) give
wf (u+ 0w (0 (0) ()" — 16) < 4w +u) f()y".
Hence,

/2 4 1 1 16
S (uﬂu)f(v)*vf(v)f(u))(”vf2<v>f<u>y~2—16)' (98)

A slightly weaker but useful consequence is

o <4 (rare + o) (U pomwe)

We will use Inequalities (98) and (99) repeatedly to derive contradictions with the
fact that, being a positive integer, w’ > 1. Note that Inequality (98) is only useful
when we know something about f(u+v), so Inequality (99) will be more commonly
applied. Even so, we sometimes only have information about uf(u), and not about
f(w), for which we use the trivial bound f(u) > 1.
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v 41 12 |16 | 20 28 | 36| 44 48 52 | 64 | 80 | 100
f(v) 1] 3 1 5 7 1 11 3 13 1 5 1
vf(v) || 4] 36 | 16 | 100 | 196 | 36 | 484 | 144 | 676 | 64 | 400 | 100
vf?(v) || 4 | 108 | 16 | 500 | 1372 | 36 | 5324 | 432 | 8788 | 64 | 2000 | 100

Table 8: The first twelve even positive integers with even 2-adic order.

Remark 24. The first twelve possible values of v are shown in Table 8. Notice that
the sequence v f(v) is not monotonically increasing in v. By the Case 1 hypothesis,
v is divisible by 4, so v > 4. It is easy to verify that the following hold:

e if v >4, then v > 12,vf(v) > 16 and v f?(v) > 16,
>

e if vf2(v) > 16, then either v = 16 or v f(v) > 36 and v f?(v) > 36,
e if vf2(v) > 36, then either v = 36 or vf(v) > 64 and v f?(v) > 64,
o if vf2(v) > 64, then either v = 64 or vf(v) > 100 and vf2(v) > 100.

Note also that if v > 1, then v > 3 and uf(u) > 9.

Lemma 16. Fitheru=1orv=4 ory” =1.

Proof. Tt suffices to note that if u > 1,v > 4 and y” > 1, then Inequality (99) would

give
11 16 25
12 - - e
v <4<9+16)<1+16~4—16) a7 <1

which is a contradiction. O
Lemma 17. We have y’ # 1.

Proof. Suppose y” = 1. Then Inequality (96) gives vf(v) > uf(u)z"? > uf(u).
Also, from Inequality (94), vf?(v)f(u) > 16. So if v = 4, then vf(v) = vf2(v) = 4
and hence f(u) > 4, contradicting the fact that vf(v) > uf(u). Hence, v > 4 and
so, by Remark 24, vf?(v) > 16. By Remark 24 again, if vf?(v) = 16, then v = 16,
in which case vf2(v)f(u) > 16 gives f(u) > 3, so u > 3 and uf(u) > 9. Then
Inequality (99) would give

1 1 16 19
12 - 7 _ -
v <4<9+48><1+48—16> oa < b
which is a contradiction. Thus vf(v) > 16 and hence vf?(v) > 36 and vf(v) >

36, by Remark 24. Then if v > 1 one would have v > 3 and uf(u) > 9 and
Inequality (99) would give

11 16
2oy (e ) (1420 )=
s (9+36>(+3616) :
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which is a contradiction. So v = 1. Then Inequality (99) gives

11 16 37
12 - il e _
v <4(1+36><1+36—16> 5’

and hence w' =1 or 2. Now, Equation (97) gives
FL+0)w(wf?(v) —16) = 4(z"* + f(v)). (100)

By Remark 24, if v f?(v) > 36, then either v = 36, or vf(v) > 64 and v f?(v) > 64.
If v = 36, then Inequality (98) gives

w? <o (b ) (e 20 ) 2L
37 \1 36 36-16) 5’
which is a contradiction. So vf(v) > 64 and vf?(v) > 64. Now, if vf2(v) = 64,
then Inequality (98) gives

wro A1 N, 16 N1
65 \1 64 64—16) 12
which is a contradiction. So by Remark 24, v f(v) > 100 and v f?(v) > 100. Notice
that f(v) =1,3 or f(v) > 5. If f(v) > 5, then Inequality (99) gives

11 16
2 gl LY (e 20 )y
wr<t 5 100 T 00— 16 ’

which is a contradiction. So f(v) =1 or 3. If f(v) = 3, then Equation (100) gives
F(1+v)w?(9v—16) = 42"?+12, with w’ = 1 or 2, so modulo 3, — f(1+v) = 2”"?. But
if f(v) =3, thenv+1=1 (mod 3). Hence, since v+1 = f(v+1)s?(v+1), we have
f(v+1) =1 (mod 3). But then —1 = 2”2 (mod 3), which is impossible. So f(v) = 1
and hence v is an even square, v = 4n? say. Notice that as vf?(v) > 100 and
f(v) =1, we have n > 5. Equation (100) gives f(1+4n?)w?(4n? — 16) = 42" + 4,
hence

fA+4n®)w?(n? —4) = 2% + 1.

This is impossible modulo 4 if w’ =2, so w’ = 1. So
f(14+4n*)(n® —4) = 2" +1. (101)

Note that f(1 + 4n?) # 1 since otherwise 1 + 4n? would be a square, which is
impossible. So, as the prime divisors of 12+(2n)? are all congruent to 1 modulo 4, we
have f(1+ 4n?) > 5. Now, Inequality (96) gives 4n? > 2”2, Hence, Equation (101)
gives

5(n? —4) < f(1+4n®)(n? —4) =22 +1 < 4n® + 1.

Thus n? < 21, but this is impossible as n > 5. Hence, 3" = 1 is not possible. O
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Lemma 18. Ifu =1, then v =4.

Proof. Suppose u = 1 and v > 4. So vf(v) > 16 and vf?(v) > 16, by Remark 24.
From Lemma 17, y” > 2. Then Inequality (99) gives

11 16 17
12 4= 7 1 o —
wrs<t 1T 16 t16.4-16 3"

so w’ =1 or 2. Note that if f(v) > 5, then v > 20,vf(v) > 100 and v f?(v) > 500,
so Inequality (99) gives

11 16 105
12
alor — V(14— V=22
s <5+1oo>( +500-4—16> 124 <

which is a contradiction. So f(v) = 1 or 3. First suppose that f(v) = 3. Then
v >12,vf(v) > 36 and vf?(v) > 108, so Inequality (99) gives

1 1 16 3
2
<4+ (14— ) =2,
v <3+36)< +108~4—16> 2
sow’ = 1. As f(v) = 3, v has the form 12n?, for some n. Then Equation (97) gives
f(1+12n2)(108n%y"? — 16) = 42""? 4+ 12y""2, so

f(l 4 12n2)(27n2y//2 o 4) — Z//Q 4 3y//2'

But then modulo 3, since f(1 + 12n?) =1, we have —1 = 2’2, which is impossible.
So f(v) = 1. In this case, v is an even square; i.e., it has the form 4n?, for some n.
Then Equation (97) gives f(1 + 4n?)w’?(4n%y"? — 16) = 42""? + 492, so

f(]. +4n2)w/2(n2y//2 o 4) _ z//2 4 y/l2, (102)

where from above, w’ = 1 or 2. First suppose that w’ = 2. Then modulo 4 we have
0=2"24y"% soy" and 2" are both even, say y" = 2"’ and 2" = 22'"". So we have
F(1+4n?)(4n?y""? — 4) = 22 4+ y"? which modulo 4 gives 0 = 2""? + y""?. So y"”
and 2"’ are both even, say y” = 2y, and 2"/ = 2z4. So we have

S +4n?)(Any; — 1) = 25 + v3.

But now, arguing modulo 4 again, we have —1 = 27 + y3, which is impossible.
Hence, w’ = 1. Thus Equation (102) gives

f(l +4n2)(n2y//2 _ 4) _ Z//2 +y/12. (103)

Note that we can write 1+4n? = f(1+4n?)m?, for m := s(1+4n?). Notice also
from Inequality (96) and Equation (103), f(1 + 4n?)(n?y"? —4) < (4n? + 1)y"?, so
, 4 4n? + 1 )

Ty T A
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Thus, as " > 2, we have n? — 1 < n? — y% < m?, so n? < m?, and hence n < m.

Then we have )
1+4n 1
f(1+4n?) = 5 S 5t

If m = 1 then n = 1 and so v#4, which is a contradiction. So f(1+4n?) < 5. Thus,
as f(1+4n?) is odd, f(1+ 4n?) = 3. But this would imply that 1 +4n? is divisible
by 3 and hence 1+ n? =0 (mod 3), which is impossible. O

From Lemma 16, either u = 1,v = 4 or ¢y’ = 1. We saw in Lemma 17 that
y" # 1, and in Lemma 18 that if uw = 1, then v = 4. So it remains to consider the
situation where v = 4. Assume for the moment that y”’ = 2. From Inequality (94),
vf?(v)f(u)y"? > 16, which gives f(u) > 1, so f(u) > 3. From Inequality (96),
16 > uf(u)z""? which implies f(u) < 5. Hence, f(u) = 3 and again Inequality (96)
gives 2" = 1. But then substituting f(u) = 3,v =4,y"” = 2, 2" = 1 in Equation (97)
gives

flu+4)w?(4-3-4—-16)=4(3+4) andso 8f(u+4)w? =71,

which is impossible. Hence, y"” > 3.
If f(u) > 3, Inequality (99) would give

11 16 91
2 gy LY (10 Y2l
wrsilgtrs) Ut aar s —g) T3 <t

which is a contradiction. So f(u) = 1. Then Inequality (99) gives

1 1 16
12 - - e —
w <4<1+4><1+4_9_16> 9,

sow =1or2. As f(u) =1, uis a square. First suppose u > 1. So u > 9. Since u
is a square, u + 4 cannot be a square and thus f(u 4+ 4) > 3. Then Inequality (98)

gives
4 /1 1 16 13
12
o) (1 ——) =<1
v <3(9+4)< +4-33—4) B0

which is a contradiction. Hence, u = 1. Now, Equation (97) gives 5w'?(4y"? —16) =
42" + 4y"? so 5w (y'"? —4) = 22 + 2. If w’ = 2 we have 19y"? = 22 + 80. But
modulo 19 this gives 2”2 = —4, which is impossible. So w’ = 1 and we have 432 =
2% 4+ 20 and so 2" is even, say 2" = 22", and then y"? = 22 + 5. It follows that
2" =2 and y" = 3. This is the required solution: ¥ = 2f(u+v)f(u) f(v)vw'? = 40
and ¥’ = uX/v = 10.

Case 2. Assume u is odd, v is even and the 2-adic order of v is odd.
We will show that in this case, (3, %) = (24,12) is the only possibility.
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As z is an integer, from Equation (92) we can write ¥ = 2f(u + v) f(u)w?, for
some w. Since v divides ¥, it follows that v divides 2w?, and as the 2-adic order
of v is odd, f(v)s(v) divides 2w. Thus, setting 2w = f(v)s(v)w’, then we have
2% = f(u+v)f(u)f(v)vw? and Equation (91) gives

Flu+v)f() fo)ow?(@f(u)y™ - 16) = 16(=* + v f(u)y™). (104)

Thus vf(u) divides 1622, so f(v)s(v)f(u) divides 4z, say 4z = f(v)s(v)f(u)z’. So
Inequality (90) gives 4vy’ > s(u)f(v)s(v)f(u)z" and hence
f

s(v)y’ > f(u)s(u)?, (105)

and Equation (104) gives

flu+ o) fo)w?(vf(w)y™? = 16) = f(v)f(u)z"? + 16y (106)

Hence, f(v) divides 16y’?. Since the 2-adic order of v is odd, f(v) divides 2y'.
Let 2y’ = f(v)y”. Then Inequality (105) gives 2f(v)s(v)y” > f(u)s(u)z’, and
Equation (106) gives f(u + v)w?(vf?(v)f(u)y”’? — 64) = 4f(u)z"? + 16f(v)y">.
From this last equation, notice that as v, f(v) are even and f(u) is odd, 2’ must be
even, say z' = 2z, So we have f(v)s(v)y” > f(u)s(u)z” and so

vf (0)y" > uf(u)2", (107)

PO 5 = 16 . (0
Note that from the left-hand side of Equation (108), we have
vf2(v) f(u)y”? > 64. (109)
Furthermore, Inequality (107) and Equation (108) give
wf (a4 o) (02 (0) f )y — 64) < 16(0 + u) f(0)y".
Hence,

- 16 1 1 64
S Fut ) (uf(U)f(v)+vf(v)f(U))<1+vf2(v)f(u)y”2—64> (110)

and consequently

2 1 1 64
o <1 (s * o) (o) O
Lemma 19. We have f(v) =
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Proof. Assume that f(v) > 2. So f(v) > 6,vf(v)
show that f(u) = 1. Indeed, if f(u) > 1, then f(u)
Inequality (111) would give

1 1 64 36
<16 —+—)(1+——"-—— — <1,
v 968Ut so6a) BT
which is a contradiction. So f(u) = 1. Hence, u is a square. Moreover, Equa-
tion (108) gives

36, vf2(v)
3, uf(u) =

AVAIAY

> 216. We ﬁrst
9 and for all ",

flutv)w(wf?(v)y"™ - 64) = 16(=" + f(v)y"). (112)

Since f(v) is even and square-free, the five smallest possible values of f(v) are
2,6,10,14,22. If f(v) > 14, then f(v) > 22, so v > 22 and for all u,y”, Inequal-
ity (111) would give

11 64 1012
2 <16 — ) (1 = 1
wr <105 T o T8 —61) " 1323 <

which is a contradiction. So f(v) < 14. Now, suppose f(v) = 14. Here v > 14 and
Inequality (111) gives

2 6L+ L
w' 12 T 142 —64

so w’ = 1. Furthermore, v is divisible by 7, so as gcd ,v) = 1 and w is a square,
u+v = 1,2 or 4 (mod 7), and thus f(u 4+ v) = 1,2 or 4 (mod 7). Modulo 7,
Equation (112) gives —f(u + v) = 22’2, so 2> = 3,6, 5, respectively, but these
congruences have no solutions. So f(v) # 14.

Now, suppose f(v) = 10. Here Inequality (111) gives

11 64 220
t< 16(10 102> (H 103—64> RETTA

so w’ = 1. Then Equation (112) gives f(u + v)(100vy"? — 64) = 16(2""? + 10y"?).
We have v = 10m?2, for some m. So

fu+10m?)(125(my")? — 8) = 2(2""* + 10y"?). (113)

As f(u) = 1, we have u = n?, for some odd n. First suppose f(n? + 10m?) = 1.
So n? + 10m? = r?, for some odd r. Then 1+ 2m? = 1 (mod 4), and hence m
must be even, say m = 2m/'. So Equation (113) gives 250(m/y")? — 4 = 2% 4+ 10y
and hence 2" is even, say 2" = 2z"". So 125(m’y")? — 2 = 22" + 5y"2. But one
readily verifies that modulo 16, this equation has no solution for m/,y”, z"”’. Thus
f(n? 4+ 10m?) > 3. Then Inequality (110) gives

<16 +1 - 64 _220<1
3 \10 102 103 —64/) 351 ’
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v 2| 8 18] 32 | 50 | 72 | 98 | 128 | 162 | 200
vf(v) || 4|16 | 36| 64 | 100 | 144 | 196 | 256 | 324 | 400
vf?(v) || 8 | 32 | 72 | 128 | 200 | 288 | 392 | 512 | 648 | 800

Table 9: The first ten positive integers v with f(v) = 2.

which is a contradiction. So f(v) # 10.
Now, suppose f(v) = 6. Here Inequality (111) gives

1 1 64 84
/2
16(=-+—)(1 =
we < 6<6+62>(+63—64) 19<5,

so w' = 1 or 2. Furthermore, v is divisible by 3, so as ged(u,v) = 1 and w is a
square, © +v = 1 (mod 3), and thus f(u + v) = 1 (mod 3). Hence, modulo 3,
Equation (112) gives —1 = 2’2, which is impossible. So f(v) # 6. O

Remark 25. By the previous lemma, f(v) = 2. So v has the form v = 2m? for
some m. The first ten possible values of v are shown in Table 9. In particular,
v>2,vf(v) >4 and vf?(v) > 8. Furthermore, here are some obvious useful facts:

(a) If v > 32, then v f(v) > 100,vf2(v) > 200, while v < 32 only for v = 2,8,18
and 32.

(b) If v > 98, then vf(v) > 256,vf%(v) > 512, while v < 98 only for v =
2,8,18,32,50,72 and 98.

(¢) If u > 1, then u > 3 and uf(u) > 9. Furthermore, if u > 3 and u # 9, then
uf(u) > 25. And if w > 5 and u # 25, then uf(u) > 49.

Lemma 20. Eitheru=1orv=2 ory”’ =1.

Proof. Suppose u > 1 and ¢ > 2. We will show that v = 2. Let us assume for the
moment that v > 98, so vf(v) > 256,vf%(v) > 512 by Remark 25(b). We also have
uf(u) > 9 by Remark 25(c). Then using f(u) > 1, Inequality (111) gives

11 64 274
12 - - o _ 2=
v <16(9-2+256> <1+512-4—64> o9 < b

which is a contradiction. So v < 98, and thus, as mentioned in the above remark,
v = 2,8,18,32,50,72 or 98. Our goal is to exclude the last 6 of these 7 possible
v-values. We will first consider the cases u = 3 and u = 9. Note that of our
6 v-values of interest, we need only consider the ones relatively prime to 3; that
is, 8,32,50,98. For these four v-values, if u = 3, then f(:%iv) <9f1('u) + 31)}(”))(1 +

64 2 2 4 4
3vf2(v)y'2—64 157 692 2197 435°

) takes the respective values and as these values are all
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less than 1, we obtain a contradiction from Inequality (110). Similarly, if u = 9,
16 1 1 64 . 2 2 4 4

then +g7- (Qf(v) + 3700 Y1+ UfZ(U)QQ_M) takes the respective values §, &3, 557> 153
and as these values are also all less than 1, we again obtain a contradiction from
Inequality (110). So we may assume that v > 3 and u # 9. Then by Remark 25(c),
we have uf(u) > 25 and for the five v-values v = 18, 32,50, 72, 98, respectively, one

1 1 64 172 114 12 194 492
finds that 16( 55777 + 5707) (1 + 57200)22—6a) takes the values 172, 155, 53, 155 Ti7s-
As these values are all less than 1, we obtain a contradiction from Inequality (111).
It remains to treat the case v = 8, with « > 3 and u # 9. First note that in this
case, uf(u) > 25 by Remark 25(c), and if f(u) > 1, then f(u) > 3. But then

Inequality (111) gives

1 1 64 98
12 - - R R
v <16<25-2+16-3>(1+ﬁn.3-4—64> 125 < b

which is a contradiction. So we may assume f(u) = 1, i.e., u is a square. But then,
as u > 1, u+ 8 is not a square and so f(u + 8) > 3. Then Inequality (110) gives

wr (L Y6 22y
3\25-2 16 32-4—64) 925 ’

which is a contradiction. Hence, v = 8 is impossible. Thus v = 2. O

Lemma 21. Ify”" =1, then u=1.

Proof. Suppose y” = 1, and arguing by contradiction, suppose u > 1. Note that
Inequality (107) gives vf(v) > uf(u)z’® > uf(u). Also, by Inequality (109),
vf2(v)f(u) > 64. So if v = 2, then vf?(v) = 8 and hence f(u) > 8, contra-
dicting the fact that vf(v) > uf(u). Hence, v > 2. By Lemma 19, f(v) = 2. So,
as v > 2, we have v = 2m? for some m > 2. Notice also that if m = 2, then
vf?(v) = 32, and so vf2(v) f(u) > 64 gives f(u) > 1.

If m > 11, then as uf(u) > 9 by Remark 25(c), Inequality (111) gives

11 64 1004
2
16(—+—](1 = 1
v <6<92+mﬁ><+%ﬁ—m) 1017 =

which is a contradiction. So we need only consider 2 < m < 10. First consider
u =3 and u = 9. The numbers v = 2m? with 2 < m < 10 and ged(u,v) = 1
are given by m = 2,4,5,7,8,10. For u = 3 and m = 2,4,5,7,8,10, the values of
f(%gmz)(fé% + 523 )(1 + g2 are respectively

3730720174177 1387 219"
As these values are all less than 1, we obtain a contradiction from Inequality (110).
Now, let w = 9. Here f(u) = 1 and so, as we observed at the beginning of this
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proof, m > 2. For m = 4,5,7,8,10, the values of W(ﬁ + ﬁ)(l + ﬁ)
are, respectively,

1871537 3697 1267 207"
As these values are all less than 1, we again obtain a contradiction from Inequal-
ity (110).
From what we have just shown, we may suppose that v > 5 and u # 9, so
wf(u) > 25, by Remark 25(c). If m > 5, then Inequality (111) gives

1 1 64 12
2 | = —
v <16<25-2+4.25> <1+8-25—64> T

which is a contradiction. It remains to treat the cases m = 2,3,4 for u > 5 and
u#9.

If u = 5, then for m = 2, 3,4, the values of %(25% + 522 ) (1L + gte—7)
are respectively %57 &7 9—10, which is impossible by Inequality (110). Similarly, if
u = 25, then for m = 3,4, the values of W%W)(Fl? + o3)(1 + g9%5;) are
respectively %, %, which is again impossible by Inequality (110). For m = 2 we do
not need to consider u = 25 as f(25) = 1 and as we observed at the beginning of
this proof, f(u) > 1 for m = 2. Thus for m = 2,3,4, we may assume that v > 5
and u # 25.

For m = 4 with v > 5 and u # 25, we have uf(u) > 49 by Remark 25(c), so

Inequality (111) gives

w/2<16 L_,_i 1+L _§<1
49-2 64 64-2—-64) 98 ’

which is a contradiction.

It therefore remains to treat the cases m = 2,3 for u > 7 and u # 25. First let
m = 2. Then as we saw at the beginning of the proof, f(u) > 3. If f(u) > 5, then
as uf(u) > 49, Inequality (111) gives

1 1 64 89
/2
16—t — ) (14— )=
s 6(49-2+16-5)< +32-5—64) 47 =

which is a contradiction. If f(u) = 3, then u is divisible by 3, so u +v =u+ 8 = 2
(mod 3), and hence u + v is not a square, and neither is it divisible by 3. So
flu+wv) # 1, and consequently f(u+wv) > 5. Thus, using uf(u) > 49 and f(u) = 3,
Inequality (110) gives

WD (L Ly M )8y
5 \49-2 16-3 32-3-64) 245 ’

which is a contradiction. So the case m = 2 is also impossible.
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Finally, let m = 3. If f(u) > 3, then as uf(u) > 49, Inequality (111) gives

1 1 64 412
2 16— 4 — (14— )22
wr<16l 9 353 T3 -64) 031 <"

which is a contradiction. If f(u) =1, then u is a square, so v+ v =« + 18 is not a
square. Thus f(u + v) # 1. Furthermore, u is not divisible by 3 since v = 18 and
ged(u,v) = 1. So u + 18 is not divisible by 3. Hence, f(u + v) > 5. Furthermore,
as uf(u) > 49 and f(u) =1, we have u > 49. Thus Inequality (110) gives

16 /1 1 64 4(u +18)
12 il - —
<P () (1 ) -

As w’ > 1, we obtain u < 72, and so as u is an odd square with v > 49, we have
u=49. But then f(u+ v) = 57 and Inequality (110) gives a contradiction, as

WEIPE- G S N T
67 \49-2 © 36 72-64) 49 ~

This completes the proof of the lemma. O
Lemma 22. We have y" # 1.

Proof. Suppose y” = 1, so by the above lemma, v = 1. In this case, Equation (108)
gives

F+ 0)w(of?(v) - 64) = 16(=" + f(v)). (114)

From Lemma 19, f(v) = 2, so v has the form v = 2m? for some m. Then Equa-
tion (114) gives f(1 + v)w'?(8m? — 64) = 162”2 + 32, so

F(L+2m*)w?(m? — 8) = 22" + 4. (115)

Notice that the 2-adic order is exactly 2, since on the right hand side it is 1 or
2 and on the left hand side at least 2. So 2" is even, say 2z’ = 2z2”’/. Suppose
that m is even and write m = 2m/. After replacing and dividing by 4 one gets
f(1+8m?)w?(m™? —2) =222 + 1, so w’ and m’ are both odd. Observed modulo
8 this gives a contradiction, since the LHS is —1 and the RHS is 1 or 3 modulo 8.
Hence, m must be odd and thus, from Equation (115), w’ is necessarily even, say
w’ = 2w", giving

f(l 4 2m2)w//2(m2 _ 8) — 22”’2 41, (116)
From Inequality (107), we have m > z”’. Thus, Equation (116) gives

" 2m? + 1
< .
f(1+2m2)(m? —38)

(117)

Notice that from Equation (116), we have m? > 8, so m > 3 and is odd. If m = 3,
then Inequality (117) gives w”? < 13 = 1, a contradiction. If f(1+ 2m?) = 3, then
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iﬁ;fé) <1 for m > 5, which is another contradiction. Finally, if f(1 + 2m?) =1

then w'? < % < 3 for m > 5 and so w” = 1. Replacing each of f(1+2m?) and
w" by the value 1 in Equation (116) gives m? = 22”2 + 9, which modulo 3 implies
either 1=0o0r 1 =2. O

Lemma 23. Ifv =2, then u = 1.

Proof. Suppose that v = 2 and u > 1. So by Remark 25(¢c), uf(u) > 9. From the
previous lemma, y” > 2. Assume for the moment that ¢y’ = 2. By Inequality (109),
vf?(v) f(u)y"? > 64, which gives f(u) > 2, so f(u) > 3. Now, from Inequality (107),
we have uf(u)z"? < vf(v)y"? = 16. So uf(u) > 9 gives 2’ = 1, and then uf(u) < 16
and f(u) > 3 give w = 3. Then f(u+ v) =5 and so Inequality (110) gives

5\9-2 4.3 8.3-4—64) 3 ’

so w’ = 1. But then, by Equation (108), 5(8 -3 -4 — 64) = 16(32""2 + 8), which has
no integer solution for z”. So y” > 3.
Note that if f(u) > 7, then u > 7 and by Inequality (111)

1 1 64 324
2
16—+ ) (1e 0 ) =22
e 6(49.2+4~7>( +8~7~9—64> 38

which is a contradiction. So it suffices to deal with the three cases f(u) = 1,3,5.
First suppose f(u) = 5. So uf(u) > 25. As f(u) =5 and v = 2, we have u +v =2
(mod 5) and hence u + v is not a square. So f(u + v) > 3. Hence, by Inequality

(110)
SO WL WU S
3 \26-2 4-5 8.5-9—-64/ 185 ’

which is a contradiction. So f(u) # 5. Now, suppose f(u) = 3. So uf(u) > 9. We
have u + v = 2 (mod 3) and hence u + v is not a square. So f(u +v) > 3. But
f(u+v) # 3, because v + v = 2 (mod 3). So f(u+ v) > 5. Hence, by Inequality

(10).
6/ 1 1 64 12

2 — 4~ (14— ) =<1

WS (9'2+4~3>( +8‘3~964> TR

which is a contradiction. So f(u) # 3. Finally, suppose f(u) = 1. Then Equa-
tion (108) gives
f(u + U)w/Z(y//Q _ 8) — 2(21/2 + 2y//2)' (118)

2

As f(u) = 1, so u is an odd square, say u = n®. Thus, as u > 1 by hypothesis,

u>9. As u is a square, u+ 2 is not a square, so f(u+v) > 3. By Inequality (110),

6/ 1 1 64 44
p 1001 IVAG L0 Ny
v <3<9-2+4><+8~9—64> g <1
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So w’" = 1,2 or 3. Suppose for the moment that y” = 3. Then as f(u + v) is
odd, w’ must be even, by Equation (118), so w’ = 2. Then Equation (118) gives
2f(u+v) = 2% +18. It follows that z” must be even and hence f(u +v) > 11.
But then Inequality (110) gives

16/ 1 1 64
12 = - 1 s =4
v <11<9~2+4)<+8-9—64> ’

contradicting w’ = 2. Hence, y” > 4.
Note that for y” > 4, if f(u + v) > 11, then Inequality (110) would give

W B (L N M )8y
11\9-2 4 8.16—64) 9 ’

which is a contradiction. So, as f(u 4+ v) is square-free, f(u 4+ v) = 3,5 or 7. But
then u 4+ v would be divisible by 3,5, 7, respectively. Since there is no n for which
n? +2 = 0 modulo 5 or 7, we conclude that f(u+v) =3. Thus n? +2 = u + v is
divisible by 3 and hence n? = 1 (mod 3). Thus, for u > 1 we have n > 3 and thus
u > 25. Then Inequality (110) gives

WX (L Y M )2 g
3\25-2 4 8.16—-64) 25 ’

So w’ = 1. But then Equation (118) would give 3(y""? — 8) = 2(2""% + 2y"?), so
0 = 24 + 22”2 + 4”2, which is obviously impossible. Hence, u = 1. O

Lemma 24. Ifu=1, then v = 2.

Proof. Suppose that v = 1 and v > 2. So by Remark 25, v > 8 vf(v) > 16 and
vf?(v) > 32. By Lemma 22, y" > 2. Then Inequality (111) gives

1 1 64
12 - i s _
w <16(2+16>(1+32_4_64> 18,

sow’ =1,2,3 or 4. Lemma 19 and Equation (108) give
F(1+v)w?(vy? —16) = 4(2"* + 2y"%), (119)
while, setting v = 2m?2, Inequality (107) gives
(2m)?y"? > 272, (120)

Let us first dispense with the case v = 8. Suppose v = 8. Then f(1+ v) = 1 and
substituting in Equation (119), the four possibilities for w’ give:

o w =1: 2(y"? —2) = 2""? + 2y""?, so —4 = 2%, which is obviously impossible.
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o w =2 8(y"? —2) = 2%+ 2y"?, so 6y"? — 16 = 2""?, which is impossible
modulo 3.

o w =3: 18(y"% —2) = 2% + 292, so (4y)"? = 2""? + 62, which is impossible
as there is no such Pythagorean triple.

o w =4: 32(y"? —2) = 2% + 2y, so 30y"? — 64 = 2%, which is impossible
modulo 3.

So v > 8 and hence v > 18, vf(v) > 36 and vf?(v) > 72. Then Inequality (111)

gives
11 64 76
1 1+ =Dy
w<6( 36)( 724 64) 7 <

so w’ = 1,2 or 3. Substituting w’ = 3 in Equation (119) for v = 18 and 32 gives
respectively

19 . 9(9y//2 o 8) _ 2( 72 + 2y//2) and 33 - 9(8y/12 _ 4) //2 + 2y//2

However, neither of these equations has a solution modulo 64. So w’ = 1 or 2 for
v =18 and 32. For v > 32 we have v > 50 and Inequality (111) gives

<161 Ly, o _ 204
w’ 100 200-4—64) 23 °

so w’ =1 or 2. Thus we have w’ = 1 or 2 for all v > 18.
First suppose w’ = 2. Note that if f(1 4+ 2m?) > 3, then Inequality (120) and
Equation (119) give

12( 2 //2 )§ 4f(1+2m2)(m2y”2 —8) — 2(2”24-22/”2) (Sm _|_4) //2

so (m? — 1)y < 24. But for v > 18, we have m > 3. So (m? — 1)y"? < 24 gives
y""? < 3, hence y” = 1, contrary to Lemma 22. We conclude that f(1+ 2m?) = 1.
Thus Equation (119) gives 4(m?y"? — 8) = 2(2"% + 2y'"?), so

2(m?* — 1)y = 2" + 16.

Since f(1+ 2m?) = 1, we have that 1 + 2m? is a square, say 1 + 2m? = n?. But
investigations show that the simultaneous equations 2(m? — 1)y""? = 2""? + 16 and
14+ 2m? = n? have no integer solution modulo 128. Hence, w’ = 2 is impossible.

Finally, suppose w’ = 1. Note that if f(1+2m?) > 11, then Inequality (120) and
Equation (119) give:

11(m2y//2 _ 8) < f(l + 2m2)(m2y//2 _ 8) _ 2(21/2 4 2y//2) (8m + 4) //2
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so (3m? — 4)y"? < 88. But for v > 18, we have m > 3 and so (3m? — 4)y"? < 88
gives 32 < 88/23 < 4, hence y" = 1, contrary to Lemma 22. So f(1+2m?) =1,3,5
or 7.

For f(1+ 2m?) = 7, Equation (119) gives 7(m?y"? — 8) = 2(2""? 4 2y""?), which
has no solution modulo 49. So f(1 + 2m?) # 7.

For f(1+ 2m?) = 5, Equation (119) gives 5(m?y"? — 8) = 2(2""? 4 2y""?), which
has no solution modulo 25. So f(1 + 2m?) # 5.

For f(1 4+ 2m?) = 1 and 3, the calculation is slightly more complicated. For
f(1+2m?) = 1 we consider the pair of the simultaneous equations m?y”? — 8 =
2(2"% + 2y""?) and 1 + 2m? = n?, while for f(1+ 2m?) = 3 we consider the pair of
the simultaneous equations 3(m?y”? — 8) = 2(2"? + 2y”"?) and 1 + 2m? = 3n?. In
both cases one finds that the pair of equations has no solution modulo 64. Thus
w’ =1 is also impossible. O

Given the above lemmas, it remains to treat the case where u = 1,v = 2 and
y"” > 2. By Inequality (109), vf2?(v)f(u)y"? — 64 > 0, so y""?> > 8. Thus y” > 3.
Then Inequality (110) gives

16 /1 1 64

12

e (122 ) =
v <3<2+4><+8-9—64> 36,

so w’ < 5. Equation (108) gives
3w/2(y//2 _ 8) — 2(2//2 + 2y//2)7 (121)

One finds that for w’ = 1,3 and 5, Equation (121) has no solution modulo 64. So
w’' =2 or 4.

For w' = 4, Inequality (107) and Equation (121) give 48(y"? — 8) = 2(2"? +
2y""%) < 1292, so 3y"? < 32. Thus, as y” > 3, we have y” = 3, and Equation (121)
gives 2”2 = 6, which is obviously impossible. So w’ = 2.

Finally, for w’ = 2, Equation (121) has a unique positive integer solution:
y" = 2 = 4. From the definitions, for u = 1,v = 2, we have ¥ = 2f(u +
v)f(u)vf(v)w?/4 = 6w = 24. Consequently, ¥’ = u¥/v = 12. This is the
required case 2 solution.

Case 3. Assume u is even, v is odd, and the 2-adic order of u is even.

We will show that in this case, (3,%’) = (10,40) and (18,32) are the only two
possibilities.

As x is an integer, from Equation (92) we can write ¥ = 2f(u + v)f(u)w?.
Note v divides X, so v divides w?, and hence f(v)s(v) divides w. Thus, setting
w = f(v)s(v)w we may write ¥ = 2f(u + v)f(u)f(v)vw?. Then Equation (91)
gives

Flutv)f(u)f0)vw?(wf(w)y? - 16) = 4(z* + v f(u)y™). (122)
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Thus vf(u) divides 1622, so f(v)s(v)f(u) divides 2, say z = f(v)s(v)f(u)z'. So
Inequality (90) gives vy’ > s(u)f(v)s(v)f(u)z' and hence
s()y > fu)s(u)?, (123)
and Equation (122) gives
flut) fo)w?(of (w)y? —16) = 4(f(v) f(u)z” + y). (124)

Hence, f(v) divides y'. Let ¢y = f(v)y”. Then Inequality (123) gives f(v)s(v)y” >
f(uw)s(u)z" and so
vf(0)y" > uf(u)z?, (125)

and Equation (124) gives
Fluto)w@f? () f(w)y"™ - 16) = 4(f (u)2” + f(v)y"). (126)

Remark 26. Note that v, f(v), f(u) and f(u + v) are all odd. It follows from
Equation (126) that w’y” is even.

Note that from the left-hand side of Equation (126), we have
vf2(v) f(u)y"? > 16. (127)
Furthermore, Inequality (125) and Equation (126) give
wf (u+ 00 (0) [ (w)y" — 16) < 4w +u) f(0)y".

Hence,

2 4 1 1 16
< Tt o) <uf<u>f<v> * vf(v)f(u)> (l TR )y 16> (128)
and consequently

1 ! 16
uf(u)f(v) + vf(U)f(u)> (1 + o) )y = 16) . (129)

Remark 27. Note that as u is even and the 2-adic order of u is even, we have
u > 4. The first twelve possible values of u are the same as the v values shown in
Table 8.

w'2<4<

Lemma 25. The following conditions hold.
(a) If f(u) > 1, thenv=1and y" > 7.
(b) f(u) <3.

(¢) If y" > 2, then f(v) =1.
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Proof. (a). Suppose f(u) > 1, so f(u) >3, u > 12 and uf(u) > 36. Suppose also
that v > 3, so vf(v) > 9. Then for y”" > 1, Inequality (129) would give

o 16 7
2oy D) (14— )L
s (9-3+36>( +9~3—16) T

which is a contradiction. So v = 1. Then Inequality (125) gives y"? > uf(u)z'? >
36,s0y"” > 1.

(b). If f(u) > 3, then f(u) > 5, u > 20 and wf(u) > 100. Then for y" > 7,
Inequality (129) would give

1 1 16 1029
2
4{=+-](1 = 1
wes <2o+5> ( +5-72—16> 1145 =
which is a contradiction.
(¢c). Suppose y” > 2 and f(v) > 3, so vf(v) > 9. For all u > 4, Inequality (129)

gives
11 16 21
12
afor = V(14— V=2 <1
s <9+4-3)< +27.4—16) 23 =

which is a contradiction. O

Lemma 26. We have f(u) = 1.

Proof. Suppose f(u) > 1. By Lemma 25, ¥/ > 7,0 = 1 and f(u) = 3, and so
u > 12. Now, Inequality (129) gives

11 16 637
12
a2 ) (1) =2 o
v (3.12+3)<+3~7216) 393

so w’ = 1. Hence, Equation (126) gives
Flu+v)(3y" — 16) = 4(32 + /™).

Modulo 3 we have 3’2 = —f(u + v). In particular, f(u + v) = 1 is impossible. So
as u+ v is odd and ged(u, u+v) = 1, we have f(u+v) > 5. Then Inequality (128)

gives
401 1 16 637
12
4 (1 - <1
v 5(3-12+3>(+3~72—16> 1965 =

which is a contradiction. I

Lemma 27. The following conditions hold.
(a) Either u =4 or u=16.

(b) Ifu=4, thenv=1.
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(¢) If u=16, then v =09.

Proof. (a). By Lemma 26, u is an even square, say u = 4n%. Suppose n > 3, so u >
36. First suppose that y” = 1. Then Inequality (125) gives v f(v) > uf(u)z? > 36.
Then Inequality (129) gives

11 16 2
2
A=+ (1 =Z<1
e <36+36)< +36—16> 50

which is a contradiction. Hence, y” > 2 and so by Lemma 25(c), f(v) = 1. Suppose
for the moment that v = 1. Then Inequality (125) gives y"? > uf(u)z’? > 36. So
y"” > 7. Moreover, u + v = 4n? 4+ 1 is not a square, and is not divisible by 3. So
f(u+v) > 5. Then Inequality (128) gives

W P ) (1 20 ) S B
5\36 1 7216/ 1485 ’

so w’ = 1. Then Inequality (128) gives

1 1 16 1813
al—+2) (1 -
Jlutv) < (36+ 1) ( * 72—16) 297 <1
50, as f(u+wv) is odd and f(u+wv) > 5, we have f(u+v) = 5. Then Equation (126)
gives y""? = 422+80. But we saw above that Inequality (125) gives y"? > uf(u)z? >
362"2. So we have 422 4+ 80 > 362’2 and hence 22’2 < 5. Thus 2’2 = 1. But then

y"? = 42'? + 80 has no integer solution for 3”". Consequently, v = 1 is not possible.

As f(v) =1, we now have v > 9. But then as y” > 2, Inequality (129) gives

11 16
12
A=+ ) (14— ) =1
s (36+9>(+9-4—16) ’

which is a contradiction. We conclude that u = 4n? with n < 2.

(b). Let u = 4 and assume v > 1. First suppose that y” = 1. Then Inequal-
ity (125) gives vf(v) > uf(u)z'?> > 4. Hence, vf(v) > 9. Also, Inequality (127)
gives vf2(v)f(u)y”? > 16, so vf?(v) > 16. So v # 9, and consequently either
f(v) >3 or v is an odd square with v > 25. In either case, vf?(v) > 25.

First suppose that v is an odd square with v > 25. Then u 4+ v = 44 v is
not a square, so f(u + v) > 1. Moreover, as v is a square 4 + v Z 0 (mod 3), so
f(u+v) # 3. Hence, f(u+v) > 5. Then Inequality (128) gives

w? < 2 1Jri 1+i -2
5\4 25 25—16,) 45 ’

which is a contradiction.
Now, suppose f(v) > 3. Then Inequality (129) gives

11 16 91
CIPPY S SRR R By
wrstlysto) Ut o) T s
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So w’ = 1. But as ¢/ = 1, this contradicts Remark 26. We conclude that y” =1 is
not possible.

We now consider ¢y’ > 2. By Lemma 25(c), f(v) = 1. Suppose v > 1. Since
f(w) =1, v is an odd square. So 4 + v is not a square, and hence f(u + v) > 3.
Then as v > 9, Inequality (128) gives

w? <3 1+1 1+L _B
3\4 9 9-4—16) 15 ’

which is a contradiction. Hence, v = 1, as required.

(c). Let u = 16 and assume v # 9. First suppose that ¥ =1 and that f(v) = 1.
Then Inequality (125) gives vf(v) > uf(u)z? > 16. As f(v) = 1, it follows that v
is an odd square, and hence v > 25. Then Inequality (129) gives

1 1 16 41
/2
<4| =+ = 1 = — <2,
v (16+25>( +25—16) 36
so w’ = 1. But as 3" = 1, this contradicts Remark 26.

Now, suppose that y” = 1 and that f(v) > 1. So f(v) > 3. If v = 3, then
Inequality (129) gives

11 16 57
12 - —
v <4<16-3+9>(1+27—16) u <2

so w’ = 1. Once again, this contradicts Remark 26.
If v > 3 then we have v > 5 and so for f(v) > 3, Inequality (129) gives

11 16 93
2 T — 72
v <4<16+15><1+45—16> 16 < b

which is a contradiction. We conclude that 3" = 1 is not possible.

We now consider y” > 2. By Lemma 25(c), f(v) = 1. So v is an odd square.
Note that if v > 25, then Inequality (129) gives

11 16 41
2ogf—4 ) (14— =2 4
wr< 16" 2 t%a-16) s~

which is a contradiction. So it remains to eliminate the possibility that v = 1.
Let v = 1. Then Inequality (125) gives y"? > uf(u)z’?> > 16, so y" > 5. Also
f(u+v) =17. Then Inequality (128) gives

W< 2 (LD (14 28 B
17\16 1 25—-16/ 36 ’

which is a contradiction. Hence, v = 9, as required. O
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By the previous lemma, we have u = 4,v = 1 or v = 16,v = 9. Consider the
first case. Here Inequality (127) gives y""? > 16, so y”" > 5. Then as f(u +v) = 5,
Inequality (128) gives

471 1 16 25
12

Bl (i A I
v <5(4+1)<1+2516> 9 =%

so w' = 1. Equation (126) gives 5(y"? — 16) = 4(2"? + y'"?), so y""? = 42’ + 80,
which has the solution y” = 12,2’ = 4. From the definitions, w = f(v)s(v)w’ = w'.
Then ¥ = 2f(u +v)f(u)w? = 10, and ¥’ = %X = 4% = 40, which is one of the
desired solutions.

Now, consider the second case, u = 16,v = 9. Here Inequality (127) gives
9y""? > 16, so y” > 2. Then Inequality (129) gives

11 16 5
2

4z - =2 <9
v <4(16+9>(1+9~4—16) 157

so w’ = 1. Equation (126) gives (9y"2 — 16) = 4(2"? + y"'?), so 5y"? = 422 + 16.
This has infinitely many solutions. From the definitions, w = f(v)s(v)w’ = 3w’ = 3.
Then ¥ = 2f(u+ v) f(u)w? = 18, and ¥’ = £% = 16%/9 = 32, which is the other
desired Case 3 solution.

Case 4. Assume u is even, v is odd, and the 2-adic order of u is odd.

We will show that in this case, (3, %) = (12,24) is the only possibility.

As z is an integer, from Equation (92) we can write 2% = f(u + v)f(u)w?.
Note v divides ¥, so v divides w?, and hence f(v)s(v) divides w. Thus, setting
w = f(v)s(v)w we may write 22 = f(u + v)f(u)f(v)vw?. Then Equation (91)
gives

Flut0) f(u) f()vw?(vf (u)y? —16) = 16(2* + v f(u)y™). (130)
Thus v f(u) divides 1622, so f(v)s(v)@ divides z, say 2z = f(v)s(v)f(u)z’. So
Inequality (90) gives 2vy’ > s(u)f(v)s(v)f(u)z’ and hence

2s(v)y’ > f(u)s(u)z’, (131)
and Equation (130) gives
flu+ ) fo)w?(vf (w)y? —16) = 4(f(v) f(u)2" + 4y). (132)

Hence, f(v) divides y'. Let ' = f(v)y”. Then Inequality (131) gives 2f(v)s(v)y” >
f(u)s(u)z’ and so
f ()" > uf(u)2?, (133)

and Equation (132) gives

flu+v)w(wf?(v) f(u)y"™ — 16) = 4(f(u)2" + 4 (v)y"). (134)
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Note that from the left-hand side of Equation (134), we have
vf?(v) f(u)y”? > 16. (135)
Furthermore, Inequality (133) and Equation (134) give
wf (a4 o) (02 (0) f(u)y"™ — 16) < 16(0 + u) f(0)y".

Hence,

2 16 1 1 16
s flv+u) (Uf(u)f(v) Uf(v)f(u)> (1 + vf2(0) f(u)y”? — 16

and consequently

> (136)

1 1
W < 16 ( 0 ) . (1)

1
e + o) (1 ey
Lemma 28. The following conditions hold.
(a) f(v) <5.
(b) If f(v) > 1, then f(u) = 2.
(c) If f(v) =3, then either v =3 or u = 2.

Proof. (a). Suppose that f(v) > 7. So vf(v) > 7% and vf?(v) > 73. Also, as the
2-adic order of u is odd, we have f(u) > 2, so v > 2 and uf(u) > 4. Then for all
y" > 1, Inequality (137) gives

w? < 16 i+i 1+176 —@<1
4.7 72.9 73.2-16/) 335 ’

which is a contradiction.
(b). Suppose that f(v) > 3 and f(u) > 2. Then f(u) > 6, and so uf(u) > 36.
And vf(v) > 9 and vf?(v) > 27. Then for all y” > 1, Inequality (137) gives

1 1 16 36
12
16—t — ) (14— ) =2 <1
s 6(36-3+9-6)< +27-6—16) 73S

which is a contradiction.

(c). Suppose that f(v) = 3 and that v > 3 and u > 2. As f(v) = 3, v has the
form v = 3m?, for some odd m. By Part (b), f(u) = 2, so u has the form u = 2n?,
for some integer n. So v > 27 and u > 8. Then Inequality (137) gives

1 1 16 21
12
16—+ ) [(1+0 )= <1
s 6<16~3+34~2>< +35-2—16> S

which is a contradiction. O
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Lemma 29. We have f(v) = 1.

Proof. By Lemma 28(a), f(v) < 5. First suppose f(v) = 5. By Lemma 28(b),
flu)=2. If u> 2, then u > 8 and uf(u) > 16. Then Inequality (137) gives

1 1 16 5
12 - = —
v <16(16-5+25-2)(1+53~2—16> g < b

which is a contradiction. So u = 2. But v has the form v = 5m?, for some odd m,
so u +v = 2+ 5m?, and this cannot be a square as 2 + 5m? = 3 (mod 4). Hence,
f(u+v) > 3. Then Inequality (136) gives

B (IO W S W R (AN N € R
3 \4-5 25.2 5.2-16/) 351 ’

which is a contradiction. So f(v) # 5.

Now, suppose f(v) = 3, so v has the form v = 3m?, for some odd m. By
Lemma 28(b), f(u) = 2, so u has the form u = 2n?, for some integer n. By
Lemma 28(c), either v = 3 or u = 2. We claim that in both cases, u + v is not
a square. Indeed, if v = 3, then v 4+ v = 2n? + 3 is not a square since modulo 8,
2n? + 3 is either 3 or 5, according to whether n is even or odd, but the quadratic
residues modulo 8 are 0,1 and 4. Similarly, if u = 2, then u 4+ v = 2 4+ 3m? is not
a square as 2 + 3m? = 2 (mod 3). Thus, in both cases, f(u +v) > 1 and so, as
ged(u +v,v) =1, we have f(u+ v) > 5. Then Inequality (136) gives

wre B (L L6 Y12y
5 \4-3 2.32 33.2-16/) 19 '

which is a contradiction. O

Lemma 30. Ify"” > 1, then v = 1.

Proof. By the previous lemma, f(v) = 1, so v is an odd square, say v = m?.

Suppose y” > 2 and that v > 9. First suppose that f(u) > 2. Then f(u) > 6 and
Inequality (137) give

11 16 4
2
16(-+— ) (1+— )="<1
e 6<36+9-6)< +9-6-4—16) 50

which is a contradiction. So f(u) = 2. Hence, u has the form u = 2n?, for some
integer n.

Now, suppose for the moment that v > 25 and that v > 18. Then uf(u) > 36
and Inequality (137) gives

PICR 1) (R IR
36 25-2 25-2-4—-16) 207 ’
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which is a contradiction. So either v = 9 or u < 18. First consider the case where
u < 18 and v > 25. There are two possibilities: either u = 2 or u = 8. If u = 8, then
u+v = 8 +m? cannot be a square for m > 1. So f(u +v) > 3. Then uf(u) = 16,
and Inequality (136) gives

wr (L L N 16 Uy
3\16 25-2 25-2.4—-16) 23 ’

which is a contradiction. If u = 2, then uf(u) = 4, and u + v = 2 + m? cannot be
a square. So f(u + v) > 3. Then Inequality (136) gives

w2 XL V16 )36,
3 \4 25.2 25.2.-4—-16/) 23 ’

so w’ = 1. But then Inequality (137) gives

16 108
)= <5

11
64— ) (14—
Jlutv) < 6<4+25-2)< to5 o a-16) " 23

So f(u+v) = 3. Then Equation (134) gives 3(2vy"? — 16) = 4(22"% + 4y"'?), so
(3v — 8)y"? = 42"* 4 24.

So as v is odd, y” must be even, say y” = 2", so (3v — 8)y""? = 2’2 + 6. But it is
easy to see that as v is an odd square, this equation has no solution modulo 8.
We conclude from the above that v = 9. In this case, for u > 2, Inequality (137)

gives
11 16 44
2 1624 — ) (14— 7.
Flutvpw <16 { 7+ 575 92.4-16) 7 °

Notice that f(u + v) # 3 since ged(u + v,v) = 1. So we have three possibilities:

(

(a) flu+v)=1and w =1,

(b) flu+v)=1and v =2,
)

(¢) flu+v)=5and w =1.

In these cases, Equation (134) gives respectively

2 =427 48, (138)
Tyt =27+ 8, (139)
37y"? = 42" + 40. (140)

However, one finds that Equation (138) has no solution modulo 16, Equation (139)
has no solution modulo 32, and Equation (140) has no solution modulo 25. This
completes the proof of the lemma. O
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Lemma 31. Ify’ =1, then v =1.

Proof. By Lemma 29, f(v) = 1, so v is an odd square, say v = m?2. Suppose y” = 1
and that v > 9. First note that if f(u) > 2, then f(u) > 6, and so uf(u) > 36.
Then by Inequality (133), 4v > uf(u)2? > uf(u) > 36, so v > 9. Thus v > 25 and
then Inequality (137) gives

w216 =) (1e 0 By
36 25-6 25-6-16/) 201

which is a contradiction. So f(u) = 2. Then Equation (134) gives
flu+v)w?(m? —8) = 4(2"* + 2). (141)

In particular, as m and f(u + v) are odd, w’ must be even. For all u > 2, Inequal-
ity (137) gives

1 1 16
2
16(-+— 1+ —— ) =44.
flu+v)w™ < 6<4+9.2>< +9-2—16>

So, as w' is even and f(u + v) is odd and square-free, we have three possibilities:
(a) w’ =6 and f(u+ v) = 1; here Equation (141) gives 9m? = 2/? 4 74.
(b) w' =4 and f(u+v) = 1; here Equation (141) gives 4(m? — 8) = 2/ + 2.
(c) w' =2and f(u+v) = 1,3,5,7; Equation (141) gives f(u+v)(m?—8) = 2242.

However, in the first two cases, the equation has no solution modulo 4. In the third
case we find that for f(u+v) = 1 and 5, the equation f(u+v)(m?—8) = 2’2 +2 also
has no solution modulo 4, while for f(u+ v) = 7, the equation f(u + v)(m? —8) =
2% +2 has no solution modulo 8. So it remains to treat the case where f(u+v) =3
and w’ = 2. So it remains to treat the case where f(u+v) = 3 and w’ = 2. Here the
equation is 3m? = 2’2 4 26, which actually does have integer solutions. However,
notice that for f(u 4+ v) = 3, we have v # 9, since ged(u + v,v) = 1, so v > 25.
Hence, for u > 2, Inequality (136) gives

w2 WLy LY 16 )80 g
3 \4 25.2 25-2—-16) 17 ’

But this contradicts the assumption that w’ = 2. O
By the two preceding lemmas, v = 1.
Lemma 32. We have y"' > 1.

Proof. If 4" = 1, then by Inequality (133), we have uf(u)z’?> < 4. But this is
impossible as uf(u) > 4. O



INTEGERS: 23 (2023) 87

Lemma 33. If f(u+1) > 1, then f(u) = 2.

Proof. By the previous lemma, we have ¢y’ > 2. Suppose f(u+ 1) > 1. Note that
if f(u) > 10, then f(u+ 1) > 3 and Inequality (136) gives

wr B (L N 16 ) 4y
3 \102 10 10-4—16/) 45 ’

which is a contradiction. Furthermore, if f(u) = 6 and y” > 3, then as ged(u, u +
1) =1, we have f(u+1) # 3, so f(u+ 1) > 5, and hence Inequality (136) gives

w2 WL N 16 )8y
5 \62 6 6-9—-16/) 95 ’

which is a contradiction. Finally, suppose that f(u) = 6 and y” = 2. Then f(u +
1) > 5 and Inequality (136) gives

R R p Y
5 \62 6 6-4—16) 15

So w’ = 1. Then applying Inequality (136) again gives

1 1 16 28
D<16(=+-](1+—— ) == <10.
flu+1) < 6<62+6)(+6-4—16) 3<0

Thus, as f(u + 1) is odd and square-free and f(u+ 1) > 5, we have f(u+1) =5
or 7. Hence, from Equation (134) we have f(u + 1) = 322 + 8, which is impossible
for flu+1)="5and 7. O

Lemma 34. If f(u+1) =1, then f(u) = 2.

Proof. Suppose f(u+ 1) = 1, so u + 1 = r? for some odd 7. So u = 0 (mod 8).
Suppose that f(u) > 2. Then f(u) > 6 and as u is divisible by 8, u > 24. So, as
y" > 2 by Lemma 32, Inequality (137) gives

11 16 25
LIPS Y L I RV L R ')
s 6<24~6+6)< +6-4—16) 5 <Y

So w’ =1 or 2. First suppose w’ = 1. Then Equation (134) gives (f(u) — 16)y
4f(u)z? +16. In particular, f(u) > 16. Thus, as f(u) is even and square-free,
f(u) > 22. So, as u is divisible by 8, u > 88. But then Inequality (137) gives

1 1 16 89
2o Ve —2 )=
w16l g5Ts T g T a-16) 99 "

which is a contradiction. So w’ = 2. Then Equation (134) gives

"2 _

(f(u) —4)y"? = f(u)z"? + 16. (142)
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By Inequality (133), we have 4y""% > uf(u)z'? > 24f(u)2z%. So Equation (142) gives
(f(u) = 4)y"* < Ly"* + 16 and hence (6f(u) — 25)y"* < 96. But f(u) > 6 and
y"” > 2, so in fact, as f(u) is even and square-free, the only possibility is f(u) = 6
and y” = 2. Then Equation (142) gives 8 = 6z'? + 16, which is impossible. O

Lemma 35. We have u = 2.

Proof. From the two preceding lemmas, we have v = 1 and f(u) = 2. So u has the
form u = 2n? for some n. Suppose n > 1, so uf(u) > 16. Equation (134) gives

flu+ Dw?(y" —8) = 4(2"* + 2. (143)

In particular, y"? > 8, so ¥ > 3. By Inequality (133), we have 4y""% > uf(u)z"? >
1622, so y” > 2z'. So when y” = 3 or 4, we obtain 2z’ = 1. Then when 3" = 4,
Equation (143) gives 2f(u + 1)w'? = 33, which is impossible modulo 2. When
y" = 3, Equation (143) gives f(u + 1)w? = 4 - 19, which implies necessarily w’ = 2
and f(u+1) = 19. Moreover the smallest value of u with f(u) = 2 and f(u+1) =19
is u = 18. But then uf(u) > 36 and with y” = 3, Inequality (136) gives

11 16
Dw?<16(—+-)(1+—— )=
flu+Dw? < 6<36+2)< +2.9_16) 76,

which gives a contradiction. So we have y” > 5. Then for u > 8, Inequality (136)

gives
1 1 16 225
Dw? <16 =+ ) (1+——— | =" < 14.
Jlut D™ < 6(16+2>( +2-25-16) 17

"2 _

Notice also that Equation (143) can be rearranged to give (f(u + 1)w'? — 8)y
422 +8f(u+1)w'?, so f(u+1)w? > 8. So9 < f(u+1)w™ < 13, and since f(u+1)
is odd and square-free, we have only the following possibilities:

(a) w' =1 and f(u+ 1) = 11,13; here Equation (143) gives (f(u + 1) — 8)y"? =
42" +8f(u+1).

(b) w' =2 and f(u+ 1) = 3; here Equation (143) gives y"? = 2% + 24.
(c) w' =3 and f(u+ 1) = 1; here Equation (143) gives "2 = 42/% + 72.

In the first case, with f(u + 1) = 11, the equation is 3y"? = 4z’ + 88, which
has no solution modulo 32. In the first case, with f(u + 1) = 13, the equation is
5y""? = 42’2 + 104, which has no solution modulo 16. In the third case, the equation
is 3”2 = 42’2 4 72 has no solution modulo 16.

It remains to deal with the second case, where the equation y”’? = 22 + 24 has
the solution y” = 5,2’ = 1. Note that in this case f(u + 1) = 3. But u = 2n? and
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the smallest value of n > 1 for which f(u+ 1) = 3 is n = 11. Here u = 242 and
Inequality (136) gives

f(u+1)w’2<16< ! +1> (1+ 16 >24300<12,

242-2 2 2-25-16 2057
contradicting the assumption that v’ =2 and f(u+ 1) = 3. O

From the preceding lemmas, we have v = 1 and u = 2. By Inequality (135), we
have 2y""? > 16, so 3y > 3. We have f(u + v) = 3 and so Inequality (136) gives

16 /1 1 16

12

| = — 1 _— | =
v <3<4+2><+2-9—16> 36,

so w’ < 5. Moreover, Equation (134) gives
(3w — 8)y""? = 42"* + 24w", (144)

so w’ > 2. So there are four possibilities.

If w' = 5, Equation (144) gives 67y""? = 42'?+600, which has no solutions modulo
32.

If w' = 4, Equation (144) gives 10y”? = 22 4+ 96 (which has the solution y" =
4,2 = 8). But by Inequality (133), we have y” > 2/, so 10y"? = 22 + 96 gives
992 < 96, giving y" < 3. So, as y” > 3, from above, we have 3y’ = 3. But then
10y"? = 2’2 + 96 has no integer solution for 2’.

If w' = 3, Equation (144) gives 19y""? = 42’ + 216, which has no solution modulo
32.

Finally, if w' = 2, Equation (144) gives y"? = 2’ + 24, which has the solution

" =5,z = 1. Note that in this case

1
5= (ot o) fuof(0)u = 3w =12,
and ¥ = =3 = 24. This is our desired Case 4 solution.

Case 5. Assume u,v are both odd and the 2-adic order of u + v is even.

We will show that there are no solutions in this case.

As z is an integer, from Equation (92) we can write ¥ = 2f(u + v) f(u)w?,
for some w. Note v divides ¥, so v divides w?, and hence f(v)s(v) divides w.
Thus, setting w = f(v)s(v)w’ we may write ¥ = 2f(u + v)f(u)f(v)vw?. Then
Equation (91) gives

Flutv)f(w)f)vw(wf(w)y® —16) = 4(z* + v f (w)y™). (145)
(v

Thus vf(u) divides 422, so f(v)s(v)f(u) divides z, say z = f(v)s(v)f(u)z’. So
Inequality (90) gives vy’ > s(u)f(v)s(v)f(u)z’ and hence

s(v)y > f(u)s(u)z’, (146)
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and Equation (145) gives
Flutv)f)w(wf(u)y? —16) = 4(f(v) f(u)2" +y?). (147)

Hence, f(v) divides ¢'. Let ¢y = f(v)y”. Then Inequality (146) gives f(v)s(v)y” >
f(u)s(u)z’ and so
vf(0)y"? > uf(u)z"”, (148)

and Equation (147) gives
flu+o)w?(uf?(v) f(w)y"™ — 16) = 4(f(u)2" + f(v)y"™). (149)
Now, Inequality (148) and Equation (149) give
uf(u+v)w?(vf?(v) f(u)y"™ - 16) < 4(v +u) f(v)y".

Hence,

2 4 1 1 16
RN ICEY (uf(u)f(v) i vf(v)f(u)) (1 Ty Ton g 16)
and consequently

2 1 1 16
w's < 4 <uf(u)f(v) + vf(v)f(u)) <1 + V2 (0) f(0)y? — 16) ) (150)

Remark 28. Note that using the hypothesis that the 2-adic order of u + v is even,
one has

fw+ fv)=u+v=0 (mod 4).
In particular, f(u) and f(v) are not both 1.
Lemma 36. The following conditions hold.
(a) f(u) < 19.
(b) f(v) <5.
(¢) If y" > 1, then f(u) <7.

Proof. (a). For f(u) > 21, we have uf(u) > 212, so for all 4" > 1, Inequality (150)

gives
11 16 88
2eg— s =) (14—} =22
wr<A o Ty to1-16) 105 <"

which is a contradiction.



INTEGERS: 23 (2023) 91

(b). Suppose f(v) > 7. Then Inequality (150) gives

1 1 16 224
12
<4|—=+= 14+ ——— | = — <1,
v (49+7) ( +73—16> 327
which is a contradiction.

(¢). Suppose y”’ > 2 and f(u) > 7. As f(u) is a square-free odd number,
f(u) > 11. Then Inequality (150) gives

11 16 48
2
A=+ )(1+———)=2<1
wes (112+11>( +11-4—16> 77 s

which is a contradiction. O
Lemma 37. We have f(v) = 1.

Proof. Suppose f(v) > 3. By Lemma 36(b), f(v) = 5. Then by Remark 28,
f(u) =3 (mod 4), and in particular, f(u) > 3 and so v > 3. Then Inequality (150)
gives

1 1 16 160
/2
4{—+-—)(1 = 1
wes <25-3+5~9>( Jr125-3—16> 1077< ’

which is a contradiction. So f(v) = 1 or 3. Suppose that f(v) = 3. So v > 3. By
Remark 28, f(u) =1 (mod 4). Suppose for the moment that f(u) > 5. Thenu > 5
and Inequality (150) gives

1 1 16 96
/2
<dlo—t— ) (14— ) =2 <1,
v (52.3+32~5>(+33~5—16> 595

which is a contradiction. So f(u) = 1.

As u,v are relatively prime, and as v is divisible by 3 since f(v) = 3, we have
u Z 0 (mod 3). Furthermore, as f(u) = 1, u is a square. So u = 1 (mod 3), and
thus v + v =1 (mod 3), and hence f(u+v) =1 (mod 3). By Inequality (150),

1 1 16 48
a4 ) (14— ])=—<5
CetleE ) Ut eoe) Tt
so w’ = 1 or 2. In particular, w'? = 1 (mod 3). Then using f(u) = 1 in Equa-

tion (149) gives f(u + v)w'?(9vy"? — 16) = 4(2"* + 3y""?), and modulo 3 we have
2'? = —1, which is impossible. So f(v) = 1. O

Lemma 38. We have v = 1.
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Proof. By the previous lemma, f(v) = 1, so v is an odd square, v = m? say. Suppose
that v > 1, so v > 9. By Remark 28, f(u) =3 (mod 4). So f(u) > 3. Note that if
f(u) > 7, then u > 7 and so Inequality (150) gives

11 16 64
2oLy LY 20 Y8
wrstlmtry ) Ut rT6) T <

which is a contradiction. So if v > 1, then f(u) = 3. In this case, u is divisible
by 3 and so as w,v are relatively prime, by hypothesis, we have v > 25. Then
Inequality (150) gives

11 16 112
ZIPUY (L S I RIS R B )
wrsimtyn )T sTe) T b

which is a contradiction. Thus v = 1. O
Lemma 39. We have f(u) = 3.

Proof. From the previous lemma, v = 1. From Inequality (148) we have y” >
f(u)z > 1. So from Lemma 36(c) we have f(u) < 7. Suppose f(u) = 7. Then
u > 7 and from Inequality (148) we have y” > 72’ > 7. So y” > 8. Then
Inequality (150) gives

11 16 128
12
d(o ) (14— ) =2
s (72+7>( +7~82—16> 189 =

which is a contradiction. So f(u) <5 and since f(u) =3 (mod 4), we have f(u) =
3. O

From the above lemmas, we have v = 1 and f(u) = 3. From Inequality (148),
we have y” > f(u)z’ > 3. Then by Inequality (150),

. 11 16 48
so w’ =1 or 2. In particular, w'? = 1 (mod 3). As f(u) = 3, we have that u is
divisible by 3. Sou+v =1 (mod 3), and hence f(u+v) =1 (mod 3). Substituting
v =1, f(u) = 3 in Equation (149) gives f(u + v)w?(3y"? — 16) = 4(32"? + y'"?),
and thus modulo 3 we obtain 3”2 = —1, which is impossible. So there there are no
solutions in Case 5.

Case 6. Assume u,v are both odd and the 2-adic order of u + v is odd.
We will show that in this case, one of the following holds:

(a) (2,%)=(9,9) or (16,16),

(b) (X,%') = (m?,1), for some integer m satisfying the equations m? + 1 = 2n?
and (m? — 8)Y?2 =1+ 872 for some integers n,Y, Z,
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(c) (%,%') = (5m?2,5), for some integer m satisfying the equations m? +1 = 10n?
and (5m? — 8)Y? =5 + 872 for some integers n,Y, Z.

As z is an integer, from Equation (92) we can write 235 = f(u + v)f(u)w?.
Note v divides X, so v divides w?, and hence f(v)s(v) divides w. Thus, setting
w = f(v)s(v)w' we may write 22 = f(u + v)f(u)f(v)vw?. Then Equation (91)
gives

Flu+v)f(u)fvw(wf(u)y? - 16) = 16(=* + vf(u)y?). (151)

)
Thus vf(u) divides 1622, so f(v)s(v)f(u) divides z, say z = f(v)s(v)f(u)z’. So
Inequality (90) gives vy’ > s(u)f(v)s(v)f(u)z’ and hence

s()y' > flu)s(u)?, (152)

and Equation (151) gives

flu+ ) fo)w?(vf(u)y™ —16) = 16(f(v) f(u)2" + y). (153)

Hence, f(v) divides y'. Let ¢y = f(v)y”. Then Inequality (152) gives f(v)s(v)y” >
f(u)s(u)z’ and so
vf()y" > uf(u)z?, (154)

and Equation (153) gives
Flu+v)w(f(v) f(u)y™ —16) = 16(f (u)2" + f(v)y"?). (155)
Note that from the left-hand side of Equation (155), we have
vf2(v) f(u)y"? > 16. (156)
Furthermore, Inequality (154) and Equation (155) give
uf(u+v)w?(vf?(v) f(u)y"™ —16) < 16(v +u) f(v)y".
Hence,

/2

16 1 1 16
S o) (Uf<u)f(v)+vf(v)f(u)>(1+vf2(v)f(u)y”2—16> (157)

and consequently, as f(u +v) > 2,

wih<s <Uf(u1)f(v) * vf<v§f<u>) (1 T 16) - U5

Remark 29. As the 2-adic order of u + v is odd, one has

flw)+ flv)=u+v=2 (mod 4).
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Lemma 40. The following conditions hold.
(a) flu) <23.
(b) flv) <7
(¢) Ify” > 1, then f(u) < 11.

Proof. (a). If f(u) > 23, then as f(u) is square-free, f(u) > 29, so for all y”’ > 1,
Inequality (158) gives

1 1 16 240
”
4= 1 =—x<1
v <8<292 +29> ( +29—16) 377 <
which is a contradiction.
(b). If f(v) > 7, then as f(v) is square-free, f(v) > 11, and Inequality (158)

gives
1 1 16 1056
12 - 7 —
we <8 (121 - 11) <1+ 113 — 16) 315 <
which is a contradiction.
(c). If y” > 2 and f(u) > 13, then Inequality (158) gives

w?es( ==Y (10— )2y
132 13 13-4—-16/ 117 '

which is a contradiction. O

Lemma 41. We have f(v) = 1.

Proof. By Lemma 40(b), f(v) < 7. First suppose f(v) = 7. Then by Remark 29,
f(u) =3 (mod 4), and in particular, f(u) > 3 and so u > 3. Then Inequality (158)
gives

1 1 16 560
12
8| —=+=—] (1 = 1
s (49~3+7~9)< +73-316) 3039

which is a contradiction. So f(v) <5.

Now, suppose that f(v) = 5. Then by Remark 29, f(u) =1 (mod 4). Suppose
for the moment that f(u) > 1. Then as u,v are relatively prime and v is divisible
by 5, we have f(u) > 13. So Inequality (158) gives

W <8 (ot ) (14 =y
132.5 ' 52.13 5-13-16/) 20917 ~
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which is a contradiction. So f(u) = 1. Hence, u is an odd square. Suppose for the
moment that u > 1. Then u > 9 and Inequality (158) gives

1 1 16 560
/2
<8l—+ 5|1+ =) =— <1,
v (9-5+52><+53—16> 081
which is a contradiction. So u = 1. Notice that as f(v) = 5 we have v = 5m? for
some odd m and so u +v = 1 + 5m?. In particular, f(u + v) # 2 as otherwise

1+ 5m? = 2r? for some r. But this equation has no solution modulo 5. So, as the
2-adic order of u + v is odd, we have f(u+ v) > 6. Then Inequality (157) gives

w? <0 1+i 1+ 10 3
6 \5 52 55—-16/) 109 ~
which is a contradiction. So f(v) # 5.
Now, suppose that f(v) = 3. By Remark 29, f(u) = 3 (mod 4). So as u,v are
)

relatively prime, and as v is divisible by 3, we have f(u) # 3, so f(u) > 7. Then
Inequality (158) gives

1 1 16 240
12
LI Y - 1
v <8<72~3+32-7>< +33-7—16> 211 =

which is a contradiction. So f(v) = 1. O

Lemma 42. Ifv =1, then f(u) = 1.

Proof. Suppose v = 1. From Inequality (154) we have y” > f(u)z’ > 1. Thus from
Lemma 40(c) we have f(u) < 11. Moreover, as v = 1, we have f(u) =1 (mod 4),
by Remark 29. Thus, as f(u) is square-free, f(u) < 5. Suppose f(u) = 5. Then
from Inequality (154) we have y” > 52/ > 5. So y” > 6. Then Inequality (158)

gives
11 16 432
12
<8+ ) (14— ) =22 s
v (52+5>(+5~62—16> 205

So w’ = 1. Then Equation (155) gives f(u + v)(5y"? — 16) = 16(5z"% + y"?), so
(5f(u+v) —16)y"* = 8022 + 16 f (u + v) > 0.

So f(u+wv) > 16/5. Thus, as u + v is even and square-free, f(u + v) > 6. Hence,
Inequality (157) gives

P GRANRE Y UV U N
6 \52 5 5.-62—16/) 205 ’

which is a contradiction. So f(u) < 5 and since f(u) =1 (mod 4), we have f(u) =
1. O
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Lemma 43. Ifv =1, thenu=1 and v’ =3 or 4.

Proof. Suppose v = 1. By the previous lemma, f(u) = 1. Then Equation (155)
gives f(u + v)w?(y"? — 16) = 16(2"? + y""?), and so

(f(u+v)w? —16)y"* = 16(2" + f(u +v)w'?). (159)

From Inequality (156), we have y” > 4. Thus y” > 5. So Inequality (157) gives

1 16 16-25 /1
<16 -+1) (1 = —+1). 160
Jlutvpw™ <16 {5+ "% 16 9 \u (160)
In particular, as w’ > 1 and u > 1, this gives f(u+v) < 16'35'2 = 800 , 80 futv) <

88. Moreover, f(u + v) is even and square-free, and furthermore as u is an odd
square, say u = n?, and n?> +1 = f(u-+v)m?, where m = s(u+v), we have that —1
is a quadratic residue modulo f(u+ v). Hence, as f(u + v) is square-free, f(u + v)
cannot be divisible by a prime congruent to 3 modulo 4. It follows that the only
possible values of f(u + v) are:

2,10, 26, 34, 58, 74, 82.

Notice also that by Equation (159), we have f(u + v)w’?> > 16, so w’ > 2 for
flu+v) =10 and w’ > 3 for f(u+v) =2.

Let us assume for the moment that u > 1. So, as f(u) = 1, we have v > 9. Then
from Inequality (154), we have y"? > uz'? > 92’2, Moreover, Inequality (160) gives
flu+v) < 2825(1 4 1) = 24900 < 50, s0 f(u+v) < 34. For the resulting four cases
of f(u+ v) we have:

(a) If f(u+v) = 34, then Inequality (160) gives w'? < 1&25(1 4+ 1) = 2800 < 2,
so w’ = 1. Then Equation (159) gives 9y"? = 8(z'? 4 34), which is impossible
modulo 3.

(b) If f(u+wv) = 26, then Inequality (160) gives w'? < 22 (L4+1) = W < 2, s0
w’ = 1. Then Equation (159) gives 5y"? = 8(z'? + 26). So as y"? > 922, we
have 4522 < 8(2% +26); i.e., 2% < 825 50 2” < 2. But 5y"? = 8(z% 4 26)
has no integer solution for " when 2’ =1 or 2/ = 2.

(c) If f(u+v) =10, then Inequality (160) gives w'? < 1825(L 4 1) =490 < 5 50

w' < 2. But w’ > 2 for f(u+v) =10, as we observed above, so w’ = 2 Then
Equation (159) gives 3y""? = 2(z'? 4 40), which is impossible modulo 3.

(d) If f(u+v) = 2, then Inequality (160) gives w'? < 1822(3 + 1) = 2390
sow < 4. But w’ >3 for f(u+v) =2, as we observed above, so w’ = 3 or 4.

(i) If w' = 3, then Equation (159) gives y"? = 8(2"? 4+ 18). But then y"? >
92'? gives 22 < 8-18, so 2z’ < 11. But for none of these values does 32 =
8(2"? 4 18) have an integer solution for y”. So this case is impossible.



INTEGERS: 23 (2023) 97

(ii) If w’ = 4, then Equation (159) gives y""? = 2’2 4+ 32. But then y"? > 92’2
2 < 4, so 2 = 1. However then y"?> = 2’2 + 32 has no integer
solution for 4. So this case is also impossible.

gives z

We conclude from the above that w = 1. So f(u + v) = 2 and Inequality (160)
gives w'? < % = % < 45,80 w' < 6. But w’ > 3 for f(u+v) = 2, as we
observed above, so w’ = 3,4,5 or 6. We will now eliminate the possibilities that

w' =5 or 6.

(a) If w’ = 5, then Equation (159) gives 17y"? = 8(z'? + 50). From Inequal-
ity (154), y"? > uz"? > 2’2, So 92”2 < 8- 50 and hence 2" < 6. But for none

12

of these values does 17y"? = 8(2’2 + 50) have an integer solution for y”. So

this case is impossible.

(b) If w’ = 6, then Equation (159) gives 7y"? = 2(z’% + 72), which is impossible
modulo 7.

O

Lemma 44. Ifv > 1, thenu =1, w' =1 and either f(u+v) =2 or f(u+v) = 10.

m? say.
9,

Proof. By the previous lemma, f(v) = 1, so v is an odd square, v
1 then

Suppose m > 3. Note that f(u) = 1 (mod 4), by Remark 29. If f(u) >
Inequality (158) gives

11 16 112
/2
8= 4 — ) (14 —2 ) =12
s (52+5-9>< +9-5—16> 145 =

which is a contradiction. So f(u) < 5 and since f(u) =1 (mod 4), we have f(u) =
1.

First suppose that v = 9. Substituting v = 9, f(u) = 1 in Equation (155) gives
flu+v)w?(9y"? — 16) = 16(2"* + y""?), and so

(9f(u+ v)w? —16)y"* = 16(2"* + f(u +v)w').

From Inequality (156), we have 9y”2 > 16. Thus y” > 2. So Inequality (157) gives

1 1 16 16-9 /1 1
2 L.t — 4z
flu+v)w <16<u+9> (1+9~4—16) 5 (u+9>' (161)

Let us assume for the moment that v > 1. So, as f(u) = 1 and ged(u,v) = 1, we

have u > 25. Then w’ > 1 and Inequality (161) give f(u+v) < 1&2(L + 1) =

5 \25
54 < 50, as f(u+v) is even and square-free, f(u + v) = 2. Then we have

m? +9 = 2n? for some n. But considering this equation modulo 3, it follows
that n,m are both divisible by 3, contradicting the hypothesis that ged(u,v) = 1.
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So w = 1. Thus, f(u+v) = u+ v = 10. Furthermore, Inequality (161) gives

w'? < %(1 + %) = 1—56 < 4, so w' =1, as required.
Now, suppose that v > 9, so v > 25. As f(u) =1, so u,v are both odd squares.

First suppose that if u > 49. Then since v > 25, Inequality (157) gives

11 16 1184
216l —+—)(1 = 3.
Flutv)w= <16 | 7o+ 5 t %16 a1 =

So necessarily f(u + v) = 2 and w’ = 1. Then Equation (155) gives vy”? — 16 =
8(2"2 4+ y'"?), so as v is odd, y” is divisible by 4. But then Inequality (158) gives

11 16 74
12 o o e _
v <8<49+25>(1+25-42—16> a7 < b

which is a contradiction. Hence, ©v = 1,9 or 25. If u = 25, then since u,v are
relatively prime, we have v > 49 and thus Inequality (158) gives

1 1 16 592
2
<8|l—=—+4+—=](1 =— <1,
v (25+49>< +49—16> 825
which is a contradiction. Hence, u =1 or 9.

Suppose u = 9. Then u +v = 9+ m?, and if f(u +v) = 2, then u + v = 212,
for some r, and thus 9 + m? = 2r%2. Modulo 3 this would give m = 0 (mod 3),
contradicting the assumption that u,v are relatively prime. Hence, f(u + v) > 2.

In this case, using again the fact that u,v are relatively prime, we would have
f(u+v) > 10. Thus, if v > 49, then Inequality (157) would give

(LY (G, 1y s
10\9 49 49-16) 1485 =
which is a contradiction. Hence, v = 25. But in this case, f(u + v) = 34 and
Inequality (157) gives

w? < D (2o ) (14 o) =
34\9 25 25-16) 81

which is a contradiction. So u # 9.

Finally, suppose u = 1. Thus Equation (155) gives
fu+v)w?(vy" —16) = 16(2"2 + ). (162)

First suppose that v = 25. Then f(1+v) = 26. Note that if " > 1, then Inequality

(157) gives
16 /1 1 16 16
12
Sl R (N |
v <26(1+25>( +25~416> 51 =
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which is a contradiction. So y”” = 1. Then Inequality (157) gives

w2 < O L TN 16 ) 16y

26 \1 25 25—-16) 9 7

so w’ = 1. Substituting in Equation (162) gives 82"
solution. Hence, v > 25 and thus v > 49.

For v > 49, Inequality (158) gives

11 16 400
2

S+ —) (1 =<
v <8<1+49>(+49—16> 53 <1

so w’ < 3. Suppose for the moment that ¢y is odd. Then working modulo 4, as v is
odd and f(u+4wv) =2 (mod 4), we conclude from Equation (162) that w’ is even. So
w’' < 3 gives w’ = 2. Then Equation (162) gives f(u+v)(vy”? —16) = 4(2"2 +y'?),
and working modulo 4 again gives a contradiction. Thus y” is even, say y"’ = 2y"",

and Equation (162) gives

= 109, which has no integer

f(quU)w/Q(vy///Q o 4) — 4(2/2 +4y///2). (163)

As y" =2y > 2, Inequality (158) gives
1 1 16 80
12 _ _ _— = —
v <8<1+49)<1+49~4—16) g <%
so w' < 2.

Note that if f(u + v) > 18, then for y”” > 2, Inequality (157) would give

w2 (L Ly 10 )80y
18 \1 49 49.-4—-16) 81 ’

which is a contradiction. So as f(u+ v) is even and square-free, f(u + v) = 2,6,10
or 14. But w4+ v = 1 +m? and —1 is not a quadratic residue modulo 6 or 14. So
flu+v)=2o0r 10. If f(u+ v) = 10, then Inequality (157) gives

MR I CUVIL R LY
10\1 49 49.-4-16) 9 ’

so w’ = 1. We will show that one also has w’ = 1 when f(u+v) = 2. Indeed, suppose
f(u+v) =2 and w’ = 2. Then Equation (163) gives 2(vy”"? —4) = 2/ + 4y""%. As
f(u+v) =2, we have v = m? = 2n% — 1 for some n. So we have

2(2n2 o 3)y///2 8= 2

However, this equation has no solution for n, 3", 2/ modulo 64. So w’' = 1. O
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If v = 1, then from Lemma 43, v = 1 and w’ = 3 or 4. Then Equation (155)
gives w'?(y""? — 16) = 8(2"2 + y'?).

(a) If w’ = 3, then we have y”? = 8(2’? + 18). This equation has infinitely many
solutions. Here & = 1 f(u+v)f(u)vf(v)w? =9, and ' = . So this is one
of our desired solutions.

(b) If w’ = 4, then we have 32 = 2’? 4 32. This has two solutions (y” = 6,2’ = 2
and y” = 9,2 = 7). Here £ = 1 f(u+v)f(v)vf(v)w™ = 16, and ¥’ = . So
this is another one of our desired solutions.

If v > 1, then from Lemma 41, f(v) = 1 so v = m? for some odd m, and
from Lemma 44, v = 1, w’ = 1 and either f(u +v) = 2 or f(u + v) = 10. Then
Equation (155) gives (f(u + v)m? — 16)y”"? = 16f(u + v) + 162'2. Then as m is
odd and f(u + v) = 2 or 10, we have that y” is divisible by 4, say y” = 4Y. So
(flut+v)m?—16)Y? = f(u+v)+2"%. Working modulo 8 we see that Y is necessarily
odd and 22 = 0, so 2’ is divisible by 4, say 2’ =4Z. So we have

flutv)

(f(quv) :

5 m? —8)Y? =

+ 872 (164)

Furthermore, ¥ = 3 f(u + v) f(u)vf(v)w? = @m{ and X/ = 4% = f(“;”).
Thus when f(u+v) = 2, we have (%, %) = (m?,1). Furthermore, there exists n
such that

m? +1=2n? and (m? —8)Y? =1+822, (165)

where the latter equation comes from Equation (164). Similarly, when f(u+v) = 10,
there exists n such that

m? +1=10n? and (5m?* — 8)Y? =5+ 822, (166)

So these are the two desired families of solutions. This completes the proof of
Theorem 4.

Remark 30. Consider the integers m for which there exists n with m? 41 = 10n?,
as in (166). It is easy to see that m is necessarily divisible by 3. The numbers
m/3 are well known; see entry A097314 of [37]. The first eight values of m are:
3,117,4443,168717, 6406803, 243289797, 3079535161, 116941239519.

Remark 31. Suppose that in the case v = 1,v = m? at the end of the above
proof, we have a solution m,n,Y,Z to (165) or (166). From Equation (92), as
y=vy =y =4Y,andu+v=1+m?= f(u+v)n? and ¥ = wmawe have

o [OTEE TR

5 = f(u+v)mnY.
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Moreover, z = f(v)s(v)f(u)z’ = mz’ = 4mZ and from Definition 5, z = a+ b,y =
a—c,z=c—b.
For f(u+v) =2, we have = 2mnY and solving gives, using d =a+b — ¢,

a=(mn+2)Y +2mZ, b= (mn—2)Y —2mZ,
c=(mn—2)Y +2mZ, d=(mn+2)Y —2mZ.

Notice that as m < v/2n, we have £ = m? < dmn = SZ—J_H;. Hence, by Remark 18,
all such extangential LEQs (if any exist) are necessarily convex.
Similarly, for f(u + v) = 10, we have z = 10mnY and solving gives

a= (bmn+2)Y +2mZ, b= (bmn —2)Y —2mZ,
c= (bmn — 2)Y + 2mZ, d= (bmn+2)Y —2mZ.

Notice that as m < v/10n, we have ¥ = 5m? < 20mn = 8;%12. Hence, by Re-
mark 18, all such extangential LEQs are necessarily convex.

Remark 32. Note that we now have all the ingredients for the proof of Corollary 3
from the introduction. The proof for the LEQs of Theorem 3 Parts (b) and (c)
are given in the previous remark. The proof for the LEQs of Theorem 3 Part
(a) were given in Subsection 3.3; see Remark 19 and the analysis of LEQs with
(2,T) = (18,50).

Remark 33. We mention that in the case m = 3 of (166), the equation (5m? —
8)Y?2 = 5+ 872 gives 37Y?2 = 5 + 872, which is equivalent to Equation (83) in
Subsection 3.3; the connection is given by setting W = 111Y + 527.

Example 5. We now exhibit an extangential LEQ corresponding to the case m =
117 of (166). This is the case n = 37 in Theorem 3(b). According to [6], the
smallest solution to (5- 1172 —8)Y2 =5+ 822 is

Y = 34884218483995340806373, Z = 3226483779786979759026161.
The formulas from Remark 31 give

a = 1510135881993200406047678005, b = 1936178957897460209165,
¢ = 1509996345119264424684452513, d = 141473052893878823434657.

Let

A = (640848245491383541211578005, 1367415046112187810865469000),
B = (640849067137238673279485480, 1367416799305572965277883040),
C = (60036158873125939312368, 128102631990427959679265).
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It is easy to verify that the points O, A, B, C form the vertices of an extangential
LEQ with side lengths a,b, ¢, d as given above (see the explanation below). This
LEQ has (£,7) = (5-1172,5+5- 1172). Note that the perimeter is a + b+ c+d =
3.0-10%7.

Let us briefly explain how the above vertices were determined. First factor a
and note that each prime factor is congruent to 1 modulo 4. Then for each factor
a of a, consider all ways of writing o as a sum of two squares: a = of + a3,
where a1 > ag > 0, and using the Pythagorean formula, consider the points A, =
2(af —a3,2a100) and A}, = £ (20109, aF — 3). Let P, denote the union over o of
all the sets {A,, A% }. Similarly, construct Py, P. and Py. Then search for members
Sa,Sp, Se, Sq in P, Py, P., Py, respectively, such that S, + 5, = S. + 54, and set
A=S5,,B=S5,+5,,C =S5, By construction, the resulting quadrilateral OABC
has side lengths a,b,c,d. The extangential condition, a + b = ¢ + d, is verified
directly from the above values of a, b, ¢,d. Finally, check that

det[Sq, Sp] > 0 and det[S,, Sq] > 0,

which shows that OABC is positively oriented and has no self-intersection, and
check that the equability condition is satisfied, i.e.,

1
a+b+ct+d= §(det[5’a, Sp] + det[Se, Sq))-

3.6. Comments on the Open Problem

In this subsection we make some comments on the Open Problem stated in the Intro-
duction. Suppose we have integers m,n, Y, Z such that the following two equations
hold:

m? =2n? -1, (167)
(m? —8)Y? =1+822% (168)

For convenience, set M = m? — 8. We first make some elementary observations:

1. From Equation (167), m is odd. Then working modulo 4, as m? = 2n? — 1
and m odd, n is also odd, and hence from Equation (168), Y and M are also
odd.

2. Working modulo 3, 2n? — 1 = 1. So from Equation (167), m is not divisible
by 3. Thus m? = 1, so from Equation (167) again, n is not divisible by 3.
Hence, M = 2. Thus, from Equation (168), Y is necessarily divisible by 3,
and Z is not divisible by 3.

3. Working modulo 7, the quadratic residues are 0,1,2 and 4. So 2n? —11is 0, %1
or 3. So as m? = 2n? — 1, we conclude that m? is 0 or 1. Then M = —1 or 0.
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i i Factorization of M; = 49u? — 8 Factors mod 8
0 1 41 1

1 199 23-239-353 771

2 39401 79-103-599-15607 7777

3 7801199 47-6771937-9369319 717

4 1544598001 41-45245801-63018038201 1-1-1

5 | 305822602999 41-71-239-424577-865087-17934071 1.7.7.1.7.7

6 | 60551330795801 | 223-2297-37223-302663-3553471-8761009 717771

Table 10: The first 7 solutions to m? = 2n? — 1 with m =0 (mod 7).

But if M = 0 then Equation (168) gives Z? = —1, which is impossible. So m
is divisible by 7.

4. The prime divisors of m? — 8 are all congruent to 1 modulo 8. Indeed, suppose
p is a prime divisor of m?—8. Then 8 = m? (mod p). But it is well known that
8 is a quadratic residue modulo an odd prime p if and only if p is congruent to
1 or 7 modulo 8. So p is congruent to 1 or 7 modulo 8. But by Equation (168),
p is also a prime divisor of 1 4+ 822, so —2 = (4Z)? (mod p). But it is well
known that —2 is a quadratic residue modulo an odd prime p if and only if p
is congruent to 1 or 3 modulo 8. Hence, p is congruent to 1 modulo 8.

Let m = 2r + 1. Then m? = 2n? — 1 gives 47 +4r +2 =2n2 sor’ + (r+1)? =
n2. So the solutions (m,n) to Equation (167) correspond to Pythagorean triangles
(r,r + 1,n) whose base and height differ by 1. These triangles are well known; see
entry A001652 of [37]. In particular, it is well known that the solutions rg, 71, 72, . . .
satisfy r; = 6r;_1 — r;_o + 2 with 7g = 0,71 = 3. Let us denote the corresponding
values of m by m; = 2r; + 1. So m; = 6m;_1 — m;_s with mg =1,m; = 7. As we
saw in observation 3 above, we are only interested in values of m that are divisible

by 7. Note that modulo 7, m; = —m;—_1 — m;—2, SO0 M;41 = —M; — Mi—] = My_2.
So, as mg = 1,m; = 0, my = —1, we are only interested in the values mji3;. Set
Wi = %mHgi. The sequence g, pi1, pi2, - - - is also well known; see entry A097732

of [37]. In particular, it is known to satisfy the relation p; = 198u;_1 — p;—2, with
Mo = 1,[11 = 199.

Table 10 shows the first 7 values of u; and the prime divisors of the corresponding
values of M; = 49u? — 8. Notice that only for uo = 1 and uy = 1544598001 is every
prime divisor of M; congruent to 1 modulo 8, as required by Observation 4 above.
So the other cases of Table 10 cannot be solutions to Equation (168).

Notice that for MY? =1+ 822 we have 2MY? = X2 4+ 2, for X = 4Z. By [30,
Theorem 5], 2MY? = X2 + 2 has no solution if the continued fraction expansion of
V/2M has odd period length. In fact, this is the case for m = Tug = 7 (M = 41); the
continued fraction expansion of v/82 is 9,18, which has odd period length £(1/82) =
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1. This shows that for m = 7, Equation (168) has no solutions. Another proof that
Equation (168) has no solutions for m = 7 is given by using [40, Theorem 8] or [43].
According to these results, MY? — 2W?2 = 1 has no solution if R? — 2MS? = —1
has a solution. And in fact, for M =41 (m = 7), R? —2M S? = —1 has the solution
R=9,5=1.

From Table 10, we see that the next potential solution would be for m = Tuy.
Here, already, the numbers are very large, and we have been unable to determine
the continued fraction expansion of v/2Mj. To see that there are no solutions for
m = Tuy, we require a deeper result, due to Wei. As we observed above, if we have
a solution M,Y, Z to Equation (168), then 2MY? = X2 + 2, where X = 4Z.

Proposition 11 ([41, Prop. 4.4]). Suppose that M = pips...p;, where p; = 1
(mod 8) for each i. If the equation 2MY? = X2 + 2 has an integer solution X,Y,

then ‘
1)
1(2) -1
i=1 Di 4

where (%)4 denotes the quartic residue symbol (see [27, Chap. 5]).

Recall that (), = £1 and (1)%)4 = 2(pi=1/4 (mod p;). From Table 10, we
have My = p1paps, where p; = 41, py = 45245801, p3 = 63018038201. Calculations
show that (%)4 = —1 for ¢« = 1,2,3. Hence, by Wei’s Proposition, there are no
solutions to Equation (168) for m = 7.

In fact, calculations show that for 7 < ¢ < 155, M; has a prime divisor congru-
ent to 7 modulo 8, so these cases also cannot be solutions to Equation (168). In
establishing this, the only difficulty is in factorizing M;. Once a factor congruent
to 7 modulo 8 has been found, it is easy to verify that it is indeed a factor. To
substantiate our claim, for each ¢ with 7 < ¢ < 155 we exhibit an explicit prime
divisor of M; congruent to 7 modulo 8. Consider the following set of 62 primes
congruent to 7 modulo 8:

P ={23,47,71,79,103,167, 191, 223, 239, 263, 311, 359, 431,479, 607, 719, 887,
983,1031,1103,1279,1399, 1487, 1511, 1823, 1879, 2671, 2767, 3271, 3559, 4903,
4943, 6823, 7583, 8231, 23447, 39551, 53527, 72559, 153511, 167911, 255511,
625111, 869951, 1471271, 2593399, 10808983, 13980671, 39556927, 108732031,
125448527, 160812623, 209110079, 627025159, 9707524087, 181155438071,
291814585319, 3072313317767, 15238519898992991, 39834495682679591,
15327739968951498750119, 110095018941508669324502008759}.
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Now, consider the set

R ={40,9,1,4,21,1,6,5,4,15,19,55,2,1,10,9, 1,48,11,2,50,4,9,8,1,41,9,1,
13,4,34,22,14,9,4,1,9,59,1,61,9,5,2,9, 56,26, 1,4,43,1,9, 32,16, 46, 9, 4, 33,
1,2,58,1,9,6,5,9,2,17,27,1,28,54,1,7,4,18,5,49,15,9,1,5,2, 1,29, 20,9, 4, 37,
2,6,1,30,5,1,4,36,9,5,44,4,60,1,10,3,1,62,9,4,39,5,8,2,1,9,5,1,23,9, 24,
51,4,57,11,1,9,4,1,2,38,31,35,5,42,4,1,52,53,1,3,45,47,9,12, 5,25, 1,4, 8,1},

and let r; denote the i-th member of R. The enthusiastic reader will easily verify
that for each 1 <14 < 149, the r;-th member of P is a divisor of M, ¢.

It follows from the above that the smallest possible value of m for which there
could potentially be a solution to Equations (167) and (168) would have m > Tujs6.
We do not know if there is a solution for m = 7u156. In particular, we have been
unable to find any factors of Mjsg, which is unsurprising as Myse = 1.8 - 10718,

Remark 34. Note that if a solution to Equations (167) and (168) exists, and there
is an extangential LEQ corresponding to case (c) of Theorem 3, with sides a, b, ¢, d,
then by Remark 31, its perimeter would be

2(a + b) = 4mnY > 4mn > 2v/2m?.

In particular, if there is an extangential LEQ corresponding to m = Tuy56, then the
perimeter would be at least 5.0 - 10718,
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