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Abstract

A lattice equable quadrilateral is a quadrilateral in the plane whose vertices lie on
the integer lattice and which is equable in the sense that its area equals its perime-
ter. This paper treats the tangential and extangential cases. We show that up to
Euclidean motions, there are only 6 convex tangential lattice equable quadrilater-
als, while the concave ones are arranged in 7 infinite families, each being given by
a well known Diophantine equation of order 2 in 3 variables. On the other hand,
apart from the kites, up to Euclidean motions there is only one concave extangential
lattice equable quadrilateral, while there are infinitely many convex ones.

1. Introduction

A lattice equable quadrilateral (LEQ for short) is a quadrilateral whose vertices lie

on the integer lattice Z2 and which is equable in the sense that its area equals

its perimeter. This paper is a continuation of the work [3], which treated lattice

equable parallelograms, and [4], which treated lattice equable kites, trapezoids and

cyclic quadrilaterals, but this paper can be read independently of the previous two.

Here we examine convex and concave LEQs that are either tangential, i.e., their

sides or extended sides are tangent to an incircle, or extangential, i.e., their sides or

extended sides are tangent to an excircle.

Before stating our main results, let us make some general remarks about the

importance and occurrence of tangential and extangential LEQs, up to Euclidean

motions. Remarkably, tangential and extangential LEQs apparently constitute a
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large component of the overall set of LEQs. For example, apart from parallelo-

grams and trapezoids, we know of only one convex LEQ that is neither tangential

nor extangential. This is the LEQ with vertices (0, 0), (2, 0), (8, 8), (8, 15) and side

lengths 2, 10, 7, 17. There seem to be significantly more tangential LEQs than ex-

tangential LEQs, within a ball of any given radius of sufficient size. The tangential

LEQs are mainly concave; indeed, as we show in Corollary 1, there are only 6

convex tangential LEQs. The extangential LEQs are mainly convex; we show in

Corollary 3 that there is only one concave non-kite extangential LEQ. Kites which

are not parallelograms are both tangential and extangential, and they are the only

LEQs with this property.

Consider a tangential LEQ OABC whose sides OA,AB,BC,CO have length

a, b, c, d, respectively, which therefore are integers [3, Remark 2]. The key to our

results on tangential LEQs is the observation that a certain pair of functions of the

side lengths take a very restricted range of possible values. The functions are as

follows.

Definition 1. For a tangential LEQ OABC, let

σ =
ad+ bc+ 2δ

√
abcd− 4(a+ c)2

16 + (a− b)2
, τ =

ab+ cd− 2δ
√
abcd− 4(a+ c)2

16 + (a− d)2
,

where δ = 1 if B lies within the circumcircle of the triangle OAC, and δ = −1

otherwise.

In fact, as we show in Subsection 2.3, the functions σ and τ can only take the

seven possible values 2, 3, 5, 9, 9/8, 5/4, 3/2, and moreover 1
σ + 1

τ = 1. In particular,

in each case at least one of σ, τ is an integer and belongs to {2, 3, 5, 9}.
For each of the seven possibilities for the pair (σ, τ), we show that the side lengths

satisfy a certain corresponding Diophantine equation, and conversely, solutions to

the equation, along with some auxiliary conditions, lead to the existence of a corre-

sponding tangential LEQ. There is a certain redundancy both in the statement of

the seven results and their proofs, so we have been at pains to present the results

in as compact a form as possible. The statements of the resulting theorem and its

converse are rather cumbersome, but considerable saving is attained in the long run.

Before stating the results, note that for a tangential LEQ OABC with successive

side lengths a, b, c, d, we see in Remark 9 that by making a reflection if necessary,

we may assume that a and c are even in the case σ = τ = 2. Our classification

result for tangential LEQs is then as follows.

Theorem 1. Suppose that OABC is a tangential LEQ with vertices O,A,B,C in

positive cyclic order and successive side lengths a, b, c, d, respectively. Suppose also

that if OABC is concave, then its reflex angle is at B. Without loss of generality

we also assume that a and c are even in the case σ = τ = 2. Then the following

conditions hold:
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(i) |c− b|τ < a+ c, (ii) (a+ d)τ > a+ c, (iii) (b+ c)τ 6= a+ c.

Moreover, OABC is convex if and only if (b+ c)τ > a+ c. Furthermore, there are

two cases:

(a) If τ ∈ {2, 3, 5, 9}, then a, τb have the same parity and setting u = τb−a
2 , v =

τb+a
2 , we have

(2τ)2 + u2 = v2 −
(
v − τ − 1

2
c

)2

. (1)

(b) If σ ∈ {3, 5, 9}, then a, σd have the same parity and setting u = σd−a
2 , v =

σd+a
2 , we have

(2σ)2 + u2 = v2 −
(
v − σ − 1

2
c

)2

. (2)

We now state the converse result.

Theorem 2. Let x ∈ {2, 3, 5, 9} and suppose we have an integer solution (u, v, c)

of the Diophantine equation

(2x)2 + u2 = v2 −
(
v − x− 1

2
c

)2

(3)

for which u+ v ≡ 0 (mod x) and c > 0, and further that c is even when x = 2 and

that c is not divisible by 3 if x = 3. Then we have the following.

(a) Let t = x, a = v − u, b = (v + u)/t, d = a + c − b, and suppose the following

conditions hold:

(i) |c− b|t < a+ c, (ii) (a+ d)t > a+ c, (iii) (b+ c)t 6= a+ c.

Then there is a tangential LEQ OABC with successive side lengths a, b, c, d for

which (σ, τ) = ( t
t−1 , t).

(b) Let s = x, a = v − u, d = (v + u)/s, b = a + c − d and suppose that the above

conditions (i) – (iii) hold for t = s
s−1 and that b > 0. Then there is a tangential

LEQ OABC with successive side lengths a, b, c, d for which (σ, τ) = (s, t).

Furthermore, in both of the above cases, if OABC is concave, then the reflex angle

is at B.

Corollary 1. Up to Euclidean motions, there are only six convex tangential LEQs:

• the 4× 4 square,

• the isosceles trapezoid of side lengths 5, 2, 5, 8,
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• the right trapezoid of side lengths 5, 3, 4, 6,

• the equable rhombus of side length 5,

• the equable kite of side lengths 3 and 15,

• the LEQ with vertices (0, 0), (40, 9), (36, 12), (35, 12), and side lengths 37, 1, 5,

41.

Corollary 2. The incenter of a tangential LEQ is an integer lattice point in the

cases where σ, τ ∈ {2, 3, 5, 5/4, 3/2}.

Examples where σ, τ ∈ {9, 9/8} and the incenter is not an integer lattice point

are given in Example 1.

We now turn to our results on extangential LEQs. Consider an extangential LEQ

OABC whose sides OA,AB,BC,CO have length a, b, c, d, respectively. We intro-

duce functions analogous to those of Definition 1. More precisely, it is convenient

to define functions Σ, T analogous to 8σ, 8τ , as follows.

Definition 2. For an extangential LEQ OABC, let

Σ = 8 ·
ad+ bc+ 2δ

√
abcd− 4(a+ b)2

16 + (a− c)2
,

T = 8(a+ b)2 ·
ab+ cd+ 2δ

√
abcd− 4(a+ b)2

16(a+ b)2 + (a− c)2(a− d)2
,

where δ = 1 if B lies within the circumcircle of the triangle OAC, and δ = −1

otherwise.

The functions Σ, T are not constrained to take only a finite number of possible

values, as was the case with σ, τ . So the study of extangential LEQs is somewhat

more complicated than that of tangential LEQs. Our main result is as follows.

Theorem 3. If a non-kite extangential LEQ OABC has successive side lengths

a, b, c, d, then Σ, T are integers and one of the following holds:

(a) (Σ, T ) = (9, 18) or (18, 50),

(b) (Σ, T ) = (5m2, 5m2 + 5) for some integer m for which there exists integers

n, Y, Z such that m2 − 10n2 = −1 and (5m2 − 8)Y 2 = 5 + 8Z2.

(c) (Σ, T ) = (m2,m2+1) for some integer m for which there exists integers n, Y, Z

such that m2 − 2n2 = −1 and (m2 − 8)Y 2 = 1 + 8Z2.

The situation concerning case (a) of the above theorem is very satisfactory. We

examine the two possibilities for (Σ, T ) in Subsection 3.3, and study the corre-

sponding extangential LEQs up to Euclidean motions. We explicitly classify all
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LEQs with (Σ, T ) = (9, 18); there is a single infinite family corresponding to solu-

tions of the negative Pell equation x2 − 2y2 = −1. For (Σ, T ) = (18, 50), we prove

that there is precisely one extangential LEQ; this isolated example has side lengths

(a, b, c, d) = (13, 2, 5, 10) and is shown on the right of Figure 10.

We do not give a complete classification for case (b) of the above theorem. How-

ever, in Subsection 3.3 we consider m = 3, which is the smallest value of m for which

m2−10n2 = −1 has a solution. Here (Σ, T ) = (45, 50), and we give explicit formulas

for infinitely many such LEQs. The side lengths of the first three members of this

family are given in Table 5. One sees that the lengths grow very rapidly. The next

possible value of m is m = 117; see Remark 30. Here (Σ, T ) = (5 ·1172, 5 ·1172 +5).

In Example 5, we exhibit the smallest possible extangential LEQ with this (Σ, T )

pair; it has perimeter ∼= 3 · 1027.

We do not know if there are any LEQs satisfying condition (c) of the above

theorem.

Open Problem. Does there exist an integer solution (m,n) of the negative Pell

equation m2−2n2 = −1, for which the Diophantine equation (m2−8)Y 2 = 1+8Z2

has an integer solution for (Y,Z).

Even if there were such a solution, it would still be necessary to prove that there

are lattice vertices that realize the corresponding side lengths. We show at the very

end of the paper that if there is an extangential LEQ corresponding to case (c) of

Theorem 3, then its perimeter is at least 10718.

As a consequence of our study, we have the following.

Corollary 3. Up to Euclidean motions, there is only one concave non-kite extan-

gential LEQ; it is the LEQ with vertices (0, 0), (12, 5), (10, 5), (6, 8) and side lengths

(13, 2, 5, 10).

Theorem 3 is proved by reducing it to the following number theoretic result.

Theorem 4. Let y, z, k ∈ N with k > 16 and k > yz. Suppose that the numbers

Σ :=
8(z2 + k)

k − 16
, Σ′ :=

y2Σ

k
and x :=

√
k(Σ + Σ′)

8

are all integers. Then either

(a) (Σ,Σ′) = (9, 9), (12, 24), (16, 16), (24, 12), (10, 40), (40, 10) or (18, 32),

(b) (Σ,Σ′) = (5m2, 5) for some integer m for which there exists integers n, Y, Z

such that m2 − 10n2 = −1 and (5m2 − 8)Y 2 = 5 + 8Z2,

(c) (Σ,Σ′) = (m2, 1) for some integer m for which there exists integers n, Y, Z

such that m2 − 2n2 = −1 and (m2 − 8)Y 2 = 1 + 8Z2.
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The proof of this theorem is established by writing the ratio Σ′

Σ as u
v , with

gcd(u, v) = 1, and considering the 6 cases according to whether the pair (u, v) is

respectively (odd,even), (odd,odd), or (even,odd), and whether the 2-adic order of

the even number (respectively v, u+ v or u) is even or odd. Each of the six cases is

conducted by a series of contradiction arguments.

The paper is organized in two Sections. Section 2 covers tangential LEQs. Sub-

section 2.1 develops some general results true for all tangential quadrilaterals. Sub-

section 2.2 gives explicit examples: we present calculations of the incenters of LEQs

that are kites, and we give an infinite nested family of non-dart concave tangential

LEQs. Subsection 2.3 gives a series of lemmas on tangential LEQs leading to the

definition of the key functions σ and τ , and their properties. In Subsection 2.4 we

give the proof of Theorem 1 and Corollary 1. Subsection 2.5 is the most substantial

part of Section 2. Here we prove Theorem 2 and Corollary 2. The final subsection

of Section 2, Subsection 2.6, gives more examples. In particular, we show that there

are infinitely many LEQs for each of the seven possible choices of (σ, τ).

Section 3 treats extangential LEQs. Subsections 3.1 and 3.2 follow the general

plan adopted in Subsections 2.1 and 2.3 of Section 2; Subsection 3.1 presents some

general results for all extangential quadrilaterals, and Subsection 3.2 gives a series

of lemmas leading to the definition of the functions Σ and T , and their properties.

Subsection 3.3 treats extangential LEQs in the cases where (Σ, T ) = (9, 18), (18, 50)

and (45, 50). Subsection 3.4 shows how Theorem 3 can be deduced from Theorem 4.

Subsection 3.5 is the longest subsection in the paper; here we prove Theorem 4.

This subsection also contains the proof of Corollary 3, see Remark 32. Finally, in

Subsection 3.6 we discuss the Open Problem presented above.

We will use the following notation. In this paper, a quadrilateral OABC is

defined by four vertices O,A,B,C, no three of which are colinear, such that the

line segments OA,AB,BC,CO have no interior points of intersection; that is, our

quadrilaterals have no self-intersections. We always write the vertices O,A,B,C in

positive (counterclockwise) cyclic order, and if O,A,B,C is concave, then the la-

belling is chosen so that the reflex angle is at B. We use the notation K(OABC) for

area and P (OABC) for perimeter. Throughout this paper, for ease of expression, we

often simply write K for K(OABC), and P for P (OABC), and we abbreviate the

triangle areas K(COA),K(OAB),K(ABC),K(BCO) as KO,KA,KB ,KC , respec-

tively. We denote the lengths of the sides OA,AB,BC,CO by the letters a, b, c, d,

respectively. The lengths of the diagonals OB,AC are denoted p, q, respectively;

see Figure 1. We use vector notation, such as
−−→
AB. But we use the same symbol,

A say, for the vertex A and its position vector
−→
OA. Finally, by Euclidean motions,

we mean both the orientation preserving and orientation reversing kinds; that is,

we consider the group generated by translations, rotations and reflections. In this

paper, we employ the term positive in the strict sense. So N = {n ∈ Z | n > 0}.
We used Mathematica and Maple for many of the calculations and algebraic
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manipulations in this paper. The factorizations of large numbers conducted at

the end of the paper were performed using Dario Alpern’s integer factorization

calculator [5]. We remark that Alpern has a very nice continued fraction calculator,

and a quadratic Diophantine equation solver that we also found useful [6].

O

A

B

C

d

a

b

c

p

q

KA θ

Figure 1: Illustration of some of the notation used.

2. Tangential Quadrilaterals

2.1. Basic Notions for Tangential LEQs

It is well known and easy to see that a triangle is equable if and only if its incir-

cle has radius 2. A quadrilateral that has an incircle is said to be tangential, or

circumscriptible [29, 18, 23, 26]. Obviously, a tangential quadrilateral is equable if

and only if its incircle has radius 2. Pitot’s theorem says that a quadrilateral with

successive side lengths a, b, c, d is tangential if and only if the following equation

holds:

a+ c = b+ d (4)

(see [36], [10, p. 62–64] and [25]). While Pitot’s Theorem is usually stated only for

convex quadrilaterals, it also holds in the concave case. Indeed, consider a concave

quadrilateral OABC with reflex angle at B. Let A′ denote the point of intersection

of the side OA and the extension of side BC. Similarly, let C ′ denote the point of

intersection of the side OC and the extension of side AB. Let a, b, c, d denote the

lengths of OA,AB,BC,CO, respectively, and similarly, let a′, b′, c′, d′ denote the

lengths of OA′, A′B,BC ′, C ′O. Then it is easy to see that Equation (4) holds if

and only if a′ + c′ = b′ + d′; see [10, Problem 2.62]. That is, OABC is tangential if

and only if OA′BC ′ is tangential.

Figure 2 gives an example of a concave tangential LEQ. Note that, as this example

shows, for a concave tangential LEQ OABC, while the associated convex tangential

quadrilateral OA′BC ′ is equable, it may fail to have integer sides or have its vertices

on lattice points.
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1

2

3
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O

AA′

B

C
C ′

Figure 2: A concave tangential LEQ with side lengths 16,5,2,13.

For the rest of this subsection, OABC denotes a tangential (convex or concave)

quadrilateral, with vertices in counterclockwise cyclic order, and a, b, c, d denote the

lengths of the sides OA,AB,BC,CO, respectively.

Proposition 1. If OABC is tangential, then OABC is a kite if and only if one of

the diagonals divides OABC into two triangles of equal area.

Proof. Obviously, if OABC is a kite, then its axis of symmetry diagonals divides

OABC into two triangles of equal area. Conversely, as the triangle OAB has side

lengths a, b, p, Heron’s formula [33, Chap. 6.7] for the area gives

KA =
√
s(s− a)(s− b)(s− p),

where s = a+b+p
2 is the semi-perimeter. Hence,

16K2
A = (a+ b+ p)(a+ b− p)(a− b+ p)(−a+ b+ p)

= −(a2 − b2)2 + 2(a2 + b2)p2 − p4.

Similarly, from triangle OBC, we have 16K2
C = −(c2 − d2)2 + 2(c2 + d2)p2 − p4.

Hence, subtracting,

2(a2 − d2 + b2 − c2)p2 = 16(K2
A −K2

C) + (a2 − b2)2 − (c2 − d2)2. (5)

Notice that

a2 − d2 + b2 − c2 = (a− d)(a+ d) + (b− c)(b+ c)

= (a− d)(a+ d+ b+ c) = 2(a+ c)(a− d),

and

(a2 − b2)2 − (c2 − d2)2 = (a− b)2(a+ b)2 − (d− c)2(c+ d)2

= (a− b)2(a+ b+ c+ d)(a+ b− c− d) = 4(a− d)(a+ c)(a− b)2.
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So Equation (5) gives

(a+ c)(a− d)p2 = 4(K2
A −K2

C) + (a− d)(a+ c)(a− b)2. (6)

Now, assume that KA = KC . Then Equation (6) gives (a− d)p2 = (a− d)(a− b)2.

Notice that p = ±(a − b) is impossible, as otherwise the triangle OAB would be

degenerate. Hence, a = d. Moreover, as KA = KC , the points A,C are equidistant

from the line through O,B. So the triangles OAB and OBC are congruent, and

hence OABC is a kite. Clearly, by considering triangles OAC and BCA, the same

argument would hold if KO = KB .

It is well known that the incenter I of a convex tangential quadrilateral lies on

the Newton line NL, which is the line passing through the midpoints of the two

diagonals; see [8, Chap. 7.5], [9, Chap. 2.7] and [13]. This is also true for concave

tangential quadrilaterals, because the midpoints of the three diagonals of a complete

quadrilateral are colinear (see [39] for 23 proofs of this fact). Let MA,MO denote

the midpoint of the diagonals AC, OB, respectively; see Figures 3 and 4. Notice

that MA,MO are distinct, and the Newton line unambiguously defined, if and only

if OABC is not a parallelogram.

O A

B

C

I

MA
MO

Figure 3: The Newton line of a convex tangential quadrilateral.

O A

B

C

I

MA

MO

Figure 4: The Newton line of a concave tangential quadrilateral.
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Proposition 2. If OABC is tangential and is not a parallelogram, then OABC is

a kite if and only if the Newton line NL contains one of the diagonals.

Proof. It is obvious that if OABC is a kite, then NL is the axis of symmetry of

OABC and hence contains a diagonal. Conversely, suppose NL coincides with one

of the diagonals, say OB. As MA ∈ NL, we have K(OAMA) = K(COMA) and

K(ABMA) = K(BCMA), and hence

KA = K(OAMA) +K(ABMA) = K(COMA) +K(BCMA) = KC .

Thus the diagonal OB divides OABC into two triangles of equal area. Then OABC

is a kite by Proposition 1.

Remark 1. For further equivalent conditions for a tangential quadrilateral to be

a kite, see [19].

The radius r of the incircle, called the inradius, is given by the following obvious

formula:

r =
K

a+ c
.

We will be mainly interested in the equable case, where r = 2, but in this subsection

we consider the general case as it provides a useful comparison for results on the

exradius of extangential quadrilaterals, which we will consider below in Section 3.

Proposition 3. If OABC is tangential, we have the following two expressions for

the incenter I:

(a) I =
r

2

aC + dA

KO
, (b) I = A+

r

2

a(B −A)− bA
KA

.

Proof. Suppose A,C have coordinates (a1, a2), (c1, c2), respectively, let I = (i1, i2)

be the incenter. Considering the area of triangle AIO, we have ra = a1i2 − a2i1.

Similarly, from the area of triangle COI, we have rc = −c1i2 + c2i1. Hence,

r

(
a
c

)
=

(
−a2 a1

c2 −c1

)(
i1
i2

)
, and so

(
i1
i2

)
=

r

a1c2 − a2c1

(
c1 a1

c2 a2

)(
a
c

)
.

That is, I = r
2
aC+dA
KO

, which is expression (a) in the statement of the proposition.

Similarly, by considering triangles BIA and OAI we obtain (b).

Note that the above proposition holds in both convex and concave cases, but in

the latter case, with a reflex angle at B for example, the signed area KB is negative.

For more on the incenter of tangential quadrilaterals, see [7].

Proposition 4. For a tangential equable quadrilateral OABC, one has

(KA − (a+ b))(KO − (a+ d)) = bd− ac.
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Proof. Equating the two expressions for I from the above proposition, with r = 2,

and taking the vector cross product by C on the right, gives

d = KO +
a(KC −KO)− bKO

KA
,

so KOKA − dKA + aKC − (a+ b)KO = 0. Thus, as KC = 2(a+ c)−KA, we have

KOKA − (a + d)KA − (a + b)KO + 2a(a + c) = 0. The required identity is then

obtained by factorizing, using the fact that 2a(a + c) = (a + b)(a + d) − (bd − ac)
since a+ c = b+ d.

Since the incenter I lies on Newton line, I is of the form λMA + (1 − λ)MO,

for some λ ∈ [0, 1]. The following result will use the fact that for a (arbitrary)

quadrilateral OABC, one has the following elementary vector equation:

KO B = KC A+KA C. (7)

This equation is proved in [1], as an application of the vector triple product (a

generalization to higher dimensions is given in [2]). Alternately, one can simply

notice that the vector products A×(KC A+KA C−KO B) and B×(KC A+KA C−
KO B) are both zero, so Equation (7) follows as A,B are linearly independent in

our case.

Proposition 5. If OABC is tangential but is neither a parallelogram nor a kite,

we have the following two expressions for the coordinate λ:

(a) λ =
r(a− b)

2KO − r(a+ c)
, (b) λ = 1− r(b− c)

2KA − r(a+ c)
.

Furthermore, if OABC is a kite, then the first of the above expressions for λ holds

if OABC is not a rhombus and we relabel the vertices if necessary so that OB is

the axis of symmetry.

Proof. By definition, I = λMA + (1 − λ)MO = λA+C
2 + (1 − λ)B2 , so using Equa-

tion (7) to eliminate B, we have

I =
λKO + (1− λ)KC

2KO
A+

λKO + (1− λ)KA

2KO
C.

Comparing with Proposition 3(a) gives rd = λKO + (1 − λ)KC and ra = λKO +

(1− λ)KA, so

λ(KO −KC) = rd−KC (8)

λ(KO −KA) = ra−KA. (9)

Adding Equation (9) to Equation (8) and using KA+KC = r(a+ c) gives λ(2KO−
r(a + c)) = r(d − c). If OABC is not a kite, then by Proposition 1, KO 6= KB , so
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Family Equation M B In,i λn,i
K1 n2 − 5i2 = 4 1

2 (n+ 5i)(2, 1) n(2, 1) n+i
2 (2, 1) 1/5

K2 n2 − 5i2 = 1 (2n+ 5i)(2, 1) 4n(2, 1) 2(n+ 2i)(2, 1) 4/5
K3 n2 − 2i2 = 1 (n+ 2i)(2, 2) 4n(1, 1) 2(n+ i)(1, 1) 1/2
K4 2n2 − i2 = 1 (4n+ 3i)( 3

2 ,
3
2 ) 12n(1, 1) 2(3n+ 2i)(1, 1) 8/9

Table 1: The four families of kites.

2KO 6= r(a+ c). If OABC is a kite but not a rhombus, and we relabel the vertices

if necessary so that OB is the axis of symmetry, then once again 2KO 6= r(a + c).

In either case,

λ =
r(d− c)

2KO − r(a+ c)
=

r(a− b)
2KO − r(a+ c)

,

as required.

Subtracting Equation (9) from Equation (8) gives λ(KA−KC) = r(d−a)+KA−
KC . If OABC is not a kite, then once again 2KO 6= r(a+ c) by Proposition 1, so

λ = 1 +
r(d− a)

KA −KC
= 1− 2(b− c)

2KA − r(a+ c)
.

Remark 2. As we mentioned above, it is well known that for a tangential quadri-

lateral OABC, its incenter I lies on the Newton line. It is less commonly mentioned

that I lies between MA and MO; that is, it lies on the closed line segment between

MA and MO. This can be proved by an easy geometric argument. We will not

require this fact, though for equable tangential quadrilaterals, it follows from the

above proposition and Remark 7 below.

2.2. Examples of Tangential LEQs

Of course, the lattice equable kites are tangential. For each of the four families

K1 − K4 of [4, Theorem 1] we use Propositions 3 and 5 to compute the incenter

In,i and the parameter λn,i for which In,i = λn,iM + (1− λn,i)B2 , where M = MA.

We omit the details, which are completely routine. The results are given in Table 1.

Notice that in family K1, n + i is even. Hence, In,i is a lattice point for all the

families.

We will now exhibit an infinite nested family of non-dart concave tangential

LEQs. Let (ui, vi) be the i-th solution to the Pell equation u2 − 3v2 = 1, with

initial solution (u1, v1) = (2, 1). From the standard theory of Pell equations, one

has the recurrences:

ui+1 = 2ui + 3vi, vi+1 = ui + 2vi. (10)
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ui vi Ai B Ai+1 ai bi ci di
2 1 (8,6) (8,0) (18,24) 10 6 26 30
7 4 (18,24) (8,0) (56,90) 30 26 102 106
26 15 (56,90) (8,0) (198,336) 106 102 386 390
97 56 (198,336) (8,0) (728,1254) 390 386 1446 1450

Table 2: The first four members of the tangential family.

Let Ai denote the point with coordinates (xi, yi) = (2ui + 4, 6vi), and let B be the

point (8, 0). We will consider the lattice quadrilateral OAiBAi+1. To verify that

OAiBAi+1 has no self-intersection, it suffices to calculate the vector cross products−−→
OAi ×

−−−−→
OAi+1 and

−−−−→
BAi+1 ×

−−→
BAi, using the recurrence relations (10), and see that

they are both positive. We leave the details to the reader.

Let the lengths of the segments OAi, AiB,BAi+1, Ai+1O be denoted ai, bi, ci, di,

respectively. We have

a2
i = x2

i + y2
i = 4u2

i + 16ui + 16 + 36v2
i = 16u2

i + 16ui + 4 = (4ui + 2)2.

So ai = 4ui + 2 and di = ai+1. Similarly, the distance bi is given by

b2i = (2ui − 4)2 + (6vi)
2 = 4u2

i − 16ui + 16 + 36v2
i = 16u2

i − 16ui + 4 = (4ui − 2)2.

So bi = 4ui − 2 and ci = bi+1. Thus OAiBAi+1 is tangential because

ai − bi + ci − dj = (4ui + 2)− (4ui − 2) + (4ui+1 − 2)− (4ui+1 + 2) = 0.

The perimeter P (OAiBAi+1) of OAiBAi+1 is ai+ bi+ ci+dj = 8(ui+ui+1), while

the area K(OAiBAi+1) of OAiBAi+1 is 4(yi+1 − yi) = 24(vi+1 − vi). Hence, using

the recurrence relations (10),

K(OAiBAi+1)− P (OAiBAi+1) = 24(vi+1 − vi)− 8(ui + ui+1)

= 24(ui + vi)− 8(3ui + 3vi) = 0.

So OAiBAi+1 is a LEQ. The vertices and side lengths of the first four members of

this family are given in Table 2. The first two members of the family are shown in

Figure 5.

By Proposition 3(b), the incenter Ii of OAiBAi+1 is calculated to be:

Ii = Ai +
(4ui + 2)(B −Ai)− (4ui − 2)A

K(AiBO)

= (4 + 2ui + 2vi, 2ui + 6vi) = Ai + (2vi, 2ui),

using u2
i = 1 + 3v2

i . In particular, the incenters Ii are all lattice points. From
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O B

Figure 5: The first two members of the family.

Proposition 5, for Ii = λiMO + (1− λi)MAiAi+1
, one has

λi =
4

K(OAiAi+1)− ((4ui + 2) + (4ui+1 − 2))

=
4

6(1 + 2ui + 2vi)− ((4ui + 2) + 4(2ui + 3vi − 2))
=

1

3
.

In particular, the family members all have the same value of the parameter λi. The

Newton line for the first member of the family is shown (dotted) in Figure 6.

2.3. Lemmata for Tangential LEQs

For this subsection, OABC denotes an equable tangential quadrilateral. In par-

ticular, it has inradius r = 2. Let θ denote the interior angle of OABC at

A; see Figure 1. By the cosine rule, p2 = a2 + b2 − 2ab cos θ. As |ab cos θ| =√
a2b2 − a2b2 sin2 θ =

√
a2b2 − 4K2

A, so

p2 = a2 + b2 ± 2
√
a2b2 − (2KA)2, (11)

where the sign of the square root depends on whether θ is acute or obtuse. Similarly,

q2 = a2 + d2 ± 2
√
a2d2 − (2KO)2. (12)

The distances p, q may fail to be integers (see [4, Theorem 4]), but as O,A,B,C are

lattice points, p2, q2 are integers. So the following lemma is immediate from Equa-

tions (11) and (12), and does not require the equability or tangential hypothesis.

Lemma 1. The integers a2b2 − (2KA)2 and a2d2 − (2KO)2 are squares.



INTEGERS: 23 (2023) 15

2 4 6 8 10 12 14 16 18

2

4

6

8

10

12

14

16

18

20

22

24

A1

B

A2

I

MO

MA1A2

O

Figure 6: First member of the family.

Lemma 2. If OABC is not a kite, one has

p2 =
8(KA −KC)

a− d
+ (a− b)2 and q2 =

8(KO −KB)

a− b
+ (a− d)2.

Furthermore, if OABC is a kite with OB as its axis of symmetry, and if OABC is

not a rhombus, then the above formula for q2 still applies and one has the following

formula for p2:

p2 =
2(a+ c)2(a− b)
KO −KB

.

Proof. Arguing exactly as in Proposition 1 we reobtain Equation (6):

(a+ c)(a− d)p2 = 4(K2
A −K2

C) + (a− d)(a+ c)(a− b)2.

If a = d, then by the tangential hypothesis, b = c, so OABC is a kite. Thus, if

OABC is not a kite, a 6= d and we have

p2 = 4(K2
A −K2

C) + (a− b)2.

Then as K2
A −K2

C = (KA +KC)(KA −KC) = 2(a+ c)(KA −KC), from which the

required formula for p2 follows. Similarly, the formula for q2 is obtained by applying

Heron’s formula to triangles OAC and BCA.

If OABC is a kite with OB as its axis of symmetry, and is not a rhombus,

then a = d, b = c and a 6= b, and the argument giving the formula for q2 remains



INTEGERS: 23 (2023) 16

valid. For p2, we use the standard formula for the area of a kite: pq = 2K. So

p2 = 16(a+ c)2/q2 = 2(a+c)2(a−b)
KO−KB

, as required.

Remark 3. If OABC is not a kite, then from the above lemma, using Equa-

tion (11),

8(KA − (a+ c))

a− d
=
p2 − (a− b)2

2
= ab±

√
a2b2 − (2KA)2,

which is an integer by Lemma 1. Similarly, 8(KO−(a+c))
a−b is an integer. If OABC is

a kite with OB as its axis of symmetry, and if OABC is not a rhombus, then by

the same reasoning, 8(KO−(a+c))
a−b is again an integer.

At this point we pause to explain the investigation we are about to perform.

The integers 8(KA−(a+c))
a−d and 8(KO−(a+c))

a−b , defined above for non-kites, will play a

key role in what follows. Using Proposition 5 (or Proposition 4) one could easily

directly show that these integers obey an important relation: their product is 8 times

their sum (see Lemma 5 below). This enables us to show that these integers are

restricted to a small set of possibilities (see Lemma 6 below). However, we will follow

a somewhat more circuitous route to this result. We proceed by developing results

that will lead to the functions σ, τ of Definition 1, given in the Introduction, which

hold for all tangential LEQs (kites as well as non-kites). This enables us to then

progress in a more natural manner, without having to appeal to the classification

of kites in [3]. Although it involves some unpleasant computations, this pathway

forward also has the advantage that it reveals certain important relations that will

be useful in what follows.

Lemma 3. The integer abcd− 4(a+ c)2 is a square, and

KA = (a+ c) + (a− d)
ab+ cd± 2

√
abcd− 4(a+ c)2

16 + (a− d)2

KO = (a+ c) + (a− b)
ad+ bc∓ 2

√
abcd− 4(a+ c)2

16 + (a− b)2
,

where the signs of the square roots in the formulas for KO and KA are opposite.

Remark 4. In the statement of the above lemma, the terms

ab+ cd± 2
√
abcd− 4(a+ c)2 and ad+ bc∓ 2

√
abcd− 4(a+ c)2

are positive. Indeed, using d = a− b+ c, by the arithmetic mean–geometric mean

inequality, ab+ cd ≥ 2
√
abcd >

√
abcd− 4(a+ c)2. In particular, KA < a+ c if and

only if a < d.
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Proof of Lemma 3. The formulas for KA and KO obviously hold when OABC is a

rhombus. So, without loss of generality, we may assume that either OABC is not

a kite, or is a kite that is not a rhombus and has axis of symmetry OB. Then from

Lemma 2 and Equation (12),

4(KO −KB)

a− b
− ad =

q2 − a2 − d2

2
= ±

√
a2d2 − (2KO)2

so squaring, using KO +KB = 2(a+ c) and rearranging gives

16(KO − (a+ c))2 − 4ad(a− b)(KO − (a+ c)) = −(a− b)2K2
O.

Let s := KO−(a+c)
a−b . Thus

16s2 + ((a− b)s+ (a+ c))2 = 4ads. (13)

Hence, αs2 + 2βs+ γ = 0, where, using a+ c = b+ d,

α = 16 + (a− b)2, β = −(ad+ cb), γ = (a+ c)2.

Thus, as β2 − αγ = 4(abcd− 4(a+ c)2) (using a+ c = b+ d again), we have

s =
ad+ cb± 2

√
abcd− 4(a+ c)2

16 + (a− b)2
,

which gives the required formula for KO. In particular, as s is rational, abcd−4(a+

c)2 is a square, as claimed. The formula for KA is similarly obtained by equating

p2 from Lemma 2 and Equation (11).

It remains to see that the signs of the square roots in the formulas for KO and

KA are opposite. Let R = 2
√
abcd− 4(a+ c)2. Obviously, we may assume that

R 6= 0. Let us write

KA = (a+ c) + (a− d)
ab+ cd+ δAR

16 + (a− d)2

KO = (a+ c) + (a− b)ad+ bc+ δOR

16 + (a− b)2
,

where δA, δO are each ±1. Using a+ c = b+ d,

KA − (a+ b) = (d− a) + (a− d)
ab+ cd+ δAR

16 + (a− d)2
= (d− a)

16− (ac+ bd) + δAR

16 + (a− d)2

KO − (a+ d) = (b− a) + (a− b)ad+ bc+ δOR

16 + (a− b)2
= (b− a)

16− (ac+ bd) + δOR

16 + (a− b)2
.

Notice also that (d− a)(b− a) = bd− ac. Hence, by Proposition 4,

16− (ac+ bd) + δAR

16 + (a− d)2
· 16− (ac+ bd) + δOR

16 + (a− b)2
= 1. (14)
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Now,

16− (ac+ bd) + δAR

16 + (a− d)2
· 16− (ac+ bd)− δAR

16 + (a− b)2

=
(16− (ac+ bd))2 −R2

(16 + (a− d)2)(16 + (a− b)2
=

(16− (ac+ bd))2 − 4(abcd− 4(a+ c)2)

(16 + (a− d)2)(16 + (a− b)2)
,

and substituting d = a + c − b one finds that this expression reduces to 1. Hence,

if δO = δA, Equation (14) gives

16− (ac+ bd) + δAR

16 + (a− d)2
· 2δAR

16 + (a− b)2
= 0,

which can only happen if 16− (ac+ bd) + δAR = 0, as R 6= 0. But in that case, one

would have (16− (ac+ bd))2 = R2, which is impossible, since we have already seen

that substituting d = a+ c− b one has

(16− (ac+ bd))2 −R2 = (16 + (a− d)2)(16 + (a− b)2) > 0.

So δO = −δA, as claimed.

A tangential quadrilateral is cyclic if and only if its area is given by K =
√
abcd

[20, Theorem 4]. Hence, the integer abcd−4(a+c)2 in the above proposition is zero

if and only if OABC is cyclic. This motivates the following result.

Lemma 4. The sign of the square root in the formulas for KO is positive if and

only if B lies within the circumcircle of the triangle OAC; in particular, the sign

for KO is positive if OABC is concave.

Proof. In the notation of the above proof, let x = δO2
√
abcd− 4(a+ c)2, so

KO = (a+ c) + (a− b) ad+ bc+ x

16 + (a− b)2

KA = (a+ c) + (a− d)
ab+ cd− x

16 + (a− d)2
.

From a standard criterion for a point to be within the circumcircle of a triangle (see

[16]), B is inside the circumcircle of the triangle OAC if and only if

p2KO < d2KA + a2KC . (15)

First suppose that OABC is not a kite. Now, d2KA + a2KC = KA(d2 − a2) +

2a2(a+ c), and by Lemma 2,

KOp
2 = KO

(
16(KA − (a+ c))

a− d
+ (a− b)2

)
.
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Also, by Proposition 4, KOKA = (a+d)KA+(a+b)KO−2a(a+c). So Inequality (15)

can be written as E > 0 where

E = KA(d2 − a2) + 2a2(a+ c)

−
(

16((a+ d)KA + (a+ b)KO − 2a(a+ c)− (a+ c)KO)

a− d
+ (a− b)2KO

)
.

Substituting the formulas for KO and KA, one has

E =(d2 − a2)

(
a+ c+

(a− d)(ab+ cd− x)

16 + (a− d)2

)
+ 2a2(a+ c)

− 16

a− d

(
(a+ d)

(
a+ c+

(a− d)(ab+ cd− x)

16 + (a− d)2

)
− 2a(a+ c)

+(b− c)
(
a+ c+

(a− b)(bc+ ad+ x)

16 + (a− b)2

))
− (a− b)2

(
a+ c+

(a− b)(bc+ ad+ x)

16 + (a− b)2

)
.

Substituting d = a + c − b one finds that the above expression reduces (rather

miraculously) to E = (a + c)x. Hence, as claimed, x > 0 if and only if B is inside

the circumcircle of the triangle OAC.

Now, consider the case where OABC is a kite with axis of symmetry OB. Then

a = d, b = c,KA = KC = a + c and Inequality (15) is: p2KO < 2a2(a + c). By

Lemma 2, p2 = 2(a+c)2(a−c)
KO−KB

= (a+c)2(a−c)
KO−(a+c) . So the required condition is E > 0,

where

E =
2a2(KO − (a+ c))

(a+ c)(a− c)
−KO =

(a2 + c2)KO − 2a2(a+ c)

a2 − c2
.

Substituting for KO, and using d = a, b = c, one finds that the above expression

reduces to

E =
−16(a+ c)2 + 4a2c2 + x(a2 + c2)

(a+ c)(16 + (a− c)2)
.

Notice that the denominator of E is positive, and in the numerator, −16(a+ c)2 +

4a2c2 = x2, so the numerator is x(a2 + c2 + x). Now, a2 + c2 + x > 0 since

(a2 + c2)2−x2 = (a2− c2)2 + 16(a+ c)2 > 0. Hence, x > 0 if and only if B is inside

the circumcircle of the triangle OAC.

From this point on, we employ the functions σ, τ given in Definition 1 of the

Introduction.

Remark 5. From Definition 1 and Lemmas 3 and 4,

KO = a+ c+ (a− b)σ, (16)

KA = a+ c+ (b− c)τ. (17)
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Remark 6. By Lemma 3, Lemma 4, and Proposition 5, if OABC is a tangential

LEQ that is not a rhombus, then λ = 1
σ .

Remark 7. By Remark 4, σ and τ are both positive.

Remark 8. We saw in the proof of Lemma 3, in Equation (13), that for a 6= b, one

has, using a+ c = b+ d,

16σ2 + ((d− c)σ + (a+ c))2 = 4adσ. (18)

It is easy to verify directly that this equation also holds when a = b. Similarly, the

following equation holds in all cases:

16τ2 + ((b− c)τ + (a+ c))2 = 4abτ. (19)

Remark 9. Suppose σ = τ = 2. Then Equation (18) gives

16 · 22 + (2(d− c) + (a+ c))2 = 8ad.

In particular, (2(d− c) + (a+ c))2 is divisible by 8, and hence, being a square, it is

divisible by 16. In particular, a+ c is even. Furthermore ad must be even. Hence,

by a reflection in the line y = x if necessary, we may assume that a is even. Then

as a+ c is even, c is also even.

Suppose τ = 3. Then Equation (19) gives

16 · 32 + (a+ 3b− 2c)2 = 12ab.

In particular, a + 3b − 2c is even so a and 3b have the same parity, and we can

pose (3b − a)/2 = u and (3b + a)/2 = v. This gives 36 + (u + a − c)2 = 3ab, so

36 + (u + c)2 = 3ab − a2 − 2ua + 4uc + 2ac = 6bc. Hence, u + c is divisible by 3,

say u+ c = 3k, so bc is divisible by 3. But 4 + k2 is not divisible by 3, so bc is not

divisible by 9. Thus precisely one of the numbers b, c is divisible by 3. Hence, by a

reflection in the line y = x if necessary, we may assume that c is not divisible by 3,

and that b is divisible by 3. By the same reasoning, for σ = 3, we may assume that

c is not divisible by 3, and that d is divisible by 3.

Lemma 5. For σ, τ as defined in Definition 1, one has σ + τ = στ .

Proof. As in the proof of Lemma 4, let x = 2δ
√
abcd− 4(a+ c)2. Then cross-

multiplying, the required identity is E = 0, where

E = (ad+bc+x)(16+(a−d)2)−(ab+cd−x)(16+(a−b)2)−(ad+bc+x)(ab+cd−x).

Expanding and using d = a+ c− b, one has

E = x2 + 4(4a2 + 8ac− a2bc+ ab2c+ 4c2 − abc2).

Then replacing x2 by 4(abcd− 4(a+ c)2) and using d = a+ c− b again gives E = 0,

as required.
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Remark 10. Observe that 8σ and 8τ are integers. Indeed, if OABC is not a kite,

then from Lemma 3,

8σ =
8(KO − (a+ c))

a− b
, 8τ =

8(KA − (a+ c))

a− d
,

which are integers by Remark 3. If OABC is a kite but not a rhombus, with for

example, axis of symmetry OB so a = d, b = c, then σ is still given by the above

formula and is an integer by Remark 3, while 8τ = ac− δ
√
a2c2 − 4(a+ c)2, which

is an integer by Lemma 3. In fact, if OABC is a kite that is not a rhombus,

then by [4, Theorem 1], OABC appears in Table 2, at the beginning of Subsec-

tion 2.2. Its λ value is thus either 1/5, 4/5, 1/2 or 8/9, and so here (σ, τ) is either

(5, 5/4), (5/4, 5), (2, 2) or (9/8, 9), respectively, by Remark 6. If OABC is a rhom-

bus, then by [4, Corollary 1], OABC is either the 4 × 4 square or the equable

rhombus of side length 5. Furthermore, 8σ and 8τ are a2 ±
√
a4 − 16a2, which are

also integers by Lemma 3. For the 4 × 4 square, this gives (σ, τ) = (2, 2). For

the rhombus of side length 5, if one chooses OB to be the longest diagonal, then

(σ, τ) = (5
4 , 5), while if OB is the shortest diagonal, then (σ, τ) = (5, 5

4 ).

Lemma 6. For σ, τ as defined in Definition 1, the only possibilities for the un-

ordered pairs {σ, τ} are {9, 9
8}, {5,

5
4}, {3,

3
2} and {2, 2}.

Proof. By Remarks 7 and 10, σ′ = 8σ, τ ′ = 8τ are positive integers and by Lemma 5,

σ′τ ′ = 8(σ′ + τ ′) which can be written as

(σ′ − 8)(τ ′ − 8) = 26.

The only positive integer solutions of the above equation are then

{σ′, τ ′} ∈ {{9, 72}, {10, 40}, {12, 24}, {16, 16}},

giving the result announced.

As mentioned in Remark 6, if OABC is a tangential LEQ that is not a rhombus,

then λ = 1
σ . So Lemma 6 has the following corollary.

Corollary 4. There are only seven possibilities for the barycentric coordinate pa-

rameter λ, namely 1
2 ,

1
3 ,

2
3 ,

1
5 ,

4
5 ,

1
9 ,

8
9 , corresponding to σ = 2, 3, 3

2 , 5,
5
4 , 9,

9
8 , respec-

tively.

Remark 11. Consider a reflection in the line y = x, followed by a relabelling of the

vertices so they are positively oriented; that is, the vertices O,A,B,C are permuted

to O,C,B,A, respectively. It is easy to see that under this operation, σ and τ are

left unchanged, and the side lengths a, b, c, d are permuted to d, c, b, a, respectively.

Notice that for convex tangential LEQs (where we are not concerned about having

the reflex angle at B), under the rotation for which the vertices O,A,B,C are
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permuted to A,B,C,O, respectively, σ and τ are interchanged, and the side lengths

a, b, c, d are permuted to d, a, b, c, respectively. So, for the study of convex tangential

LEQs, up to Euclidean motions, we may assume that σ ≤ τ ; that is, τ ∈ {2, 3, 5, 9}.
Notice also for convex tangential LEQs, under the rotation for which the vertices

O,A,B,C are permuted to B,C,O,A, respectively, σ and τ are also left unchanged,

and the side lengths a, b, c, d are permuted to c, d, a, b, respectively. Note that the

two permutations σ1 : (a, b, c, d) 7→ (d, c, b, a) and σ2 : (a, b, c, d) 7→ (c, d, a, b) are

involutions and their compositions give the Klein group Z/2Z×Z/2Z, under which

each letter can be moved to any of the four positions. So, for example, without

changing σ and τ , we may assume in the convex case that b is the smallest of the

side lengths. Note however that when σ = τ = 2, this potentially conflicts with the

requirement in Theorem 1 (and in the proof of Corollary 1 which uses Theorem 1)

that we also require a and c to be even. As we saw in Remark 9, a+ c and ad are

even when σ = τ = 2. So by reflection we may suppose that a, c are even. Then by

applying σ2 if necessary, we may assume that b ≤ d.

In summary, for convex tangential LEQs we may assume the following:

(a) τ ∈ {2, 3, 5, 9},

(b) a, c are even and b ≤ d when τ = 2,

(c) b is the smallest of the side lengths when τ ∈ {3, 5, 9}.

2.4. Proof of Theorem 1 and Corollary 1

Proof of Theorem 1. Lemma 6 gives 7 possibilities for the ordered pair (σ, τ). Using
1
τ + 1

σ = 1 and a+ c = b+ d, let us restate Equations (17) and (16):

KA = a+ c+ (b− c)τ, (20)

KO = a+ c+ (a− b) τ

τ − 1
. (21)

We now consider the area restrictions:

• As KA > 0, Equation (20) gives a+ c+ (b− c)τ > 0, which gives part of (i).

• As KC > 0 and KC = 2(a+ c)−KA, Equation (20) gives a+ c− (b− c)τ > 0,

which gives the other part of (i).

• As KO > 0, Equation (21) gives (a+ c)(τ − 1) + (a− b)τ > 0, which gives (ii).

• We also have KB 6= 0 as otherwise ABC would be colinear. Thus KO 6=
2(a+ c) and Equation (21) gives (a− b) τ

τ−1 6= a+ c, which gives (iii).

Further, OABC is convex if and only if KO < 2(a+ c). As we have just seen, this

occurs when (a− b) τ
τ−1 < a+ c; that is, when (b+ c)τ > a+ c.
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Recall that from Remark 8,

16τ2 + ((b− c)τ + (a+ c))2 = 4abτ, (22)

16σ2 + ((d− c)σ + (a+ c))2 = 4adσ. (23)

(a). If τ ∈ {2, 3, 5, 9}, then Equation (22) gives 16τ2 +(τb+a−(τ−1)c)2 = 4τab.

So τb + a − (τ − 1)c is even. If τ = 2, then a, τb have the same parity since a is

even by assumption. If τ ∈ {3, 5, 9}, then (τ − 1)c is even, so a, τb again have the

same parity. Thus v = τb+a
2 is an integer, and we have (2τ)2 + (v − τ−1

2 c)2 = τab.

Then since τab = v2 − u2, we have Equation (1) as required.

(b). This case is completely analogous to case (a). Let σ ∈ {3, 5, 9}; then

Equation (23) gives 16σ2+(σd+a−(σ−1)c)2 = 4σab. So σd+a is even and v = σd+a
2

is an integer. We have (2σ)2 + (v − σ−1
2 c)2 = σad. Then since σad = v2 − u2, we

have Equation (2) as required.

Proof of Corollary 1. We use the notation of Theorem 1. By Remark 11, we may

assume that τ ∈ {2, 3, 5, 9}, that a, c are even and b ≤ d when τ = 2, and that b is

the smallest of the side lengths when τ ∈ {3, 5, 9}.
As in the statement of Theorem 1, let u = τb−a

2 , v = τb+a
2 . Rewriting Condi-

tion (i) of Theorem 1, we have

(τ − 1)c < 2v, (24)

2u < (τ + 1)c, (25)

and the convexity condition is

2u > −c(τ − 1). (26)

So by Inequalities (25) and (26), we have − τ−1
2 c < u < τ+1

2 c. When τ = 2, as

b ≤ d, we have 2b ≤ b+d = a+c, so u ≤ 1
2c. When τ ∈ {3, 5, 9}, as b is the smallest

of the side lengths, we have τb ≤ (τ − 1)c+ a, so u = (τb− a)/2 ≤ τ−1
2 c. Thus, in

all cases, we have

− τ − 1

2
c < u ≤ τ − 1

2
c. (27)

Assume τ = 2. By Inequality (27), we have u2 ≤ 1
4c

2. Thus by Theorem 1,

16 + u2 = v2 − (v − 1
2c)

2 gives

16 +
1

4
c2 ≥ 16 + u2 = vc− 1

4
c2,

from which it follows that

32 ≥ c(2v − c). (28)

From Inequality (24), we have 2v > c. So Inequality (28) has only a finite number

of solutions. Indeed, one finds readily there are just 20 such pairs c, v with c even
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and 2v > c for which Inequality (28) holds. For only three of these pairs does the

equation 16 + u2 = v2 − (v − 1
2c)

2 have an integer solution for u with u + v even;

these are (c, v, u) = (4, 2, 6), (2, 1, 9), (8, 4, 6), corresponding to the sides (a, b, c, d) =

(4, 4, 4, 4), (8, 5, 2, 5), (2, 5, 8, 5), respectively. The last two cases correspond to the

same LEQ, up to Euclidean motion.

Assume τ = 3. By Inequality (27), we have −c < u ≤ c. So 36+u2 = v2−(v−c)2

gives 36 + c2 ≥ 36 + u2 = 2vc− c2, from which it follows that

18 ≥ c(v − c). (29)

By Inequality (24), we have v > c, so c, v − c ∈ {1, . . . , 18}. One finds there are

just 58 pairs c, v with v > c for which Inequality (29) holds. Of these, there is only

one where the equation 16 + u2 = v2 − (v − c)2 has an integer solution u for which

v + u ≡ 0 (mod 3), and such that for the resulting side lengths (a, b, c, d), one has

b = min{a, b, c, d}; this is the case (c, v, u) = (4, 7, 2), corresponding to the sides

(a, b, c, d) = (5, 3, 4, 6).

Assume τ = 5. By Inequality (27), we have −2c < u ≤ 2c. So 100 + u2 =

v2 − (v − 2c)2 gives 100 + 4c2 ≥ 100 + u2 = 4vc− 4c2, from which it follows that

25 ≥ c(v − 2c). (30)

By Inequality (24), we have v > 2c, so c, v − 2c ∈ {1, . . . , 25}. One finds there

are just 86 pairs c, v with v > 2c for which Inequality (30) holds. Of these, one

finds there is only one where the equation 100 + u2 = v2 − (v − 2c)2 has an integer

solution u for which (v + u)/5 is an integer, and such that for the resulting side

lengths (a, b, c, d), one has b = min{a, b, c, d}; this is the case (c, v, u) = (5, 15, 10),

corresponding to the sides (a, b, c, d) = (5, 5, 5, 5).

Assume τ = 9. By Inequality (27), we have −4c < u ≤ 4c. So 324 + u2 =

v2 − (v − 4c)2 gives 324 + 16c2 ≥ 324 + u2 = 8vc− 16c2, from which it follows that

41 ≥ c(v − 4c). (31)

By Inequality (24), we have v > 4c, so c, v − 4c ∈ {1, . . . , 41}. One finds there

are 979 pairs c, v with v > 4c for which Inequality (31) holds. Of these, one finds

there are only two where the equation 324 + u2 = v2 − (v − 4c)2 has an integer

solution u for which (v + u)/9 is an integer, and such that for the resulting side

lengths (a, b, c, d), one has b = min{a, b, c, d}; these are the cases (c, v, u) = (3, 21, 6)

and (5, 23, 1), corresponding respectively to the sides (a, b, c, d) = (15, 3, 3, 15) and

(37, 1, 5, 41).

This completes the proof of the corollary.

2.5. Proof of Theorem 2

We follow the general strategy used in [42], but in our case we employ a slightly

different solution form for the Diophantine equations that appear in the statement
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of Theorem 2.

Lemma 7. Suppose z2 +w2 +u2 = v2 for integers u, v, w, z and that the prime de-

composition of gcd(u, v, w, z) contains no term ρk where ρ is congruent to 3 modulo

4 and k is odd. Then there are integers p, q,m, n such that

v − u = p2 + q2, v + u = m2 + n2, w = pm+ qn, z = pn− qm.

Numbers u, v, w, z for which z2 + w2 + u2 = v2 are said to form a Pythagorean

quadruple, and of course their study has a long history; see [35]. The above lemma

is essentially equivalent to a classical result which says that if z2 +w2 +u2 = v2 for

integers u, v, w, z with gcd(u, v, w, z) = 1, then supposing z, w are even, there are

integers p, q,m, n such that

v − u = 2(p2 + q2), v + u = 2(m2 + n2), w = 2(pm+ qn), z = 2(pn− qm).

This result, sometimes attributed to V. A. Lebesgue, is proved in many places; see

[12, pp. 28-37], [15], [31, p.14] and [38]. We require the slightly stronger formulation

of Lemma 7, which is readily deduced from the treatment given in [14, Section II].

We will also make use of a certain elementary fact which we give in the following

lemma. For convenience, let us make a definition.

Definition 3. We say that a positive integer k has the lattice preservation property,

or is a lattice preserver, if for every lattice point X for which 1
kX has integer length,

the point 1
kX is also a lattice point.

For example, it is easy to see that 2 and 3 are lattice preservers. Notice that

the set of lattice preservers is closed under multiplication. Hence, for example, 4

and 6 are lattice preservers. Recall that a hypotenuse number is a positive integer

that occurs as the length of the hypotenuse of some Pythagorean triangle. It is

well known that hypotenuse numbers are those numbers that have a prime factor

congruent to 1 modulo 4 [32].

Lemma 8. A positive integer k is a lattice preserver if and only if k is not a

hypotenuse number. So k is a lattice preserver if and only if k has no prime factor

congruent to 1 modulo 4.

Proof. If k is a hypotenuse number, say k2 = x2+y2, then 1
k (x, y) has length 1 but it

is not a lattice point. So hypotenuse numbers are not lattice preservers. Conversely,

if k is not a lattice preserver (so k > 2), then there exists a lattice point (x, y) such

that (x, y)/k has integer length, a say, but is not a lattice point. We may assume

without loss of generality that gcd(x, y, k) = 1. We have x2 + y2 = k2a2. Write

x′2 + y′2 = k2a′2 where x′ = x/ gcd(x, y, a), etc. So gcd(x′, y′, ka′) = 1 and hence

x′, y′, ka′ is a primitive Pythagorean triple. So by [32, Theorem 3.20] for example,

all the odd prime factors of k are congruent to 1 modulo 4 and k is not divisible
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by 4. So as k > 2, we conclude that k has at least one prime factor congruent to 1

modulo 4 and so k is a hypotenuse number.

Recall that by Remark 9, when working with tangential LEQs we may suppose

without loss of generality that c is even when σ = τ = 2 and that c is not divisible

by 3 when σ or τ equals 3.

Proof of Theorem 2. (a). Suppose t ∈ {2, 3, 5, 9}. Notice that a + c = b + d and

so from hypothesis (i), (d − a)t > −(a + c). Adding hypothesis (ii) gives 2dt > 0,

so d > 0. Furthermore, Equation (3) gives (v + u)(v − u) = v2 − u2 > 0, so as

v = (a+ tb)/2 > c(t− 1)/2 > 0 by condition (i) of our hypotheses, v + u and v − u
are both necessarily positive. That is, a, b > 0. So, in all cases, a, b, c, d are all

positive.

The basic idea of the proof is to apply Lemma 7 to obtain integers p, q,m, n such

that

a = p2 + q2, tb = m2 + n2, pm+ qn = v − t− 1

2
c, pn− qm = −2t. (32)

Then we consider the Gaussian integers z := p+ qi, w := m+ ni, and let

A = z2, B = z2 − 1

t
w2, C =

1

t(t− 1)
(tz − w)2. (33)

We call this the general case. Unfortunately, as we will see below, this procedure is

not always possible, and we will require two variations on this approach.

(Let us explain, in parenthesis, how the proposal of vertices of (33) can be un-

derstood. Obviously, A,B are suggested by (32). For a tangential LEQ, the areas

KO,KA are determined by σ, τ and the side lengths, by Remark 10. Then Equa-

tion (7) enables one to express C in terms of A and B. This gives a formula for

C that must hold if this construction is to produce a tangential LEQ. We suppress

this derivation of the formula for C, and focus on showing that it has the required

properties).

First suppose that t = 2. Then Equation (3) is 16+u2 = v2−
(
v − 1

2c
)2

. Clearly

gcd(4, u, v, c) is either 1, 2 or 4, so we may apply Lemma 7, and obtain the general

case of the equations of (32) and (33).

Now, suppose that t = 3. Then Equation (3) is 62 + u2 = v2 − (v − c)2
. As c is

not divisible by 3 by assumption, gcd(6, u, v, c) is 1 or 2, and we may again apply

Lemma 7 and obtain the general case of (32) and (33).

Now, suppose that t = 5. Then Equation (3) is 102 + u2 = v2 − (v − 2c)
2
, and

as gcd(10, u, v, c) is 1, 2, 5 or 10, we could apply Lemma 7 in all cases. In fact, for

reasons that will become apparent later in the proof, we will directly apply Lemma 7,

and obtain the general case, only in the cases where u, v, c are not all divisible by 5,

so gcd(10, u, v, c) = 1 or 2. Note that u, v, c are all divisible by 5 precisely when a
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and c are divisible by 5. In this case, let u
5 = u′, v5 = v′, c5 = c′. Thus Equation (3)

can be written as 4+u′2 = v′2−(v′ − 2c′)
2
, and applying Lemma 7, we have integers

p, q,m, n such that

a = 5(p2 + q2), b = m2 + n2, pm+ qn =
1

5
(v − 2c), pn− qm = −2.

Then let z := p+ qi, w := m+ ni, and set

A = 5z2, B = 5z2 − w2, C =
1

4
(5z − w)2. (34)

We call this the first exceptional case.

Now, suppose that t = 9. Then Equation (3) is 182 + u2 = v2 − (v − 4c)
2
.

If gcd(18, u, v, c) is not 3 or 6, we may apply Lemma 7 and obtain the general

case. If instead gcd(18, u, v, c) is 3 or 6, which occurs when gcd(a, c) is divisible

by 3 but not 9, let u
3 = u′, v3 = v′, c3 = c′. Thus Equation (3) can be written as

36 + u′2 = v′2− (v′ − 4c′)
2
, and applying Lemma 7, we have integers p, q,m, n such

that

a = 3(p2 + q2), 3b = m2 + n2, pm+ qn =
1

3
(v − 4c), pn− qm = −6.

Then let z := p+ qi, w := m+ ni, and set

A = 3z2, B = 3z2 − 1

3
w2, C =

1

24
(9z − w)2. (35)

We call this the second exceptional case.

We now proceed to show that the points O,A,B,C define a tangential LEQ

OABC with successive side lengths a, b, c, d for which (σ, τ) = ( t
t−1 , t). We first

treat the general case of the equations of (32) and (33), and deal with the two

exceptional cases later. So we are assuming that for t = 5, the integers u, v, c are

not all divisible by 5, and for t = 9, we have that gcd(18, u, v, c) is not 3 or 6.

Note that from the equations of (32), OA has length p2+q2 = a and A−B = 1
tw

2,

which has length 1
t (m

2 +n2) = b. It remains to verify the following 7 requirements:

(Ra) C −B has length c, and OC has length d,

(Rb) the quadrilateral OABC has no self-intersections,

(Rc) OABC is equable,

(Rd) the points A,B,C are not colinear,

(Re) B is the only point at which the angle may be reflex,

(Rf) for OABC, one has τ = t,
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(Rg) B and C are lattice points.

Let us make some preliminary calculations. Substituting z = p+ qi, w = m+ ni

and using the equations of (32), one has

zw̄ − z̄w = 2(qm− pn)i = 4ti, (36)

zw̄ + z̄w = 2(pm+ qn) = 2v − (t− 1)c = a+ c+ t(b− c). (37)

Consequently,

z2w̄2 − z̄2w2 = (zw̄ − z̄w)(zw̄ + z̄w) = 4t(a+ c+ t(b− c))i. (38)

Now, consider the signed areas KO,KA,KC ,KB . Recall that if Z,W are points

in the complex plane, the triangle OZW has signed area i(ZW̄ − Z̄W )/4. Using

Equation (38), we have 4tKA = i(−z2w̄2 + z̄2w2) = 4t(a+ c+ t(b− c)), so

KA = a+ tb− (t− 1)c. (39)

Using zz̄ = a,ww̄ = tb and Equations (36) and (37), one has

4(t− 1)t2KC = i((tz2 − w2)(tz − w)2 − (tz − w)2(tz2 − w2))

= it(zw̄ − z̄w)(−2t(a+ b) + (t+ 1)(zw̄ + z̄w))

= −4t2(−2t(a+ b) + (t+ 1)(a+ c+ t(b− c))
= 4t2(t− 1)(a− tb+ (t+ 1)c),

so

KC = a− tb+ (t+ 1)c. (40)

Using zz̄ = a and Equations (36) and (37), one has

4t(t− 1)KO = i(z2(tz − w)2 − (tz − w)2z̄2) = i(zw̄ − z̄w)(zw̄ + z̄w − 2ta)

= −4t(a+ c+ t(b− c)− 2ta)) = 4t((2t− 1)a− tb+ (t− 1)c),

so

KO =
1

t− 1
((2t− 1)a− tb+ (t− 1)c). (41)

Before calculating KB , note that t(t− 1)(C −B) = (tz −w)2 − (t− 1)(tz2 −w2) =

t(z − w)2, so

C −B =
1

t− 1
(z − w)2. (42)

Thus, using ww̄ = tb and Equations (36) and (37), one has

4t(t− 1)KB = i((z − w)2w̄2 − (z − w)2w2) = i(−zw̄ + z̄w)(2tb− zw̄ − z̄w)

= 4t(2tb− (a+ c+ t(b− c))) = 4t(−a+ tb+ (t− 1)c),
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so

KB =
1

t− 1
(−a+ tb+ (t− 1)c). (43)

We now prove the requirements (Ra) – (Rg).

(Ra). From Equation (42), we have, using Equation (37),

(t− 1)‖C −B‖ = ‖z − w‖2 = zz̄ + ww̄ − zw̄ − z̄w
= a+ tb− (a+ c+ t(b− c)) = (t− 1)c,

as required. Using Equation (37) again, we also have

t(t− 1)‖C‖ = ‖tz − w‖2 = t2zz̄ + ww̄ − tzw̄ − tz̄w = t2a+ tb− t(zw̄ + z̄w)

= t2a+ tb− t(a+ tb− (t− 1)c)

= (t2 − t)a− (t2 − t)b+ t(t− 1)c = t(t− 1)d,

as required.

(Rb). To verify that the quadrilateral OABC has no self-intersections, it suffices

to show that the respective signed areas KA,KC of triangles OAB,OBC are both

positive. The hypothesis (i) gives tb+a− (t−1)c > 0, so KA > 0 by Equation (39).

Hypothesis (i) also gives a− tb+ (t+ 1)c > 0, so KC > 0 by Equation (40).

(Rc). From Equations (39) and (40), we have KA +KC = 2(a+ c), as required.

(Rd). To verify that the points A,B,C are not colinear, it suffices to show that

KB 6= 0. But by Equation (43), (t− 1)KB = −a+ tb+ (t− 1)c) 6= 0, by hypothesis

(iii).

(Re). To see that B is the only point at which the angle may be reflex, it remains

to show that KO > 0. The hypothesis (ii) gives (2a + c − b)t > a + c, from which

we have (2t− 1)a− tb+ (t− 1)c > 0, so KO > 0 by Equation (41).

(Rf). If a 6= d, then Equations (17) and (39) give

τ =
KA − (a+ c)

a− d
=
a+ tb− (t− 1)c− a− c

a− d
=
t(b− c)
a− d

= t.

Thus by Lemma 6, σ = t
t−1 .

If a 6= b, then Equations (16) and (41) give

σ =
KO − (a+ c)

a− b
=

(2t− 1)a− tb+ (t− 1)c− (t− 1)(a+ c)

(t− 1)(a− b)

=
ta− tb

(t− 1)(a− b)
=

t

t− 1
.

Thus by Lemma 6, τ = t.

Finally, if a = d and a = b, then OABC is a rhombus and a = b = c = d.

But if a = b, then u = t−1
2 a, v = t+1

2 a, and so by Equation (3), a = c would give
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(2t)2 + (t−1)2

4 a2 = (t+1)2

4 a2 − a2, so a2 = 4t2

t−1 . For t = 9
8 ,

5
4 ,

3
2 , 2, 3, 5, 9, this would

give respectively a2 = 81
2 , 25, 18, 16, 18, 25, which is impossible for t = 9

8 ,
3
2 , 3, 9. For

t = 2 we have a = 4, so OABC is the 4 × 4 square, which has (σ, τ) = (2, 2), by

Remark 10. For t = 5 and 5
4 , we have a = 5, so OABC is the rhombus of side

length 5, which has (σ, τ) = (5
4 , 5) and (5, 5

4 ), respectively, again by Remark 10.

(Rg). We now come to the most delicate part of the proof. Note that require-

ments (Ra)–(Re) were simply equations or inequalities, and did not use the values

of t, or the fact that certain variables are integers. Requirement (Rf) did use these

facts, but only in a very simple manner.

First suppose t = 2. So B = z2 − 1
2w

2 and C = 1
2 (2z − w)2. Now, z2, w2 are

lattice points. And from above, 1
2w

2 has integer length b. So by Lemma 8, 1
2w

2 is

a lattice point. Thus B is a lattice point. Similarly, (2z−w)2 is a lattice point and

C = 1
2 (2z − w)2 has integer length c, so by Lemma 8, C is a lattice point.

Now, suppose t = 3. So B = z2 − 1
3w

2 and C = 1
6 (3z − w)2. Now, z2, w2 are

lattice points. And from above, 1
3w

2 has integer length b. So by Lemma 8, 1
3w

2 is

a lattice point. Thus B is a lattice point. Similarly, (3z−w)2 is a lattice point and

C = 1
6 (3z − w)2 has integer length c, so by Lemma 8, C is a lattice point.

Now, suppose t = 5. So B = z2 − 1
5w

2 and C = 1
20 (5z − w)2, where w =

m+ ni. We claim that in the general case, m,n are multiples of 5. First note that

Equation (3) can be written as 102 + (v − 2c)2 = (v + u)(v − u). So as 5 divides

v + u = 5b, it follows that v − 2c ≡ 0 (mod 5). Hence, from the equations of (32),

ma = m(p2 + q2) = p(pm+ qn)− q(pn− qm) = p(v − 2c) + 10q ≡ 0 (mod 5).

Similarly, na ≡ 0 (mod 5). So if a 6≡ 0 (mod 5), we have m,n ≡ 0 as required. If

a ≡ 0 (mod 5), then as v− 2c = 5b+a−4c
2 = 5(b−c)+a+c

2 , and v− 2c ≡ 0 (mod 5), so

5 divides a+c, and thus c ≡ 0 (mod 5) and hence v ≡ 0 (mod 5). So, as v+u = 5b,

we have that 5 divides u, v, c. But this is the first exceptional case, contrary to our

current assumption.

As m,n are multiples of 5, let m = 5m′, n = 5n′, w′ = m′+n′i. So B = z2−5w′2,

which is obviously a lattice point, and C = 5
4 (z − w′)2, which is a lattice point by

Lemma 8.

Now, suppose t = 9. So B = z2 − 1
9w

2 and C = 1
72 (9z − w)2. Now, z2, w2 are

lattice points. And from above, 1
9w

2 has integer length b. So by Lemma 8, 1
9w

2 is

a lattice point. Thus B is a lattice point. Similarly, (9z−w)2 is a lattice point and

C = 1
72 (3z −w)2 has integer length d. Hence, as 72 = 2332 is a lattice preserver, C

is a lattice point by Lemma 8. This completes requirement (Rg).

We now treat the first exceptional case. So t = 5 and u, v, c are all divisible by 5.

In the preliminary calculations part of the argument, analogous to Equations (36),
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(37) and (38), one has:

zw̄ − z̄w = 4i, (44)

zw̄ + z̄w =
1

5
(a+ c) + (b− c), (45)

z2w̄2 − z̄2w2 = (
4

5
(a+ c) + 4(b− c))i. (46)

For the areas, using the above three expressions and zz̄ = a/5, ww̄ = b, we find

exactly the same formulas for KO,KA,KB ,KC as before; that is, we obtain Equa-

tions (41), (39), (43) and (40), respectively, with t = 5.

Analogous to Equation (42), one has

C −B =
5

4
(z − w)2. (47)

For the proof of requirement (Ra), we have from Equation (47), using Equation (45),

4‖C −B‖ = 5‖z − w‖2 = 5(zz̄ + ww̄ − zw̄ − z̄w)

= a+ 5b− (a+ c+ 5(b− c)) = 4c,

as required. Using Equation (45) again, we also have

4‖C‖ = ‖5z − w‖2 = 52zz̄ + ww̄ − 5zw̄ − 5z̄w = 5a+ b− 5(zw̄ + z̄w)

= 5a+ b− ((a+ c) + 5(b− c)) = 4a− 4b+ 4c = 4d,

as required.

As requirements (Rb)–(Rf) only rely on the expressions for KO,KA,KB ,KC , and

as these are unchanged, the proofs of these parts need no amendment. It remains

to verify requirement (Rg). But B = 5z2 − w2, which is obviously a lattice point,

and C = 1
4 (5z − w)2, which is a lattice point by Lemma 8.

Finally, we treat the second exceptional case. So t = 9 and gcd(18, u, v, c) is

3 or 6. In the preliminary calculations part of the argument, analogous to Equa-

tions (36), (37) and (38), one has:

zw̄ − z̄w = 12i,

zw̄ + z̄w =
1

3
(a+ 9b− 8c), (48)

z2w̄2 − z̄2w2 = 4(a+ 9b− 8c)i.

For the areas, using the above three expressions and zz̄ = a/3, ww̄ = 3b, we find

the exactly same formulas for KO,KA,KB ,KC as before; that is, we obtain Equa-

tions (41), (39), (43) and (40), respectively, with t = 9.

Analogous to Equation (42), one has

C −B =
3

8
(z − w)2. (49)
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For the proof of requirement (Ra), we have from Equation (49), using Equation (48),

8‖C −B‖ = 3‖z − w‖2 = 3(zz̄ + ww̄ − zw̄ − z̄w)

= 3(a/3 + 3b− (a+ 9b− 8c)/3) = a+ 9b− (a+ 9b− 8c) = 8c,

as required. Using Equation (48) again, we also have

24‖C‖ = ‖9z − w‖2 = 92zz̄ + ww̄ − 9zw̄ − 9z̄w = 27a+ 3b− 9(zw̄ + z̄w)

= 27a+ 3b− 3(a+ 9b− 8c) = 24a− 24b+ 24c = 24d,

as required.

As requirements (Rb)–(Rf) only rely on the expressions for KO,KA,KB ,KC , and

as these are unchanged, the proofs of these parts need no amendment. It remains

to verify requirement (Rg). Now, A, z, w are lattice points. Thus, as A−B = 1
3w

2

is a lattice point by Lemma 8, so B is a lattice point. Finally, C = 1
24 (9z − w)2 is

a lattice point by Lemma 8 since 24 = 233 is a lattice preserver.

This completes the proof of Part (a).

(b). Suppose s ∈ {3, 5, 9}. By hypothesis, b and c are positive. Further, Equa-

tion (3) gives (v + u)(v − u) = v2 − u2 > 0, so as v is positive by condition (i) of

our hypotheses, v+u and v−u are both necessarily positive. That is, a, d > 0. So,

in all cases, a, b, c, d are all positive.

We now proceed exactly as we did in case (a) by considering a general case and

two exceptional cases. The first exceptional case is where s = 5 and the integers

u, v, c are all divisible by 5. The second exceptional case is where s = 9 and

gcd(18, u, v, c) is either 3 or 6. In the general case, we apply Lemma 7 to obtain

integers p, q,m, n such that

a = p2 + q2, sd = m2 + n2, pm+ qn = v − s− 1

2
c, pn− qm = 2s. (50)

Then we consider the Gaussian integers z := p+ qi, y := m+ ni, and let

A = z2, B = z2 − 1

s(s− 1)
(sz − y)2, C =

1

s
y2. (51)

Note that A is a lattice point, and OA has length a, while OC has length d (we will

see later that C is a lattice point). For t = s
s−1 , let

w :=
sz − y
s− 1

.

Notice that w has length (i.e., norm) given by

(s− 1)2‖w||2 = s2a+ sd− s(zȳ + z̄y) = s2a+ sd− s(2v − (s− 1)c)

= s2a+ sd− s(sd+ a− (s− 1)c) = s(s− 1)(a− d+ c) = s(s− 1)b.
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So s−1
s w2 has length b. Observe that for t = s

s−1 , we have B = z2 − 1
tw

2 and

A−B = 1
tw

2 has length b, exactly as in case (a). Moreover, we can write

C =
1

s
(sz − (s− 1)w)2 =

(s− 1)2

s

(
s

s− 1
z − w

)2

=
1

t(t− 1)
(tz − w)2,

which is the same formula as in (33), in case (a). Now, compute:

zw̄ − z̄w =
−1

s− 1
(zȳ − z̄y) =

−1

s− 1
2(qm− pn)i =

s

s− 1
4i = 4ti,

zw̄ + z̄w =
1

s− 1
(z(sz − y) + z̄(sz − y)) =

1

s− 1
(2sa− zȳ − z̄y)

=
1

s− 1
(2sa− (2v − (s− 1)c)) =

1

s− 1
(2sa− sd− a+ (s− 1)c)

= a+ c+
s

s− 1
(a− d) = a+ c+ t(a− d) = a+ c+ t(b− c),

z2w̄2 − z̄2w2 = (zw̄ − z̄w)(zw̄ + z̄w) = 4t(a+ c+ t(b− c))i,

which are exactly the same as stated in Equations (36), (37) and (37) of case (a).

It follows that the areas KO,KA,KB ,KC are given by the case (a) formulas (41),

(39), (43) and (40), respectively. Thus the proof of requirements (Ra)–(Rf) hold by

the arguments used in case (a) and it remains to verify (Rg).

Let us first suppose s = 5. So C = 1
5y

2, where w = m+ ni. We claim that m,n

are multiples of 5. First note that Equation (3) can be written as 102 + (v− 2c)2 =

(v + u)(v − u). So as 5 divides v + u = 5d, it follows that v − 2c ≡ 0 (mod 5).

Hence, from (32),

ma = m(p2 + q2) = p(pm+ qn)− q(pn− qm) = p(v − 2c)− 10q ≡ 0 (mod 5).

Similarly, na ≡ 0 (mod 5). So if a 6≡ 0 (mod 5), we have m,n ≡ 0 as required. If

a ≡ 0 (mod 5), then as v− 2c = 5d+a−4c
2 = 5(d−c)+a+c

2 , and v− 2c ≡ 0 (mod 5), so

5 divides a+c, and thus c ≡ 0 (mod 5) and hence v ≡ 0 (mod 5). So, as v+u = 5d,

we have that 5 divides u, v, c. But this is the first exceptional case, contrary to our

current assumption.

As m,n are multiples of 5, let m = 5m′, n = 5n′, y′ = m′ + n′i. So C = 5y′2,

which is obviously a lattice point. Furthermore, for s = 5, one has from (51) that

A−B =
1

20
5(z − y′)2 =

1

4
(z − y′)2.

So as A − B has integer length b, and (z − y′)2 is a lattice, so A − B is a lattice

point by Lemma 8, and hence B is a lattice point.

Now, suppose s = 3 or 9. As y is a lattice point and C = 1
sy

2 has length d, so C is

a lattice point when s = 3 or 9, by Lemma 8. For s = 3, we have A−B = 1
6 (3z−y)2
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and for s = 9, we have A−B = 1
72 (9z− y)2. In both cases, A−B is a lattice point

by Lemma 8, and hence B is a lattice point.

We now treat the first exceptional case. So t = 5 and u, v, c are all divisible by

5. Let u
5 = u′, v5 = v′, c5 = c′. Thus Equation (3) can be written as 4 + u′2 =

v′2 − (v′ − 2c′)
2
, and applying Lemma 7, we have integers p, q,m, n such that

a = 5(p2 + q2), d = m2 + n2, pm+ qn =
1

5
(v − 2c), pn− qm = 2.

Then let z := p+ qi, y := m+ ni, and set

A = 5z2, B = 5z2 − 1

4
(5z − y)2, C = y2. (52)

We remark that B has other useful expressions:

B = y2 − 5

4
(z − y)2 =

1

4
(−y2 + 10yz − 5z2).

Note that A has length a and C has length d. Moreover, A− B = 1
4 (5z − y)2 and

has length

1

4
(5z − y)(5z − y) =

1

4
(5a+ d− 5(zȳ + z̄y)) =

1

4
(5a+ d− (5d+ a− 4c))

=
1

4
(4a− 4d+ 4c) = b,

and C −B = 5
4 (z − y)2 has length

5

4
(z − y)(z − y) =

5

4
(
1

5
a+ d− (zȳ + z̄y)) =

1

4
(a+ 5d− (5d+ a− 4c)) = c.

So requirement (Ra) is satisfied. Moreover, A = 5z2 and C = y2 are obviously

lattice points, −y2 + 10yz − 5z2 is a lattice point and B = 1
4 (−y2 + 10yz − 5z2)

has integer length b, so B is a lattice point by Lemma 8. So requirement (Rg) is

satisfied.

For our preliminary calculations we will use z and y, rather than z and w as we

did before. We have

zȳ − z̄y = −2(pn− qm)i = −4i,

zȳ + z̄y =
1

5
(5d+ a− 4c) =

1

5
(6a− 5b+ c),

z2ȳ2 − z̄2y2 =
−4

5
(6a− 5b+ c)i.

These relations are also different from the Equations (44), (45) and (46) we ob-

tained in the first exceptional case of case (a). Nevertheless, using the above three

relations together with the equations of (52), we find exactly the same formulas
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for KO,KA,KB ,KC as before; that is, we obtain Equations (41), (39), (43), (40),

respectively, with t = 5
4 . As requirements (Rb)–(Rf) only rely on the expressions

for KO,KA,KB ,KC , and as these are unchanged, the proofs of these parts need no

amendment.

Finally, we treat the second exceptional case. So s = 9 and gcd(18, u, v, c) is 3

or 6. Let u
3 = u′, v3 = v′, c3 = c′. Thus Equation (3) can be written as

36 + u′2 = v′2 − (v′ − 4c′)
2
,

and applying Lemma 7, we have integers p, q,m, n such that

a = 3(p2 + q2), 3d = m2 + n2, pm+ qn =
1

3
(v − 4c), pn− qm = 6.

Then let z := p+ qi, y := m+ ni, and set

A = 3z2, B = 3z2 − 1

24
(9z − y)2, C =

1

3
y2.

Observe that

B =
1

3
y2 − 3

8
(z − y)2 =

1

24
(−y2 + 18yz − 9z2).

Note that A has length a and C has length d. Moreover, A−B = 1
24 (9z − y)2 and

has length

1

24
(9z − y)(9z − y) =

1

24
(27a+ 3d− 9(zȳ + z̄y)) =

1

8
(9a+ d− (9d+ a− 8c))

=
1

8
(8a− 8d+ 8c) = b,

and C −B = 3
8 (z − y)2 has length

3

8
(z − y)(z − y) =

3

8
(
1

3
a+ 3d− (zȳ + z̄y)) =

1

8
(a+ 9d− (9d+ a− 8c)) = c.

So requirement (Ra) is satisfied. Obviously A is a lattice point, and B,C are lattice

points by Lemma 8. So requirement (Rg) is satisfied.

We have

zȳ − z̄y = −2(pn− qm)i = −12i,

zȳ + z̄y =
1

3
(9d+ a− 8c) =

1

3
(10a− 9b+ c),

z2ȳ2 − z̄2y2 = −4(10a− 9b+ c)i.

Using these relations together with the equations of (52), we find exactly the same

formulas for KO,KA,KB ,KC as before; that is, we obtain Equations (41), (39),

(43), (40), respectively, with t = 9
8 . As requirements (Rb)–(Rf) only rely on the

expressions for KO,KA,KB ,KC , and as these are unchanged, the proofs of these

parts need no amendment.

This completes the proof of Part (b), and the theorem.
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Proof of Corollary 2. We use the terminology and results from the proof of Theo-

rem 2. By Remark 6, λ = 1
σ , so

I =
(A+ C) + (σ − 1)B

2σ
=

(τ − 1)(A+ C) +B

2τ
.

First suppose τ = 2. Then I = A+C+B
4 , so by (33),

I =
z2 + z2 − 1

2w
2 + 1

2 (2z − w)2

4
= z2 − zw

2
.

Now, z2 = A is a lattice point and zw
2 = 1

2 ((pm − qn) + (pn + qm)i). We have

zw = (pm−qn)+(pn+qm)i and by (32), we have 2b = m2 +n2. So if b is even, then

m2+n2 ≡ 0 (mod 4) and hence m,n are both even. In this case zw
2 is a lattice point,

and hence I is a lattice point. So we may assume that b is odd and that m,n are

both odd. Then by (32), modulo 2, we have pn+qm ≡ pm−qn ≡ pn−qm = −4 ≡ 0.

So once again, I is a lattice point.

Now, suppose τ = 3. Then I = 2(A+C)+B
6 , so by (33),

I =
2z2 + 1

3 (3z − w)2 + z2 − 1
3w

2

6
= z2 − zw

3
.

We have zw = (pm − qn) + (pn + qm)i and by (32), we have 3b = m2 + n2. So

m2 +n2 ≡ 0 (mod 3) and hence m,n are divisible by 3. So zw is divisible by 3 and

thus I is a lattice point.

Similarly, if σ = 3. Then I = (A+C)+2B
6 , so by (51),

I =
z2 + 1

3y
2 + 2z2 − 1

3 (3z − y)2

6
=
zy

3
.

We have zy = (pm − qn) + (pn + qm)i and by (50), we have 3d = m2 + n2. So

m2 + n2 ≡ 0 (mod 3) and hence m,n are divisible by 3. So zy is divisible by 3 and

thus I is a lattice point.

Now, suppose τ = 5. Then I = 4(A+C)+B
10 . First assume that 5d+2

2 , 5d−2
2 , c are

not all divisible by 5, so we are in the general case. Then by (51),

I =
4z2 + 1

5 (5z − w)2 + z2 − 1
5w

2

10
= z2 − zw

5
.

We have zw = (pm − qn) + (pn + qm)i. It was proved in the proof of Theorem 2

that in the general case, m,n are divisible by 5. So zw is divisible by 5 and thus I

is a lattice point. Now, consider the exceptional case. By (34),

I =
4(A+ C) +B

10
=

20z2 + (5z − w)2 + 5z2 − w2

10
= 5z2 − zw,

which is clearly a lattice point.
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Now, suppose σ = 5. Then I = (A+C)+4B
10 . First assume that 5b+2

2 , 5b−2
2 , c are

not all divisible by 5, so we are in the general case. Then by (33),

I =
z2 + 1

5y
2 + 4z2 − 1

5 (5z − y)2

10
=
zw

5
.

We have zw = (pm − qn) + (pn + qm)i. It was proved in the proof of Theorem 2

that in the general case, m,n are divisible by 5. So zw is divisible by 5 and thus I

is a lattice point. Now, consider the exceptional case. By (52),

I =
(A+ C) + 4B

10
=

5z2 + y2 + 20z2 − (5z − y)2

10
= zy,

which is clearly a lattice point.

Example 1. The convex tangential LEQ with vertices (0, 0), (40, 9), (36, 12), (35, 12)

and side lengths 41, 5, 1, 37, has incenter ( 106
3 , 10), by Proposition 3. Similarly,

the concave tangential LEQ with vertices (0, 0), (16, 63), (12, 60), (11, 60) and side

lengths 65, 5, 1, 61, has a non-lattice point incenter ( 38
3 , 58). Notice that by Propo-

sition 5, one finds that λ = 8
9 in both of these examples; that is, τ = 9.

Example 2. The proof of Theorem 2 was complicated by the two exceptional cases.

Let us show that such cases really do occur. Further, one might wonder whether

it is possible to remove this inconvenience by taking a reflection in the line y = x

and thus interchanging a with d and b with c. Our examples show that this is not

always possible.

Consider the tangential LEQ with vertices (0, 0), (35, 120), (32, 116), (32, 126). It

has τ = 5 and the side lengths a, b, c, d are 125, 5, 10, 130, respectively. Here u =

(5b − a)/2 = −50, v = (5b − a)/2 = 75, c = 10. So u, v, c are all divisible by 5,

which is the first exceptional case. Interchanging a with d and b with c would give

new values (u, v, c) = (−40, 90, 5) but again u, v, c are all divisible by 5. Similarly,

consider the tangential LEQ with vertices (0, 0), (231, 108), (228, 108), (240, 117). It

has τ = 9 and the side lengths a, b, c, d are 255, 3, 15, 267, respectively. Here u =

(9b − a)/2 = −114, v = (9b − a)/2 = 141. So gcd(18, u, v, c) = 3, which is the

second exceptional case. Interchanging a with d and b with c would give new values

(u, v, c) = (−66, 201, 15) but again gcd(18, u, v, c) = 3.

2.6. Infinite Families of Tangential LEQs

As we saw in Subsection 2.2, the four infinite families K1−K4 of kites from [4, The-

orem 1] gave examples of tangential LEQs with (σ, τ) equal to (5, 5/4), (5/4, 5), (2, 2)

and (9/8, 9), respectively. Also in Subsection 2.2, we exhibited an infinite nested

family of tangential LEQs with (σ, τ) = (3, 3/2). In this final subsection we ex-

hibit infinite families with (σ, τ) = (3/2, 3) and (9, 9/8), thus showing that there

are infinitely many tangential LEQs in each of the seven cases of Theorem 1. The
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method employed can also be used to give further examples in the cases where (σ, τ)

is (5, 5/4), (5/4, 5), (2, 2), (9/8, 9) and (3, 3/2). While by no means comprehensive,

we hope the examples in this subsection will convey the impression that tangential

LEQs are quite abundant.

First observe that for τ = 3, Equation 1 of Theorem 1 is:

62 + u2 = v2 − (v − c)2
. (53)

So this equation can be solved by fixing u, and then expressing 62+u2 as a difference

of two squares. Recall that an integer can be written as a difference of two squares

if and only if it is odd or a multiple of 4; see sequence A100073 in OEIS [37]. Clearly

62 + u2 6≡ 2 (mod 4), for all u. Thus for every integer value of u, there are integers

v, c for which 62 + u2 = v2 − (v − c)2. (Note that we are interested in solutions

v ∈ N and u ∈ Z). However, we must also impose the restrictions of Theorem 2.

We require u + v ≡ 0 (mod 3), c > 0, c is not divisible by 3, as well as the three

conditions (i) – (iii):

(i) 3|c− b| < a+ c, (ii) 3(a+ d) > a+ c, (iii) 3(b+ c) 6= a+ c.

For convenience we separate (i) into two conditions:

(ia) 3(c− b) < a+ c, (ib) 3(b− c) < a+ c.

Notice that the conditions can be rewritten in terms of u = 3b−a
2 , v = 3b+a

2 as:

(ia) c < v, (ib) u < 2c, (ii) 3u < (2v + c), (iii) u 6= −c.

It is not true that for every integer value of u, there are integers v, c for which

62 + u2 = v2 − (v − c)2 and the above restrictions hold. For example, for u = 4,

the only solutions are v = 14, c = 2 and v = 14, c = 26, but (ib) fails for the first

solution and (ia) fails for the second.

One infinite family of solutions is as follows: for any negative integer x, let

u = 6x − 1. Then it is easy to check that v = 6(3x2 − x + 3) + 1, c = 1 is a

solution to Equation (53). Note that u + v ≡ 0 (mod 3). Condition (ia) is true

for all x. Conditions (ib) and (iii) hold as x < 0. Condition (ii) can be written as

6x2 − 5x + 7 > 0, which is true for all real x. Notice that this infinite family has

the values:

a = 18x2 − 12x+ 19, b = 6x2 + 6, c = 1, d = 12x2 − 12x+ 14.

Another infinite family of solutions is obtained by taking c = 2 and for any integer

x ≤ −3, letting u = 6x− 2 and v = 9x2 − 6x+ 11. This family has the values:

a = 9x2 − 12x+ 13, b = 3x2 + 3, c = 2, d = 6x2 − 12x+ 12.
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We now turn to (σ, τ) = (9, 9/8). First observe that for σ = 9, Equation (2) of

Theorem 1 is:

182 + u2 = v2 − (v − 4c)
2
. (54)

We require u+ v ≡ 0 (mod 9) and c > 0, as well as the four conditions:

(ia) 9(d− a) < 8(a+ c), (ib) 9(a− d) < 8(a+ c),

(ii) 9(a+ d) > 8(a+ c), (iii) 9(a+ 2c− d) 6= 8(a+ c),

which can be rewritten in terms of u = 9d−a
2 , v = 9d+a

2 as:

(ia) 8v + 4c > 9u, (ib) u > −4c, (ii) v > 4c, (iii) u 6= 5c.

One infinite family of solutions is as follows. For any integer x > 1, let u = 6x− 1.

Then it is easy to check that v = 6(3x2 − x + 27) + 1, c = 1 is a solution to

Equation (54). Note that u + v ≡ 0 (mod 9). Condition (ia) is true for all x.

Conditions (ib) and (iii) hold as x > 1. Condition (ii) can be written as 6x2− 2x+

53 > 0, which is true for all real x. Notice that this infinite family has the values:

a = 2(9x2 − 6x+ 82), b = 16x2 − 12x+ 147, c = 1, d = 2x2 + 18.

3. Extangential Quadrilaterals

3.1. Basic Notions for Extangential LEQs

An extangential quadrilateral is a quadrilateral with an excircle, that is, a circle

exterior to the quadrilateral that is tangent to the extensions of all four sides [21, 22,

24]. Analogous to Pitot’s Theorem, one has the following result [36]: a quadrilateral

with successive side lengths a, b, c, d is extangential if and only if it has no pair of

parallel sides and

|a− c| = |b− d|.

As for Pitot’s Theorem, the above criteria is usually only stated for convex quadrilat-

erals, but also holds in the concave case. Indeed, if OABC is a concave quadrilateral

with reflex angle at B, let A′ (respectively C ′) denote the point of intersection of

the side OA (respectively OC) and the extension of side BC (respectively AB).

Let a, b, c, d denote the lengths of OA,AB,BC,CO, respectively, and similarly, let

a′, b′, c′, d′ denote the lengths of OA′, A′B,BC ′, C ′O. Then a + b = c + d if and

only if a′+ b′ = c′+ d′. This follows from a result sometimes referred to Urquhart’s

quadrilateral theorem, which has a long and interesting history; see [36, 34, 17].

A quadrilateral OABC with successive side lengths a, b, c, d can have at most

one excircle and when one exists, its radius re, called the exradius, is given by the

formula re = K
|a−c| [21, Theorem 8]. By relabelling the vertices if necessary, we
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will suppose throughout this paper that the excircle lies outside the vertex B. In

particular, the extangential hypothesis is now a+ b = c+ d, and from the proof of

[21, Theorem 8], one has a > c and

re =
K

a− c
. (55)

For an extangential quadrilateral, one of the diagonals L separates the sides into

two pairs of equal sum, and the excircle is located outside one of the vertices joined

by L (for kites L is the axis of symmetry). In fact, of these two vertices, the excircle

is located outside the vertex at which the quadrilateral makes the largest angle [21].

For concave extangential quadrilaterals, the excircle is located outside the vertex

with the reflex angle. Obviously, extangential quadrilaterals cannot have a pair of

parallel sides; in particular, no trapezoid is extangential and no parallelogram is

extangential even though parallelograms satisfy the a+ b = c+ d condition.

We remark that there is a strong relationship between tangential and extangential

quadrilaterals. Recall from Equation (4) that a quadrilateral OABC is tangential if

and only if a+ c = b+ d. If OABC is a convex quadrilateral, and if B′ denotes the

reflection of B in the perpendicular bisector of AC, then the quadrilaterial OAB′C

is extangential if and only if OABC is tangential. Moreover, equability is preserved

by this construction. However, notice that if OABC is a LEQ, OAB′C may fail to

have its vertices on lattice points, as in Figure 7. When OABC is concave, the same

construction can be made, but it can happen that OAB′C has self-intersections, as

in Figure 8.

Analogous to Proposition 1, we have the following result; its proof is very similar

to that of Proposition 1.

Proposition 6. If OABC is extangential with excircle outside B, then OABC is a

kite if and only if the diagonal OB divides OABC into two triangles of equal area.

Proof. Obviously, if OABC is a kite, then its axis of symmetry diagonal divides

OABC into two triangles of equal area. Conversely, applying Heron’s formula to

triangle OAB gives

16K2
A = (a+ b+ p)(a+ b− p)(a− b+ p)(−a+ b+ p)

= −(a2 − b2)2 + 2(a2 + b2)p2 − p4.

Similarly, from triangle OBC

16K2
C = −(c2 − d2)2 + 2(c2 + d2)p2 − p4.

Hence, subtracting,

2(a2 + b2 − c2 − d2)p2 = 16(K2
A −K2

C) + (a2 − b2)2 − (c2 − d2)2. (56)
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Figure 7: Tangential to extangential convex quadrilaterals.
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Figure 8: Self-intersections can occur in the concave case.

Notice that, using a+ b = c+ d,

a2 + b2 − c2 − d2 = (a− d)(a+ d) + (b− c)(b+ c) = 2(a− c)(a− d),

and

(a2 − b2)2 − (c2 − d2)2 = (a− b)2(a+ b)2 − (d− c)2(c+ d)2

= 4(a− c)(a− d)(a+ b)2.
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So Equation (56) gives

(a− c)(a− d)p2 = 4(K2
A −K2

C) + (a− c)(a− d)(a+ b)2. (57)

Now, assume that KA = KC . Then Equation (57) gives (a − c)(a − d)p2 = (a −
c)(a− d)(a− b)2. Notice that p = ±(a− b) is impossible, as otherwise the triangle

OAB would be degenerate. Hence, either a = d or a = c. If a = c, then by the

extangential hypothesis, b = d and so OABC is a parallelogram, which is impossible.

So a = d. Note that as KA = KC , the points A,C are equidistant from the line

through O,B. So the triangles OAB and OBC are congruent, and hence OABC is

a kite.

Like the incenter of a tangential quadrilateral, the excenter of an extangential

quadrilateral lies on the Newton line NL joining the midpoints of the two diagonals.

We have not seen this stated explicitly in the literature, but the proof in the tangen-

tial case is readily adapted. For example, the vector proof of Anne’s Theorem given

in [13, Lemma 1] is valid as is, for signed areas, as the authors indicate, and then [13,

Theorem 3] can be easily modified, with two positive areas and two negative areas.

Since the excenter Ie lies on the Newton line, Ie is of the form λeMA + (1− λe)MO

for some λe ∈ [0, 1], where we recall MA,MO refer to the midpoints of the diagonals

AC,OB, respectively.

For the rest of this subsection, OABC denotes an extangential (convex or con-

cave) quadrilateral, with vertices in counterclockwise cyclic order, and a, b, c, d de-

note the lengths of the sides OA,AB,BC,CO, respectively. We suppose further-

more that the excircle lies outside the vertex B. In particular, the extangential

hypothesis is now a + b = c + d, and from the proof of [21, Theorem 8], one has

a > c.

Remark 12. By reflecting in the line y = x if necessary, we may always assume

that a ≥ d. In this case, we have a − b ≥ d − b = a − c > 0; thus a > b. Hence,

a = max{a, b, c, d}. Similarly, b = min{a, b, c, d}.

For tangential quadrilaterals, equability is equivalent to the condition that the

inradius is 2. For extangential quadrilaterals, the equability condition of Equa-

tion (55) is equivalent to the condition

re =
2(a+ b)

a− c
. (58)

Note that if OABC is not a kite, then by Proposition 6, KA 6= K
2 and KO 6= K

2 .

So, for equable extangential quadrilaterals that are not kites, KA 6= a + b and

KO 6= a + b. In fact, one has KO 6= a + b even when OABC is a kite (with its

excircle outside the vertex B). Indeed, otherwise OABC would be a rhombus, and

no rhombus is extangential. This will be important in Proposition 10 below.
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Analogous to many results for tangential quadrilaterals, there are very similar

results for extangential quadrilaterals. Indeed, analogous to Propositions 2, 3, 4

and 5 of Section 2, we have the following four analogous propositions. We omit the

proofs which are essentially the same as those of the propositions of Section 2.

Proposition 7. If OABC is extangential, then OABC is a kite if and only if the

Newton line NL contains one of the diagonals.

Proposition 8. If OABC is extangential, we have the following two expressions

for the excenter Ie:

(a) Ie =
re
2

aC + dA

KO
, (b) Ie = A+

re
2

a(B −A) + bA

KA
.

Proposition 9. If OABC is extangential, we have:

(KA −
re
2

(a− b))(KO −
re
2

(a+ d)) =
r2
e

4
(ac− bd).

Proposition 10. If OABC is extangential but is not a kite, we have the following

two expressions for the coordinate λe:

(a) λe =
re
2
· a+ b

KO − (a+ b)
, (b) λe = 1− re

2
· c− b
KA − (a+ b)

.

Furthermore, the first of the above expressions for λe is valid if OABC is a kite.

Example 3. Apart from the rhombus of side length 5 (K1, n = 2) and the 4 × 4

square (K3, n = 1), the lattice equable kites of [4, Theorem 1] are extangential.

For each pair n and j, to determine the exradius re,n,j , the excenter Ie,n,j and the

parameter λe,n,j , one can employ Equation (58) and Propositions 8 and 10. Here

Ie = λeM + (1−λe)B2 , where M = MA. We omit the details, which are completely

routine. The results are given in Table 3. Notice that unlike the incenters, the

excenters are not necessarily lattice points.

Case Equation M B re Ie,n,j λe,n,j

K1 n2 − 5j2 = 4 1
2 (n+ 5j)(2, 1) n(2, 1) 2n

j
n(n+j)

2j (2, 1) n2

5j2

K2 n2 − 5j2 = 1 (2n+ 5j)(2, 1) 4n(2, 1) n
j

n(n+2j)
j (2, 1) n2

5j2

K3 n2 − 2j2 = 1 (n+ 2j)(2, 2) 4n(1, 1) 2n
j

2n(n+j)
j (1, 1) n2

2j2

K4 2n2 − j2 = 1 (4n+ 3j)( 3
2 ,

3
2 ) 12n(1, 1) 3n

j
3n(3n+2j)

j (1, 1) 2n2

j2

Table 3: The four kite families.

Example 4. Consider the convex extangential LEQ shown on the left of Figure 10;

its vertices are (0, 0), (21, 20), (20, 20), (0, 5) and the side lengths are 29, 1, 25, 5. The
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Figure 9: Kite with side lengths 3 and 15 (K4, n = j = 1).

exradius is re = K
a−c = 15. By Proposition 8, the excenter Ie is (15, 35), and by

Proposition 10, the coordinate λe of the excenter is 10.

Similarly, a concave extangential LEQ is shown on the right of Figure 10; its

vertices are (0, 0), (12, 5), (10, 5), (6, 8) and the side lengths are 13, 2, 5, 10. The

exradius is re = K
a−c = 15

4 . By Proposition 8, the excenter Ie is 5
4 (9, 7), and by

Proposition 10, the coordinate λe of the excenter is 25
16 .

3.2. Lemmata for Extangential LEQs

For this subsection, OABC denotes a non-kite extangential quadrilateral with suc-

cessive sides a, b, c, d and with its excircle outside the vertex B, so a > c. In

particular, it has exradius re = 2(a+b)
a−c . As explained in Remark 12, we may assume

a = max{a, b, c, d} and b = min{a, b, c, d}.
The approach adopted in this subsection is the same as that of Subsection 2.3, and

the results obtained are analogous, but the calculations are often more complicated.

For the convenience of the reader, we repeat Equations (11) and (12):

p2 = a2 + b2 ± 2
√
a2b2 − (2KA)2, (59)

q2 = a2 + d2 ± 2
√
a2d2 − (2KO)2, (60)

where p, q are the lengths of the diagonals OB,AC, respectively. As O,A,B,C are

lattice points, p2, q2 are integers, so by Lemma 1, the integers a2b2 − (2KA)2 and

a2d2 − (2KO)2 are squares.
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Figure 10: Extangential LEQs; convex(left) and concave(right).

Lemma 9. One has

p2 =
8(a+ b)(KA −KC)

(a− c)(a− d)
+ (a+ b)2 and q2 =

8(KO −KB)

a− c
+ (a− d)2.

Proof. As OABC is not a kite, by hypothesis, we have a 6= d. Arguing exactly as

in Proposition 6 we reobtain Equation (57):

(a− c)(a− d)p2 = 4(K2
A −K2

C) + (a− d)(a− c)(a+ b)2,

and since OABC is extangential and hence not a parallelogram, a 6= c. Thus, as

K2
A −K2

C = (KA +KC)(KA −KC) = 2(a+ b)(KA −KC), we obtain the required

formula for p2.

Similarly, by applying Heron’s formula to triangles OAC and BCA, we obtain

2(d2 − c2 + a2 − b2)q2 = 16(K2
O −K2

B) + (d2 − a2)2 − (b2 − c2)2.

Simplifying as in Proposition 6 gives

(a− c)(a+ b)q2 = 8(a+ b)(KO −KB) + (a+ b)(a− c)(a− d)2,

from which the required formula for q2 follows.

Remark 13. From the above lemma, using Equation (59),

8(a+ b)(KA − (a+ b))

(a− c)(a− d)
=
p2 − (a+ b)2

2
= −ab±

√
a2b2 − (2KA)2,

which is an integer by Lemma 1. Similarly, 8(KO−(a+b))
a−c is an integer.
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Lemma 10. The integer abcd− 4(a+ b)2 is a square, and

KA = (a+ b) + (a− c)(a− d)(a+ b)
−(ab+ cd)± 2

√
abcd− 4(a+ b)2

16(a+ b)2 + (a− c)2(a− d)2
,

KO = (a+ b) + (a− c)
ad+ bc∓ 2

√
abcd− 4(a+ b)2

16 + (a− c)2
,

where the signs of the square roots in the formulas for KO and KA are opposite.

Remark 14. In the statement of the above lemma, the terms

ab+ cd± 2
√
abcd− 4(a+ b)2 and ad+ bc∓ 2

√
abcd− 4(a+ b)2

are strictly positive. Indeed, using d = a+ b− c, by the arithmetic mean–geometric

mean inequality, ab+ cd ≥ 2
√
abcd >

√
abcd− 4(a+ b)2. In particular, KA <

K
2 =

a + b if and only if a > d, which is opposite to the situation for tangential LEQs;

see Remark 4.

Proof of Lemma 10. From Lemma 9 and Equation (60),

4(KO −KB)

a− c
− ad =

q2 − a2 − d2

2
= ±

√
a2d2 − (2KO)2,

so setting s := KO−(a+b)
a−c , squaring, and using KO +KB = 2(a+ b) gives

αs2 − 2βs+ γ = 0,

where

α = 16 + (a− c)2, β = ad+ bc, γ = (a+ b)2.

Thus, as β2 − αγ = 4(abcd− 4(a+ b)2) (using a+ b = c+ d again), we have

s =
ad+ bc± 2

√
abcd− 4(a+ b)2

16 + (a− c)2
,

which gives the required formula for KO. In particular, as s is rational, abcd−4(a+

b)2 is a square, as claimed.

The formula for KA is similarly obtained by equating p2 from Lemma 9 and

Equation (59). We have

4(a+ b)(KA −KC)

(a− c)(a− d)
+ ab =

p2 − a2 − b2

2
= ±

√
a2b2 − (2KA)2.

Define t := (a+b)(KA−(a+b))
(a−c)(a−d) . One obtains ᾱt2 + 2β̄t+ γ̄ = 0, where

ᾱ = 16(a+ b)2 + (a− c)2(a− d)2, β̄ = (a+ b)2(ab+ cd), γ̄ = (a+ b)4.
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One has

β̄2 − ᾱγ̄ = 4(a+ b)4(abcd− 4(a+ b)2),

so

t =
−(a+ b)2(ab+ cd)± 2(a+ b)2

√
abcd− 4(a+ b)2

16(a+ b)2 + (a− c)2(a− d)2
,

which gives the required formula for KO.

It remains to see that the signs of the square roots in the formulas for KO and

KA are opposite. Let R = 2
√
abcd− 4(a+ b)2. Obviously, we may assume that

R 6= 0 and a 6= c. Let us write

KA = (a+ b) + (a− c)(a− d)(a+ b)
−(ab+ cd) + δAR

16(a+ b)2 + (a− c)2(a− d)2
,

KO = (a+ b) + (a− c)ad+ bc+ δOR

16 + (a− c)2
,

where δA, δO are each ±1. Using a+ b = c+ d,

KA−
(a+ b)(a− b)

a− c

= (a+ b)

(
b− c
a− c

+ (a− c)(a− d)
−(ab+ cd) + δAR

16(a+ b)2 + (a− c)2(a− d)2

)
=

(a+ b)(d− a)

a− c
· 16(a+ b)2 + (a− c)2(ac+ bd)− (a− c)2δAR

16(a+ b)2 + (a− c)2(a− d)2
,

KO−
(a+ b)(a+ d)

a− c
= − (a+ b)(c+ d)

a− c
+ (a− c)ad+ bc+ δOR

16 + (a− c)2

=
−1

a− c
· 16(a+ b)2 + (a− c)2(ac+ bd)− (a− c)2δOR

16 + (a− c)2
.

Notice also that (a+ b)(d− a) = bd− ac. Hence, by Proposition 9,

X − (a− c)2δAR

16(a+ b)2 + (a− c)2(a− d)2
· X − (a− c)2δOR

16 + (a− c)2
= (a+ b)2, (61)

where X = 16(a+ b)2 + (a− c)2(ac+ bd). Now, substituting d = a+ c− b one finds

that
X − (a− c)2δAR

16(a+ b)2 + (a− c)2(a− d)2
· X + (a− c)2δAR

16 + (a− c)2
= (a+ b)2.

Subtracting from Equation (61) gives

(X − (a− c)2δAR) · (a− c)2(δA + δO)R = 0. (62)

Note that X − (a− c)2δAR 6= 0 as otherwise X2 = (a− c)4R2 which would give

(16(a+ b)2 + (a− c)2(ac+ bd))2 − (a− c)4(abcd− 4(a+ b)2) = 0,
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and hence

(a+ b)2(16 + (a− c)2)(16(a+ b)2 + (a− c)2(b− c)2) = 0,

which is impossible. So from Equation (62), we have δA = −δO, as claimed.

Lemma 11. The sign of the square root in the formulas for KO is positive if and

only if B lies within the circumcircle of the triangle OAC; in particular, the sign

for KO is positive if OABC is concave.

Proof. In the notation of the above proof, let x = δO2
√
abcd− 4(a+ b)2, so

KA = (a+ b) + (a− c)(a− d)(a+ b)
−(ab+ cd)− x

16(a+ b)2 + (a− c)2(a− d)2
,

KO = (a+ b) + (a− c) ad+ bc+ x

16 + (a− c)2
.

From a standard criteria for a point to be within the circumcircle of a triangle (see

[16]), B is inside the circumcircle of the triangle OAC if and only if

p2KO < d2KA + a2KC . (63)

Now, d2KA + a2KC = KA(d2 − a2) + 2a2(a+ b), and by Lemma 9,

KOp
2 = KO

(
16(a+ b)(KA − (a+ b))

(a− c)(a− d)
+ (a+ b)2

)
.

So Condition (63) can be written as E > 0 where

E = KA(d2 − a2) + 2a2(a+ b)−KO

(
16(a+ b)(KA − (a+ b))

(a− c)(a− d)
+ (a+ b)2

)
.

Substituting the formulas for KO,KA and x, one finds upon simplification that

E = 2δO(a+ b)
√
abcd− 4(a+ b)2.

Hence, as claimed, δO > 0 if and only if B is inside the circumcircle of the triangle

OAC.

Definition 4. Let

Σ = 8 ·
ad+ bc+ 2δ

√
abcd− 4(a+ b)2

16 + (a− c)2
,

T = 8(a+ b)2 ·
ab+ cd+ 2δ

√
abcd− 4(a+ b)2

16(a+ b)2 + (a− c)2(a− d)2
,

where δ = 1 if B lies within the circumcircle of the triangle OAC, and δ = −1

otherwise.
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Remark 15. Observe that Σ and T are positive integers. Indeed, from Lemma 10,

Σ =
8(KO − (a+ b))

a− c
, T =

8(a+ b)((a+ b)−KA)

(a− c)(a− d)
, (64)

which are integers by Remark 13, and they are positive by Remark 14. Furthermore,

from Lemma 2,

Σ =
1

2
(q2 − (a− d)2), T =

1

2
((a+ b)2 − p2).

In the notation of the proof of Lemma 10,

αΣ2 − 16βΣ + 64γ = 0, (65)

where α = 16 + (a− c)2, β = ad+ bc, γ = (a+ b)2 = (c+ d)2, and

ᾱT 2 − 16β̄T + 64γ̄ = 0,

where ᾱ = 16(a+ b)2 + (a− c)2(a− d)2, β̄ = (a+ b)2(ab+ cd), and γ̄ = (a+ b)4.

Lemma 12. For Σ, T as defined in Definition 4, the following relations hold:

(a) ΣT = 8 (a+b)2

(a−c)2 (T − Σ),

(b) 2ΣT = (a+ b)2(Σ− 8)− (b− c)2T .

Proof. (a). As in the proof of Lemma 11, let x = 2δ
√
abcd− 4(a+ b)2. Then

cross-multiplying, the required identity is E = 0, where

E =(ad+ bc+ x)
(
16(a+ b)2 + (a− c)2(a− d)2

)
− (a+ b)2(ab+ cd+ x)

(
16 + (a− c)2

)
+ (a− c)2(ad+ bc+ x)(ab+ cd+ x).

Expanding and using d = a+ c− b, one has

E = (a− c)2
(
4(4(a+ b)2 − abcd) + x2

)
.

Then replacing x2 by 4(abcd− 4(a+ b)2) gives E = 0, as required.

(b). From Definition 4, since (a− c)2 = (a− c)(d− b) = ad+ bc− ab− cd,

(a+ b)2(16 + (a− c)2)Σ− (16(a+ b)2 + (b− c)2(a− c)2)T

= 8(a+ b)2(ad+ bc− ab− cd) = 8(a+ b)2(a− c)2.

Part (b) follows by applying Part (a).

Remark 16. As Σ and T are positive, Lemma 12(a) gives Σ < T . Furthermore,

as T − Σ < T , Lemma 12(a) gives Σ < 8 (a+b)2

(a−c)2 , and Lemma 12(b) gives 2T <

(a+ b)2 Σ−8
Σ < (a+ b)2. In particular, Σ > 8.
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Remark 17. From Equation (64),

KO = (a+ b) +
1

8
(a− c)Σ, (66)

KA = (a+ b)− (a− c)(a− d)

8(a+ b)
T. (67)

Then by Proposition 10, the parameter λe and the exradius re are related to Σ by

λe · Σ = 8
(a+ b)2

(a− c)2
= 2r2

e .

Using Lemma 12(a), we can also write

λe =
T

T − Σ
.

Remark 18. We have the non-degeneracy condition KB 6= 0 as otherwise ABC

would be colinear. Thus KO 6= 2(a+ b) and Equation (66) gives Σ 6= 8a+b
a−c . Hence,

by Lemma 12(a), we have

Σ(T − Σ) 6= 8T.

Notice also that OABC is concave if and only if KO > 2(a + b), that is, from

Equation (64), when Σ > 8a+b
a−c .

Lemma 13. For Σ, T as defined in Definition 4, one has (c− b)T < (a− b)Σ.

Proof. From the assumption that the vertices O,A,B,C are positively oriented

and the assumption that if OABC is concave then the reflex angle is at B, we have

KA > 0. So Equation (67) gives 8(a + b)2 > (a − c)(a − d)T . Lemma 12(a) gives

8(a+b)2 = (a−c)2 ΣT
T−Σ . Hence, as T−Σ > 0 by Remark 16, and using a+b = c+d,

we obtain (a− c)Σ > (c− b)(T −Σ). Rearranging this gives the required result.

Lemma 14. The integers Σ and T , defined in Definition 4, both divide 8(a+ b)2.

Proof. From Equation (65), 1
16αΣ2 − βΣ + 4γ = 0, where α = 16 + (a − c)2,

β = ad + bc, γ = (a + b)2. So 1
16αΣ2 is an integer, and hence 1

16 (a − c)2Σ2 is an

integer. So 1
4 (a− c)Σ is an integer, and hence 1

4αΣ is an integer. Hence, as

16(a+ b)2 = 16γ = (−1

4
αΣ + 4β)Σ,

Σ divides 16(a + b)2. So if Σ is odd, then Σ divides (a + b)2. If Σ is even, then

as 1
32αΣ2 − 1

2βΣ + 2γ = 0, so 1
32αΣ2 is an integer, and hence 1

32 (a − c)2Σ2 is an

integer. It follows that 1
64 (a− c)2Σ2 is an integer. So 1

8 (a− c)Σ is an integer, and

hence 1
8αΣ is an integer. Hence, as

8(a+ b)2 = (−1

8
αΣ + 2β)Σ,
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Σ divides 8(a+ b)2.

By Lemma 12(a), we have 8(a + b)2( 1
Σ −

1
T ) = (a − c)2. Since 8(a + b)2 1

Σ is an

integer, it follows that 8(a+ b)2 1
T is also an integer.

3.3. Explicit Examples of Extangential LEQs

In this subsection we exhibit non-kite extangential LEQs in the three cases with

(Σ, T ) equal to (9, 18), (18, 50) and (45, 50), respectively. Let us define h := a+b
a−c , so

that h =
√

ΣT/(8(T − Σ)) by Lemma 12(a). Note that h > 1, but as we will see,

h may fail to be an integer.

We have

b = (h− 1)a− hc. (68)

In particular, b > 0 gives a > h
h−1c and since b ≤ c, we have a ≤ h+1

h−1c. From

Equation (65), αΣ2 − 16βΣ + 64γ = 0, where α = 16 + (a − c)2, β = ad + bc,

γ = (a+ b)2 = (c+ d)2. Using Equation (68), substituting d = a+ b− c and solving

for a gives

a =
64ch2 − 16cΣ + cΣ2 ± 4

√
2c2Σ(8h2 − Σ)(Σ− 8)− (Σ− 8h)2Σ2

(Σ− 8h)2
.

We claim that 64ch2−16cΣ+cΣ2

(Σ−8h)2 > h+1
h−1c. Indeed, cross multiplying and simplifying,

the claim is (8h2 − Σ)(Σ − 8) > 0, which is true since Σ < 8h2 by Remark 16 and

Σ > 8, also by Remark 16. Hence, since a ≤ h+1
h−1c, it follows that

a =
64ch2 − 16cΣ + cΣ2 − 4

√
2c2Σ(8h2 − Σ)(Σ− 8)− (Σ− 8h)2Σ2

(Σ− 8h)2
. (69)

We first classify the extangential LEQs with (Σ, T ) = (9, 18). Note that this

is one of two cases in Theorem 3(a). Suppose we have an extangential LEQ with

a > c ≥ b and Σ = 9, T = 18. So h =
√

ΣT
8(T−Σ) = 3

2 , and from Equation (68),

b =
1

2
(a− 3c). (70)

Hence, a > 3c and since b ≤ c, we have a ≤ 5c. From Equation (69),

a = 9c− 4
√

2c2 − 9. (71)

Working modulo 3, the fact that 2c2 − 9 is a square gives us that c is divisible by

3, say c = 3v. Then v satisfies the negative Pell equation

u2 − 2v2 = −1, (72)
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for some positive integer u. Then Equations (70) and(71) give

(a, b, c, d) = 3(9v − 4u, 3v − 2u, v, 11v − 6u). (73)

It is well known that the solutions (uj , vj) to Equation (72) are given recursively by

uj+1 = 3uj + 4vj , vj+1 = 2uj + 3vj , (74)

with initial values (u1, v1) = (1, 1).

We now define the vertices of our quadrilaterals. Let

Aj =
3

2
(9uj − 8vj − 7, 9uj − 8vj + 7) ,

Bj = 6 (3uj − 3vj − 2, 3uj − 3vj + 2) ,

Cj =
3

2
(11uj − 12vj − 7, 11uj − 12vj + 7) .

Note that Aj , Bj , Cj are lattice points as uj , vj are odd, as one can see from the re-

cursive formula (74). We will consider the quadrilateral OAjBjCj . Let aj , bj , cj , dj
denote the lengths of the sides OAj , AjBj , BjCj , CjOj , respectively. The distance

aj is given by

a2
j =

9

4
((9uj − 8vj − 7)2 + (9uj − 8vj + 7)2) =

9

2
(81u2

j − 144ujvj + 64v2
j + 49)

=
9

2
(81u2

j − 144ujvj + 64v2
j + 49(2v2

j − u2
j )) (by Equation (72))

=
9

2
(32u2

j − 144ujvj + 162v2
j )

= 9(9vj − 4uj)
2.

So aj = 3(9vj − 4uj). Similarly, the other side lengths are as follows:

bj = 3(3vj − 2uj), cj = 3vj , dj = 3(11vj − 6uj),

as anticipated by Equation (73). So the perimeter of OAjBjCj is aj +bj +cj +dj =

36(2vj − uj).
The area of OAjBj is 1

2‖
−−→
OAj ×

−−→
OBj‖ = 9(5vj − 3uj). The area of OBjCj is

1
2‖
−−→
OBj ×

−−→
OCj‖ = 9(3vj − uj). Notice in passing that the signed areas of OAjBj

and OBjCj are both positive, as one can see recursively using Equation (74), so

OAjBjCj has no self-intersection. The area of OAjBjCj is 9(5vj − 3uj) + 9(3vj −
uj) = 36(2vj − uj), so OAjBjCj has equal area and perimeter, i.e., it is equable.

Thus OAjBjCj is a LEQ. Furthermore, OAjBjCj is extangential because aj +bj =

cj + dj .

The first member of this family, corresponding to the initial condition (u1, v1) =

(1, 1), is the kite with side lengths 15, 3, 3, 15 shown in Figure 9. The vertices and
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uj vj Aj Bj Cj aj bj cj dj
7 5 (24,45) (24,48) (15,36) 51 3 15 39
41 29 (195,216) (204,228) (144,165) 291 15 87 219
239 169 (1188,1209) (1248,1272) (891,912) 1695 87 507 1275
1393 985 (6975,6996) (7332,7356) (5244,5265) 9879 507 2955 7431

Table 4: Four members of the (Σ, T ) = (9, 18) family.

side lengths of the next four members of this family are given in Table 4. The case

(u2, v2) = (7, 5) of the family is shown in Figure 11.

The exradius of OAjBjCj is re,j =
K(OAjBjCj)

aj−cj . Substituting the values gives

re,j = 3 for each j. Then by Proposition 8, the excenter is Ie,j = 3
2
ajCj+djAj

K(OAjCj) , which

simplifies to 15(1,−1)+21(uj+7vj)(1, 1). In particular, the excenter of each family

member is a lattice point. By Proposition 10, the coordinate λe,j of the excenter is

λe,j =
3(aj+bj)

2K(OAjCj)−3(aj−cj) . Substituting the values gives λe,j = 2 for each j.

Remark 19. By Remark 18, an extangential LEQ OABC is concave if and only if

Σ > 8a+b
a−c ; that is, if and only if Σ > 8h. For the above family, with (Σ, T ) = (9, 18),

we have h = 3
2 . So all members of this family are convex.

Now, suppose we have an extangential LEQ with a > c ≥ b and Σ = 18, T = 50.

Note that this is the other case in Theorem 3(a). So h =
√

ΣT
8(T−Σ) = 15

8 and

Equation (68) gives

b =
1

8
(7a− 15c). (75)

Hence, a > 15/7c and since b ≤ c, we have a ≤ 23c/7. From Equation (69),

a = 29c− 12
√

5c2 − 4. (76)

So c satisfies the Pell-like equation

u2 − 5c2 = −4, (77)

for some positive integer u. Then Equations (75) and (76) give

(a, b, c, d) = (29c− 12u,
1

2
(47c− 21u), c,

1

2
(103c− 45u)). (78)

From [28], the solutions to Equation (77) are (uj , cj) = (L2j−1, F2j−1), where Lj
is the j-th Lucas number and Fj is the j-th Fibonacci number. (Recall that the

Lucas and Fibonacci numbers satisfy the same recurrence relation but with different

initial conditions: F1 = F2 = 1 while L1 = 1, L2 = 3). Hence, Equation (78) gives

the potential solutions

(aj , bj , cj , dj) = F2j−1

(
29,

47

2
, 1,

103

2

)
− L2j−1

(
12,

21

2
, 0,

45

2

)
. (79)
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Figure 11: The case j = 2 of the (Σ, T ) = (9, 18) family.

From Lemma 13, T (c − b) < Σ(a − b). So 50(c − b) < 18(a − b) and thus from

Equations (75) and (76), 51c > 23u, which is

51F2j−1 > 23L2j−1. (80)

Now, F6 = 8, L6 = 18 and F7 = 13, L7 = 29, and thus 51F6 < 23L6 and 51F7 <

23L7. It follows from the Lucas and Fibonacci recurrence relation that Inequality

(80) only holds for j = 1, 2, 3. For i = 1, 2 one finds using Equation (79) that

aj < dj , contrary to our hypothesis. So the only possibility is j = 3, which gives

the solution (a, b, c, d) = (13, 2, 5, 10), which is the concave LEQ that we saw in

Subsection 3.2, shown on the right of Figure 10.

Now, suppose we have an extangential LEQ with a > c ≥ b and Σ = 45, T = 50.
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Note that this is the case m = 3 in Theorem 3(b). So h =
√

ΣT
8(T−Σ) = 15

2 and

Equation (68) gives

b =
1

2
(13a− 15c). (81)

Hence, a > 15/13c and since b ≤ c, we have a ≤ 17c/13. From Equation (69),

a =
1

5
(109c− 12

√
74c2 − 25). (82)

So c satisfies the Pell-like equation

W 2 − 74c2 = −25, (83)

for some positive integer W . The solutions to this equation are not readily enu-

merated, and moreover, some solutions do not result in LEQs. For example, for

the solution W = 5927, c = 689, one obtains the non-integer value a = 3977
5 from

Equation (82). We will restrict ourselves to constructing a particular infinite family

of LEQs for which c is divisible by 5. Set w = 5u, c = 5v, so that Equation (82)

gives the negative Pell equation u2−74v2 = −1. Let us denote its solutions (uj , vj),

where (u1, v1) = (43, 5) and (u2, v2) = (318157, 36985). So

u2
j − 74v2

j = −1.

The solutions (uj , vj) are well known; see entries A228546 and A228547 in [37]. In

particular, they satisfy the second order recurrence relation

Xj+2 = 7398Xj+1 −Xj . (84)

It follows from this recurrence relation and the initial conditions that uj is divisible

by 43 and vj is divisible by 5 for all j. Let xj = uj/43, yj = vj/5, so

432x2
j − 74 · 25 y2

j = −1,

and (x1, y1) = (1, 1) and (x2, y2) = (7399, 7397). Note that (xj , yj) also satisfies the

recurrence relation of Equation (84). We have cj = 25yj and from Equation (82),

aj = 1
5 (109cj − 60uj) = −12 · 43xj + 545yj . Then from Equation (81), bj =

1
2 (13aj − 15cj) = −3354xj + 3355yj . Thus, as dj = aj + bj − cj ,

(aj , bj , cj , dj) = −xj(516, 3354, 0, 3870) + yj(545, 3355, 25, 3875). (85)

In particular, (aj , bj , cj , dj) are determined by the recurrence relation (84) with

(a1, b1, c1, d1) = (29, 1, 25, 5) and (a2, b2, c2, d2) = (213481, 689, 184925, 29245). The

first three members of this family are shown in Table 5.

We have shown above that if an extangential LEQ with side lengths a, b, c, d has

(Σ, T ) = (45, 50) and c is divisible by 5, then (a, b, c, d) = (aj , bj , cj , dj) for some
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aj bj cj dj
29 1 25 5

213481 689 184925 29245
1579332409 5097221 1368075125 216354505

Table 5: Side lengths of three members of the (Σ, T ) = (45, 50) family.

j, where (aj , bj , cj , dj) is given by Equation (85). We now show that conversely,

for each j, the 4-tuples (aj , bj , cj , dj) given by Equation (85) are realized by the

side lengths of an extangential LEQ. We mention in passing that the difficulty in

determining suitable vertices is two-fold. Firstly, the quadrilaterals in this family

grow so fast that we only had three examples to base our study on, and secondly,

the pattern of the vertex coordinates is considerably more complicated than in the

(Σ, T ) = (8, 18) family exhibited above.

To define the vertices, we will employ the following two first-order recurrence

relations in two variables

xj+1 = 78xj + 25yj , yj+1 = 25xj + 8yj , (86)

xj+1 = 68xj + 35yj , yj+1 = 35xj + 18yj , (87)

under various initial conditions. We identify the 2-tuple (x, y) ∈ Z2 with the Gaus-

sian integer x + yi ∈ C, and we use the notations interchangeably, according to

convenience. Consider the following families, for all j ≥ 1:

(a) za,j = xa,j + ya,ji satisfies Equation (86) with za,1 = 5 + 2i,

(b) zb,j = xb,j + yb,ji satisfies Equation (86) with zb,1 = i,

(c) zc,j = xc,j + yc,ji satisfies Equation (87) with zc,1 = 2 + i,

(d) zd,j = xd,j + yd,ji satisfies Equation (87) with zd,1 = 1.

Let ρ : Z2 → Z2 denote the reflection in the line y = x, so ρ(x, y) = (y, x) or

equivalently ρ(z) = iz̄, where z̄ denotes the complex conjugate of z. Let ρj denote

the j-th iterate of ρ under composition, so ρj = ρ if j is odd and ρj = id otherwise.

We now define the vertices. Set

Aj = ρj+1z2
a,j , Bj = Aj + ρj+1z2

b,j , Cj = 5ρjz2
d,j , B′j = Cj + 5ρjz2

c,j .

The first three members of this family are shown in Table 6; the LEQ given in the

first row is shown on the left of Figure 10.

We will establish the following properties:

(i) Bj = B′j for all j,



INTEGERS: 23 (2023) 57

Aj Bj Cj
(21, 20) (20, 20) (0, 5)

(124080,173719) (124480,174280) (16995,23800)
(1285155641, 917968320) (1289303420, 920931020) (176054900, 125753505)

Table 6: Vertices of three members of the (Σ, T ) = (45, 50) family.

(ii) The areas KAj
,KCj

of triangles OAjBj and BjCjO are positive (and hence

OAjBjCj is a non-self-intersecting, positively oriented quadrilateral),

(iii) OAjBjCj has the side lengths aj , bj , cj , dj given by Equation (85),

(iv) aj + bj = cj + dj ; i.e., OAjBjCj is extangential,

(v) aj + bj + cj + dj = KAj +KCj ; i.e., OAjBjCj is equable.

The proofs of these properties will use the following technical results.

Lemma 15. Suppose the sequence zj = (xj , yj) satisfies either Equation (86) or

Equation (87). Then for all j ≥ 1,

(a) zj+2 = 86zj+1 + zj,

(b) |z2
j+2| = 7398 |z2

j+1| − |z2
j | (i.e., |z2

j | satisfies Equation (84)),

(c) z2
a,j+2 = 7398 z2

a,j+1 − z2
a,j + (−1)j(17500− 24500i),

(d) z2
b,j+2 = 7398 z2

b,j+1 − z2
b,j + (−1)j(2500− 3500i),

(e) z2
c,j+2 = 7398 z2

c,j+1 − z2
c,j − (−1)j(700− 500i),

(f) z2
d,j+2 = 7398 z2

d,j+1 − z2
d,j − (−1)j(4900− 3500i).

Proof. (a). It is easy to see that if zj (regarded as a 2-tuple) satisfies the relation

zj+1 = Mzj , where

M =

(
α β
γ δ

)
,

then zj+2 = tr(M)zj+1 − det(M)zj . The result follows as 68 + 18 = 78 + 8 = 86

and 68 · 18− 352 = 78 · 8− 252 = −1.

(b). From (a) we have |z2
j+2| = (86xj+1 + xj)

2 + (86yj+1 + yj)
2, so

|z2
j+2| = 862 |z2

j+1|+ |z2
j |+ 172(xj+1xj + yjyj).

Assume first that Equation (86) holds. Then using Equation (86) twice,

|z2
j+1| − |z2

j | = (x2
j+1 + y2

j+1)− (x2
j + y2

j )

= (682 + 352 − 1)x2
j + (352 + 182 − 1)y2

j + 2 · (68 + 18) · 35xjyj

= 86(68x2
j + 70xjyj + 18y2

j )

= 86(xj+1xj + yj+1yj),
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so |z2
j+2| = (862+2)|z2

j+1|−|z2
j | = 7398 |z2

j+1|−|z2
j |, as required. A similar argument

applies when Equation (87) holds.

(c). From (a) we have z2
a,j+2 = 7396 z2

a,j+1 + 172za,j+1za,j + z2
a,j . So we are

required to show that 172za,j+1za,j + 2z2
a,j = 2z2

a,j+1 + (−1)j(17500 − 24500i), or

equivalently, using Equation (86), 5x2
a,j − 14xa,jya,j − 5y2

a,j = 35(−1)j , for all j.

In matrix notation, the condition is zjQz
t
j = 35(−1)j , where zj = (xa,j , ya,j), z

t

denotes the transpose of z, and

Q =

(
5 −7
−7 −14

)
.

One readily verifies that this condition holds for j = 1, where z1 = (5, 2). Now, using

Equation (86) and setting M =

(
78 25
25 8

)
, we have zj+1Qz

t
j+1 = (zjM)Q(Mztj) =

−zjQztj , since MQM = −Q. So the required result follows by induction. This

proves (c).

Part (d) is proven in the same manner; only the initial condition is different. For

parts (e) and (f), one repeats the argument using the matrices

Q =

(
7 −5
−5 −7

)
, M =

(
68 35
35 18

)
.

Once again, the argument works because MQM = −Q.

Remark 20. It is well known that if a sequence rj satisfies a second-order ho-

mogenous recurrence relation, then r2
j satisfies a third-order recurrence relation,

but in certain exceptional circumstances, r2
j may satisfy a second-order recurrence

relation, which is typically non-homogeneous [11]. In this respect, Lemma 15 is

perhaps somewhat surprising.

(i). We have B1 = (5 + 2i)2 + i2 = 20 + 20i and B′1 = 5ρ((2 + i)2 + 12) = B1,

while B2 = ρ((78 · 5 + 25 · 2 + (25 · 5 + 8 · 2)i)2 + (25 + 8i)2) = 124480 + 174280i,

and B′2 = 5((68 · 2 + 35 + (35 · 2 + 18)i)2 + (68 + 35i)2) = B2. From Lemma 15(c)

and (d), we have for all j,

Bj+2 = 7398ρ(Bj+1)−Bj + (−1)jρj+1(17500− 24500i+ 2500− 3500i)

= 7398ρ(Bj+1)−Bj + (−1)jρj+1(20000− 28000i),

and from Lemma 15(e) and (f), we have

B′j+2 = 7398ρ(B′j+1)−Bj − (−1)j5ρj(700− 500i+ 4900− 3500i)

= 7398ρ(Bj+1)−Bj − (−1)jρj(28000− 20000i) = Bj+2.

Hence, Bj = B′j for all j.
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(ii). Regarding Aj and Bj as complex numbers, one has KAj
= i

4 (AjBj−AjBj).
Hence, when j is odd,

KAj
=
i

4
(z2
a,j z̄

2
b,j − z̄2

a,jz
2
b,j) = (xa,jyb,j − xb,jya,j)(xa,jxb,j + ya,jyb,j),

while when j is even,

KAj =
i

4
(ρ(z2

a,j)ρ(z̄2
b,j)− ρ(z̄2

a,j)ρ(z2
b,j) =

i

4
(z̄2
a,jz

2
b,j − z2

a,j z̄
2
b,j)

= −(xa,jyb,j − xb,jya,j)(xa,jxb,j + ya,jyb,j).

It is easy to see that xa,jxb,j + ya,jyb,j > 0. Moreover, xa,jyb,j − xb,jya,j is the area

Kj of the parallelogram Pj spanned by za,j and zb,j . So we are required to show

that (−1)j+1Kj > 0 for all j. For j = 1, one has K1 = 5. Furthermore, Pj+1 is the

image of Pj under the linear transformation with matrix M =

(
78 25
25 8

)
, which

has determinant −1. Hence, Kj = (−1)j+15, giving the required result.

A similar reasoning applies for KCj
. Here

KCj
= (−1)j25

i

4
(z2
c,j z̄

2
d,j−z̄2

c,jz
2
d,j) = (−1)j25 (xc,jyd,j−xd,jyc,j)(xc,jxd,j+yc,jyd,j).

Setting Kj = xc,jyd,j − xd,jyc,j , one argues as before, using K1 = −4 and the fact

that

(
68 35
35 18

)
has determinant −1.

(iii). As observed above, the lengths (aj , bj , cj , dj) are determined by the recur-

rence relation of Equation (84) with

(a1, b1, c1, d1) = (29, 1, 25, 5) and (a2, b2, c2, d2) = (213481, 689, 184925, 29245).

The side OAj has length |z2
a,j |. Hence, as |z2

a,1| = 29 and from Equation (86),

|z2
a,2| = (78 ·5+25 ·2)2 +(25 ·5+8 ·2)2 = 213481, so Lemma 15(b) gives |OAj | = aj

for all j. By the same reasoning, the sides AjBj , BjCj , CjO have lengths bj , cj , dj ,

respectively.

(iv). We have aj + bj = |z2
a,j |+ |z2

b,j | and cj +dj = (|z2
c,j |+ |z2

d,j |). So aj + bj and

cj + dj satisfy the recurrence relation of Equation (84), by Lemma 15(b). Hence,

since a1 +b1 = 30 = c1 +d1 and a2 +b2 = 214170 = c2 +d2, we have aj+bj = cj+dj
for all j, as required.

(v). As we saw above, aj + bj + cj + dj satisfies recurrence relation (84) and

a1 + b1 + c1 + d1 = 60 and a2 + b2 + c2 + d2 = 428340. From above,

KAj = (−1)j+1 i

4
(z2
a,j z̄

2
b,j − z̄2

a,jz
2
b,j), KCj = (−1)j25

i

4
(z2
c,j z̄

2
d,j − z̄2

c,jz
2
d,j).

One finds easily that KA1
+KC1

= 60 and KA1
+KC1

= 428340. So it remains to

show that KAj
+ KCj

satisfies Equation (84). In fact, we will show that KAj
and
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KCj
both satisfy Equation (84). As we saw in the proof of property (ii),

KAj = (−1)j+1(xa,jyb,j − xb,jya,j)(xa,jxb,j + ya,jyb,j),

and (−1)j+1(xa,jyb,j − xb,jya,j) = 5. So we will show that rj := xa,jxb,j + ya,jyb,j
satisfies Equation (84). Using Equation (86) three times, we have

rj+2 = 6709xa,j+1xb,j+1 + 2150xb,j+1ya,j+1 + 2150xa,j+1yb,j+1 + 689ya,j+1yb,j+1

= 49633181xa,jxb,j + 15905700xb,jya,j + 15905700xa,jyb,j + 5097221ya,jyb,j

= 7398rj+1 − rj ,

as required. The proof that KCj
satisfies Equation (84) is obtained in exactly the

same manner, using Equation (87).

Remark 21. We have just determined all extangential LEQs with side lengths

a, b, c, d that have (Σ, T ) = (45, 50) and c is divisible by 5. However, there are

extangential LEQs with (Σ, T ) = (45, 50) for which c is not divisible by 5. Here

are two examples: the LEQ with vertices A = (6300, 4505), B = (6320, 4520), C =

(861, 620) and side lengths 7745, 25, 6709, 1061, and the LEQ with vertices A =

(33303495, 46624900), B = (33410980, 46775380), C = (4562280, 6387199) and side

lengths 57297505, 184925, 49633181, 7849249.

Remark 22. By Remark 18, an extangential LEQ OABC is concave if and only

if Σ > 8a+b
a−c = 8h. As we saw above, for extangential LEQs with (Σ, T ) = (45, 50),

we have h = 15
2 . So all extangential LEQs with (Σ, T ) = (45, 50) are convex.

3.4. Theorem 3 from Theorem 4

As in the previous subsection, let OABC be a non-kite extangential LEQ with sides

a, b, c, d and with its excircle outside the vertex B. As explained in Remark 12, we

may assume a = max{a, b, c, d} and b = min{a, b, c, d}. We introduce some new

variables.

Definition 5. Let x = a + b, y = a − c, z = c − b. By Lemma 14, Σ and T both

divide 8x2. Define k by 8x2 = kT . By Remark 16, Σ < T . Let Σ′ = T − Σ.

From our previous observations we now extract four important consequences.

• By Lemma 12(b), 16Σx2 = kx2(Σ−8)−8x2z2, so Σ = 8(k+z2)
k−16 . In particular,

k > 16.

• By Lemma 12(a), 8x2Σ′ = y2ΣT = 1
k8x2y2Σ, so Σ′ = y2Σ

k and thus T =

Σ + Σ′ = (k+y2)Σ
k .

• From the definitions, x =
√

k(Σ+Σ′)
8 .
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• By Lemma 13, (c− b)T < (a− b)Σ, so by (b), z(k+ y2) < k(y+ z) and hence

yz < k.

It follows that the hypotheses of Theorem 4 are satisfied. So one of the following

holds:

(a) (Σ,Σ′) = (9, 9), (12, 24), (16, 16), (24, 12), (10, 40), (40, 10) or (18, 32),

(b) (Σ,Σ′) = (5m2, 5) for some integer m for which there exists integers n, Y, Z

such that m2 − 10n2 = −1 and (5m2 − 8)Y 2 = 5 + 8Z2,

(c) (Σ,Σ′) = (m2, 1) for some integer m for which there exists integers n, Y, Z

such that m2 − 2n2 = −1 and (m2 − 8)Y 2 = 1 + 8Z2.

In case (a), we have

(Σ, T ) = (9, 18), (12, 36), (16, 32), (24, 36), (10, 50), (40, 50) or (18, 50).

Note that in the cases (Σ, T ) = (12, 36), (16, 32), (24, 36), (10, 50), (40, 50), we have

Σ(T −Σ) = 8T , so these are all degenerate cases which are excluded by Remark 18.

Thus (Σ, T ) = (9, 18) or (18, 50), as required.

In case (b), we have (Σ, T ) = (5m2,m2 + 5), and in case (c), we have (Σ, T ) =

(m2,m2 + 1), as required.

3.5. Proof of Theorem 4

The proof of Theorem 4 will occupy us for most of the rest of this paper. The

general strategy is to analyse the different possibilities for the ratio Σ′/Σ. Suppose

Σ′ = u
vΣ, where u, v ∈ N and gcd(u, v) = 1. From the definition of Σ′, we have

vy2 = uk. Then the assumption k > yz gives vy2 > uyz so vy > uz. From the

definition of x, we have

x =

√
k(Σ + Σ′)

8
=

√
y2(u+ v)Σ

8u
. (88)

From the definition of Σ, we have

Σ(vy2 − 16u) = 8(uz2 + vy2). (89)

Throughout this subsection, we use the following notation.

Definition 6. For an integer n, we let f(n) denote the square-free part of n, and

write n = f(n)s2(n).

Since vy2 = uk and gcd(u, v) = 1, we have that f(u)s(u) divides y, say y =

f(u)s(u)y′. So vy > uz gives

vy′ > s(u)z. (90)
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Furthermore, y2 = f(u)uy′2 and Equation (89) gives

Σ(vf(u)y′2 − 16) = 8(z2 + vf(u)y′2), (91)

and from Equation (88) we have

x =

√
y′2f(u)(u+ v)Σ

8
. (92)

We split the problem up into 6 cases:

1. u is odd, v is even and the 2-adic order of v is even.

2. u is odd, v is even and the 2-adic order of v is odd.

3. u is even, v is odd and the 2-adic order of u is even.

4. u is even, v is odd and the 2-adic order of u is odd.

5. u and v are both odd and the 2-adic order of u+ v is even.

6. u and v are both odd and the 2-adic order of u+ v is odd.

In each case, we make several change of variables. These will be introduced as we

go along, but for the convenience of the reader, we summarize the main variables

in Table 7.

Case Σ w y z
1 2f(u+ v)f(u)w2 f(v)s(v)w′ f(u)s(u)f(v)y′′ f(v)s(v)f(u)z′′

2 2f(u+ v)f(u)w2 1
2f(v)s(v)w′ 1

2f(u)s(u)f(v)y′′ 1
2f(v)s(v)f(u)z′′

3 2f(u+ v)f(u)w2 f(v)s(v)w′ f(u)s(u)f(v)y′′ 1
4f(v)s(v)f(u)z′

4 1
2f(u+ v)f(u)w2 f(v)s(v)w′ f(u)s(u)f(v)y′′ 1

2f(v)s(v)f(u)z′

5 2f(u+ v)f(u)w2 f(v)s(v)w′ f(u)s(u)f(v)y′′ f(v)s(v)f(u)z′

6 1
2f(u+ v)f(u)w2 f(v)s(v)w′ f(u)s(u)f(v)y′′ f(v)s(v)f(u)z′

Table 7: Variable changes.

Remark 23. There are 29 lemmas in the following proof. For each of these, the

stated result is only valid under the assumptions of the particular case (1 through 6)

in which the lemma occurs. In each lemma, the function f is defined in Definition 6,

the variables u, v are as defined at the start of this subsection, and the variables w′

and y′′ are given in Table 7 for the particular case in question.

Case 1. Assume u is odd, v is even and the 2-adic order of v is even.

We will show that in this case, (Σ,Σ′) = (40, 10) is the only possibility.

As x is an integer, and as u, u+ v are relatively prime odd integers, from Equa-

tion (92) we can write Σ = 2f(u + v)f(u)w2, for some w. Note v divides Σ as
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vΣ′ = uΣ and gcd(u, v) = 1. So v divides 2w2, and thus as the 2-adic order of v

is even, v divides w2. Hence, f(v)s(v) divides w. Thus, setting w = f(v)s(v)w′ we

have Σ = 2f(u+ v)f(u)f(v)vw′2 and Equation (91) gives

f(u+ v)f(u)f(v)vw′2(vf(u)y′2 − 16) = 4(z2 + vf(u)y′2). (93)

Thus vf(u) divides 4z2, so f(v)s(v)f(u) divides 2z, say 2z = f(v)s(v)f(u)z′. So

Inequality (90) gives 2vy′ > s(u)f(v)s(v)f(u)z′ and hence

2s(v)y′ > f(u)s(u)z′, (94)

and Equation (93) gives

f(u+ v)f(v)w′2(vf(u)y′2 − 16) = f(v)f(u)z′2 + 4y′2. (95)

Hence, f(v) divides 4y′2. Since the 2-adic order of v is even, f(v) is odd, so f(v)

divides y′. Let y′ = f(v)y′′. Then Inequality (94) gives 2f(v)s(v)y′′ > f(u)s(u)z′,

and Equation (95) gives f(u + v)w′2(vf2(v)f(u)y′′2 − 16) = f(u)z′2 + 4f(v)y′′2.

From this last equation, notice that as v is even and f(u) is odd, z′ must be even,

say z′ = 2z′′. Then Inequality (94) gives f(v)s(v)y′′ > f(u)s(u)z′′ and so

vf(v)y′′2 > uf(u)z′′2, (96)

and Equation (95) gives

f(u+ v)w′2(vf2(v)f(u)y′′2 − 16) = 4(f(u)z′′2 + f(v)y′′2). (97)

Note that from the left-hand side of Equation (97), we have

vf2(v)f(u)y′′2 > 16.

Furthermore, Inequality (96) and Equation (97) give

uf(u+ v)w′2(vf2(v)f(u)y′′2 − 16) < 4(v + u)f(v)y′′2.

Hence,

w′2 <
4

f(v + u)

(
1

uf(u)f(v)
+

1

vf(v)f(u)

)(
1 +

16

vf2(v)f(u)y′′2 − 16

)
. (98)

A slightly weaker but useful consequence is

w′2 < 4

(
1

uf(u)f(v)
+

1

vf(v)f(u)

)(
1 +

16

vf2(v)f(u)y′′2 − 16

)
. (99)

We will use Inequalities (98) and (99) repeatedly to derive contradictions with the

fact that, being a positive integer, w′ ≥ 1. Note that Inequality (98) is only useful

when we know something about f(u+v), so Inequality (99) will be more commonly

applied. Even so, we sometimes only have information about uf(u), and not about

f(u), for which we use the trivial bound f(u) ≥ 1.
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v 4 12 16 20 28 36 44 48 52 64 80 100
f(v) 1 3 1 5 7 1 11 3 13 1 5 1
vf(v) 4 36 16 100 196 36 484 144 676 64 400 100
vf2(v) 4 108 16 500 1372 36 5324 432 8788 64 2000 100

Table 8: The first twelve even positive integers with even 2-adic order.

Remark 24. The first twelve possible values of v are shown in Table 8. Notice that

the sequence vf(v) is not monotonically increasing in v. By the Case 1 hypothesis,

v is divisible by 4, so v ≥ 4. It is easy to verify that the following hold:

• if v > 4, then v ≥ 12, vf(v) ≥ 16 and vf2(v) ≥ 16,

• if vf2(v) ≥ 16, then either v = 16 or vf(v) ≥ 36 and vf2(v) ≥ 36,

• if vf2(v) ≥ 36, then either v = 36 or vf(v) ≥ 64 and vf2(v) ≥ 64,

• if vf2(v) ≥ 64, then either v = 64 or vf(v) ≥ 100 and vf2(v) ≥ 100.

Note also that if u > 1, then u ≥ 3 and uf(u) ≥ 9.

Lemma 16. Either u = 1 or v = 4 or y′′ = 1.

Proof. It suffices to note that if u > 1, v > 4 and y′′ > 1, then Inequality (99) would

give

w′2 < 4

(
1

9
+

1

16

)(
1 +

16

16 · 4− 16

)
=

25

27
< 1,

which is a contradiction.

Lemma 17. We have y′′ 6= 1.

Proof. Suppose y′′ = 1. Then Inequality (96) gives vf(v) > uf(u)z′′2 ≥ uf(u).

Also, from Inequality (94), vf2(v)f(u) > 16. So if v = 4, then vf(v) = vf2(v) = 4

and hence f(u) > 4, contradicting the fact that vf(v) > uf(u). Hence, v > 4 and

so, by Remark 24, vf2(v) ≥ 16. By Remark 24 again, if vf2(v) = 16, then v = 16,

in which case vf2(v)f(u) > 16 gives f(u) ≥ 3, so u ≥ 3 and uf(u) ≥ 9. Then

Inequality (99) would give

w′2 < 4

(
1

9
+

1

48

)(
1 +

16

48− 16

)
=

19

24
< 1,

which is a contradiction. Thus vf(v) > 16 and hence vf2(v) ≥ 36 and vf(v) ≥
36, by Remark 24. Then if u > 1 one would have u ≥ 3 and uf(u) ≥ 9 and

Inequality (99) would give

w′2 < 4

(
1

9
+

1

36

)(
1 +

16

36− 16

)
= 1,
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which is a contradiction. So u = 1. Then Inequality (99) gives

w′2 < 4

(
1

1
+

1

36

)(
1 +

16

36− 16

)
=

37

5
,

and hence w′ = 1 or 2. Now, Equation (97) gives

f(1 + v)w′2(vf2(v)− 16) = 4(z′′2 + f(v)). (100)

By Remark 24, if vf2(v) ≥ 36, then either v = 36, or vf(v) ≥ 64 and vf2(v) ≥ 64.

If v = 36, then Inequality (98) gives

w′2 <
4

37

(
1

1
+

1

36

)(
1 +

16

36− 16

)
=

1

5
,

which is a contradiction. So vf(v) ≥ 64 and vf2(v) ≥ 64. Now, if vf2(v) = 64,

then Inequality (98) gives

w′2 <
4

65

(
1

1
+

1

64

)(
1 +

16

64− 16

)
=

1

12
,

which is a contradiction. So by Remark 24, vf(v) ≥ 100 and vf2(v) ≥ 100. Notice

that f(v) = 1, 3 or f(v) ≥ 5. If f(v) ≥ 5, then Inequality (99) gives

w′2 < 4

(
1

5
+

1

100

)(
1 +

16

100− 16

)
= 1,

which is a contradiction. So f(v) = 1 or 3. If f(v) = 3, then Equation (100) gives

f(1+v)w′2(9v−16) = 4z′′2+12, with w′ = 1 or 2, so modulo 3, −f(1+v) ≡ z′′2. But

if f(v) = 3, then v+1 ≡ 1 (mod 3). Hence, since v+1 = f(v+1)s2(v+1), we have

f(v+1) ≡ 1 (mod 3). But then−1 ≡ z′′2 (mod 3), which is impossible. So f(v) = 1

and hence v is an even square, v = 4n2 say. Notice that as vf2(v) ≥ 100 and

f(v) = 1, we have n ≥ 5. Equation (100) gives f(1 + 4n2)w′2(4n2− 16) = 4z′′2 + 4,

hence

f(1 + 4n2)w′2(n2 − 4) = z′′2 + 1.

This is impossible modulo 4 if w′ = 2, so w′ = 1. So

f(1 + 4n2)(n2 − 4) = z′′2 + 1. (101)

Note that f(1 + 4n2) 6= 1 since otherwise 1 + 4n2 would be a square, which is

impossible. So, as the prime divisors of 12+(2n)2 are all congruent to 1 modulo 4, we

have f(1 + 4n2) ≥ 5. Now, Inequality (96) gives 4n2 > z′′2. Hence, Equation (101)

gives

5(n2 − 4) ≤ f(1 + 4n2)(n2 − 4) = z′′2 + 1 < 4n2 + 1.

Thus n2 < 21, but this is impossible as n ≥ 5. Hence, y′′ = 1 is not possible.
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Lemma 18. If u = 1, then v = 4.

Proof. Suppose u = 1 and v > 4. So vf(v) ≥ 16 and vf2(v) ≥ 16, by Remark 24.

From Lemma 17, y′′ ≥ 2. Then Inequality (99) gives

w′2 < 4

(
1

1
+

1

16

)(
1 +

16

16 · 4− 16

)
=

17

3
,

so w′ = 1 or 2. Note that if f(v) ≥ 5, then v ≥ 20, vf(v) ≥ 100 and vf2(v) ≥ 500,

so Inequality (99) gives

w′2 < 4

(
1

5
+

1

100

)(
1 +

16

500 · 4− 16

)
=

105

124
< 1,

which is a contradiction. So f(v) = 1 or 3. First suppose that f(v) = 3. Then

v ≥ 12, vf(v) ≥ 36 and vf2(v) ≥ 108, so Inequality (99) gives

w′2 < 4

(
1

3
+

1

36

)(
1 +

16

108 · 4− 16

)
=

3

2
,

so w′ = 1. As f(v) = 3, v has the form 12n2, for some n. Then Equation (97) gives

f(1 + 12n2)(108n2y′′2 − 16) = 4z′′2 + 12y′′2, so

f(1 + 12n2)(27n2y′′2 − 4) = z′′2 + 3y′′2.

But then modulo 3, since f(1 + 12n2) ≡ 1, we have −1 ≡ z′′2, which is impossible.

So f(v) = 1. In this case, v is an even square; i.e., it has the form 4n2, for some n.

Then Equation (97) gives f(1 + 4n2)w′2(4n2y′′2 − 16) = 4z′′2 + 4y′′2, so

f(1 + 4n2)w′2(n2y′′2 − 4) = z′′2 + y′′2, (102)

where from above, w′ = 1 or 2. First suppose that w′ = 2. Then modulo 4 we have

0 ≡ z′′2 +y′′2, so y′′ and z′′ are both even, say y′′ = 2y′′′ and z′′ = 2z′′′. So we have

f(1 + 4n2)(4n2y′′′2 − 4) = z′′′2 + y′′′2, which modulo 4 gives 0 ≡ z′′′2 + y′′′2. So y′′′

and z′′′ are both even, say y′′′ = 2y4 and z′′′ = 2z4. So we have

f(1 + 4n2)(4n2y2
4 − 1) = z2

4 + y2
4 .

But now, arguing modulo 4 again, we have −1 ≡ z2
4 + y2

4 , which is impossible.

Hence, w′ = 1. Thus Equation (102) gives

f(1 + 4n2)(n2y′′2 − 4) = z′′2 + y′′2. (103)

Note that we can write 1 + 4n2 = f(1 + 4n2)m2, for m := s(1 + 4n2). Notice also

from Inequality (96) and Equation (103), f(1 + 4n2)(n2y′′2 − 4) < (4n2 + 1)y′′2, so

n2 − 4

y′′2
<

4n2 + 1

f(1 + 4n2)
= m2.
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Thus, as y′′ ≥ 2, we have n2 − 1 ≤ n2 − 4
y′′2 < m2, so n2 ≤ m2, and hence n ≤ m.

Then we have

f(1 + 4n2) =
1 + 4n2

m2
≤ 1

m2
+ 4.

If m = 1 then n = 1 and so v 6>4, which is a contradiction. So f(1+4n2) < 5. Thus,

as f(1 + 4n2) is odd, f(1 + 4n2) = 3. But this would imply that 1 + 4n2 is divisible

by 3 and hence 1 + n2 ≡ 0 (mod 3), which is impossible.

From Lemma 16, either u = 1, v = 4 or y′′ = 1. We saw in Lemma 17 that

y′′ 6= 1, and in Lemma 18 that if u = 1, then v = 4. So it remains to consider the

situation where v = 4. Assume for the moment that y′′ = 2. From Inequality (94),

vf2(v)f(u)y′′2 > 16, which gives f(u) > 1, so f(u) ≥ 3. From Inequality (96),

16 > uf(u)z′′2 which implies f(u) < 5. Hence, f(u) = 3 and again Inequality (96)

gives z′′ = 1. But then substituting f(u) = 3, v = 4, y′′ = 2, z′′ = 1 in Equation (97)

gives

f(u+ 4)w′2(4 · 3 · 4− 16) = 4(3 + 4) and so 8f(u+ 4)w′2 = 7,

which is impossible. Hence, y′′ ≥ 3.

If f(u) ≥ 3, Inequality (99) would give

w′2 < 4

(
1

9
+

1

4 · 3

)(
1 +

16

4 · 27 · 33 − 4

)
=

21

23
< 1,

which is a contradiction. So f(u) = 1. Then Inequality (99) gives

w′2 < 4

(
1

1
+

1

4

)(
1 +

16

4 · 9− 16

)
= 9,

so w′ = 1 or 2. As f(u) = 1, u is a square. First suppose u > 1. So u ≥ 9. Since u

is a square, u+ 4 cannot be a square and thus f(u+ 4) ≥ 3. Then Inequality (98)

gives

w′2 <
4

3

(
1

9
+

1

4

)(
1 +

16

4 · 33 − 4

)
=

13

15
< 1,

which is a contradiction. Hence, u = 1. Now, Equation (97) gives 5w′2(4y′′2−16) =

4z′′2 + 4y′′2, so 5w′2(y′′2− 4) = z′′2 + y′′2. If w′ = 2 we have 19y′′2 = z′′2 + 80. But

modulo 19 this gives z′′2 ≡ −4, which is impossible. So w′ = 1 and we have 4y′′2 =

z′′2 + 20 and so z′′ is even, say z′′ = 2z′′′, and then y′′2 = z′′′2 + 5. It follows that

z′′′ = 2 and y′′ = 3. This is the required solution: Σ = 2f(u+ v)f(u)f(v)vw′2 = 40

and Σ′ = uΣ/v = 10.

Case 2. Assume u is odd, v is even and the 2-adic order of v is odd.

We will show that in this case, (Σ,Σ′) = (24, 12) is the only possibility.
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As x is an integer, from Equation (92) we can write Σ = 2f(u + v)f(u)w2, for

some w. Since v divides Σ, it follows that v divides 2w2, and as the 2-adic order

of v is odd, f(v)s(v) divides 2w. Thus, setting 2w = f(v)s(v)w′, then we have

2Σ = f(u+ v)f(u)f(v)vw′2 and Equation (91) gives

f(u+ v)f(u)f(v)vw′2(vf(u)y′2 − 16) = 16(z2 + vf(u)y′2). (104)

Thus vf(u) divides 16z2, so f(v)s(v)f(u) divides 4z, say 4z = f(v)s(v)f(u)z′. So

Inequality (90) gives 4vy′ > s(u)f(v)s(v)f(u)z′ and hence

4s(v)y′ > f(u)s(u)z′, (105)

and Equation (104) gives

f(u+ v)f(v)w′2(vf(u)y′2 − 16) = f(v)f(u)z′2 + 16y′2. (106)

Hence, f(v) divides 16y′2. Since the 2-adic order of v is odd, f(v) divides 2y′.

Let 2y′ = f(v)y′′. Then Inequality (105) gives 2f(v)s(v)y′′ > f(u)s(u)z′, and

Equation (106) gives f(u + v)w′2(vf2(v)f(u)y′′2 − 64) = 4f(u)z′2 + 16f(v)y′′2.

From this last equation, notice that as v, f(v) are even and f(u) is odd, z′ must be

even, say z′ = 2z′′. So we have f(v)s(v)y′′ > f(u)s(u)z′′ and so

vf(v)y′′2 > uf(u)z′′2, (107)

and

f(u+ v)w′2(vf2(v)f(u)y′′2 − 64) = 16(f(u)z′′2 + f(v)y′′2). (108)

Note that from the left-hand side of Equation (108), we have

vf2(v)f(u)y′′2 > 64. (109)

Furthermore, Inequality (107) and Equation (108) give

uf(u+ v)w′2(vf2(v)f(u)y′′2 − 64) < 16(v + u)f(v)y′′2.

Hence,

w′2 <
16

f(u+ v)

(
1

uf(u)f(v)
+

1

vf(v)f(u)

)(
1 +

64

vf2(v)f(u)y′′2 − 64

)
(110)

and consequently

w′2 < 16

(
1

uf(u)f(v)
+

1

vf(v)f(u)

)(
1 +

64

vf2(v)f(u)y′′2 − 64

)
. (111)

Lemma 19. We have f(v) = 2.
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Proof. Assume that f(v) > 2. So f(v) ≥ 6, vf(v) ≥ 36, vf2(v) ≥ 216. We first

show that f(u) = 1. Indeed, if f(u) > 1, then f(u) ≥ 3, uf(u) ≥ 9 and for all y′′,

Inequality (111) would give

w′2 < 16

(
1

9 · 6
+

1

36 · 3

)(
1 +

64

216 · 3− 64

)
=

36

73
< 1,

which is a contradiction. So f(u) = 1. Hence, u is a square. Moreover, Equa-

tion (108) gives

f(u+ v)w′2(vf2(v)y′′2 − 64) = 16(z′′2 + f(v)y′′2). (112)

Since f(v) is even and square-free, the five smallest possible values of f(v) are

2, 6, 10, 14, 22. If f(v) > 14, then f(v) ≥ 22, so v ≥ 22 and for all u, y′′, Inequal-

ity (111) would give

w′2 < 16

(
1

22
+

1

222

)(
1 +

64

223 − 64

)
=

1012

1323
< 1,

which is a contradiction. So f(v) ≤ 14. Now, suppose f(v) = 14. Here v ≥ 14 and

Inequality (111) gives

w′2 < 16

(
1

14
+

1

142

)(
1 +

64

143 − 64

)
=

84

67
< 2,

so w′ = 1. Furthermore, v is divisible by 7, so as gcd(u, v) = 1 and u is a square,

u + v ≡ 1, 2 or 4 (mod 7), and thus f(u + v) ≡ 1, 2 or 4 (mod 7). Modulo 7,

Equation (112) gives −f(u + v) ≡ 2z′′2, so z′′2 ≡ 3, 6, 5, respectively, but these

congruences have no solutions. So f(v) 6= 14.

Now, suppose f(v) = 10. Here Inequality (111) gives

w′2 < 16

(
1

10
+

1

102

)(
1 +

64

103 − 64

)
=

220

117
< 2,

so w′ = 1. Then Equation (112) gives f(u + v)(100vy′′2 − 64) = 16(z′′2 + 10y′′2).

We have v = 10m2, for some m. So

f(u+ 10m2)(125(my′′)2 − 8) = 2(z′′2 + 10y′′2). (113)

As f(u) = 1, we have u = n2, for some odd n. First suppose f(n2 + 10m2) = 1.

So n2 + 10m2 = r2, for some odd r. Then 1 + 2m2 ≡ 1 (mod 4), and hence m

must be even, say m = 2m′. So Equation (113) gives 250(m′y′′)2− 4 = z′′2 + 10y′′2

and hence z′′ is even, say z′′ = 2z′′′. So 125(m′y′′)2 − 2 = 2z′′′2 + 5y′′2. But one

readily verifies that modulo 16, this equation has no solution for m′, y′′, z′′′. Thus

f(n2 + 10m2) ≥ 3. Then Inequality (110) gives

w′2 <
16

3

(
1

10
+

1

102

)(
1 +

64

103 − 64

)
=

220

351
< 1,
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v 2 8 18 32 50 72 98 128 162 200
vf(v) 4 16 36 64 100 144 196 256 324 400
vf2(v) 8 32 72 128 200 288 392 512 648 800

Table 9: The first ten positive integers v with f(v) = 2.

which is a contradiction. So f(v) 6= 10.

Now, suppose f(v) = 6. Here Inequality (111) gives

w′2 < 16

(
1

6
+

1

62

)(
1 +

64

63 − 64

)
=

84

19
< 5,

so w′ = 1 or 2. Furthermore, v is divisible by 3, so as gcd(u, v) = 1 and u is a

square, u + v ≡ 1 (mod 3), and thus f(u + v) ≡ 1 (mod 3). Hence, modulo 3,

Equation (112) gives −1 ≡ z′′2, which is impossible. So f(v) 6= 6.

Remark 25. By the previous lemma, f(v) = 2. So v has the form v = 2m2 for

some m. The first ten possible values of v are shown in Table 9. In particular,

v ≥ 2, vf(v) ≥ 4 and vf2(v) ≥ 8. Furthermore, here are some obvious useful facts:

(a) If v > 32, then vf(v) ≥ 100, vf2(v) ≥ 200, while v ≤ 32 only for v = 2, 8, 18

and 32.

(b) If v > 98, then vf(v) ≥ 256, vf2(v) ≥ 512, while v ≤ 98 only for v =

2, 8, 18, 32, 50, 72 and 98.

(c) If u > 1, then u ≥ 3 and uf(u) ≥ 9. Furthermore, if u > 3 and u 6= 9, then

uf(u) ≥ 25. And if u > 5 and u 6= 25, then uf(u) ≥ 49.

Lemma 20. Either u = 1 or v = 2 or y′′ = 1.

Proof. Suppose u > 1 and y′′ ≥ 2. We will show that v = 2. Let us assume for the

moment that v > 98, so vf(v) ≥ 256, vf2(v) ≥ 512 by Remark 25(b). We also have

uf(u) ≥ 9 by Remark 25(c). Then using f(u) ≥ 1, Inequality (111) gives

w′2 < 16

(
1

9 · 2
+

1

256

)(
1 +

64

512 · 4− 64

)
=

274

279
< 1,

which is a contradiction. So v ≤ 98, and thus, as mentioned in the above remark,

v = 2, 8, 18, 32, 50, 72 or 98. Our goal is to exclude the last 6 of these 7 possible

v-values. We will first consider the cases u = 3 and u = 9. Note that of our

6 v-values of interest, we need only consider the ones relatively prime to 3; that

is, 8, 32, 50, 98. For these four v-values, if u = 3, then 16
f(3+v) ( 1

9f(v) + 1
3vf(v) )(1 +

64
3vf2(v)y′′2−64 ) takes the respective values 2

15 ,
2
69 ,

4
219 ,

4
435 , and as these values are all
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less than 1, we obtain a contradiction from Inequality (110). Similarly, if u = 9,

then 16
f(9+v) ( 1

9f(v) + 1
vf(v) )(1+ 64

vf2(v)22−64 ) takes the respective values 2
9 ,

2
63 ,

4
207 ,

4
423 ,

and as these values are also all less than 1, we again obtain a contradiction from

Inequality (110). So we may assume that u > 3 and u 6= 9. Then by Remark 25(c),

we have uf(u) ≥ 25 and for the five v-values v = 18, 32, 50, 72, 98, respectively, one

finds that 16( 1
25f(v) + 1

vf(v) )(1 + 64
vf2(v)22−64 ) takes the values 172

175 ,
114
175 ,

12
23 ,

194
425 ,

492
1175 .

As these values are all less than 1, we obtain a contradiction from Inequality (111).

It remains to treat the case v = 8, with u > 3 and u 6= 9. First note that in this

case, uf(u) ≥ 25 by Remark 25(c), and if f(u) > 1, then f(u) ≥ 3. But then

Inequality (111) gives

w′2 < 16

(
1

25 · 2
+

1

16 · 3

)(
1 +

64

32 · 3 · 4− 64

)
=

98

125
< 1,

which is a contradiction. So we may assume f(u) = 1, i.e., u is a square. But then,

as u > 1, u+ 8 is not a square and so f(u+ 8) ≥ 3. Then Inequality (110) gives

w′2 <
16

3

(
1

25 · 2
+

1

16

)(
1 +

64

32 · 4− 64

)
=

22

25
< 1,

which is a contradiction. Hence, v = 8 is impossible. Thus v = 2.

Lemma 21. If y′′ = 1, then u = 1.

Proof. Suppose y′′ = 1, and arguing by contradiction, suppose u > 1. Note that

Inequality (107) gives vf(v) > uf(u)z′′2 ≥ uf(u). Also, by Inequality (109),

vf2(v)f(u) > 64. So if v = 2, then vf2(v) = 8 and hence f(u) > 8, contra-

dicting the fact that vf(v) > uf(u). Hence, v > 2. By Lemma 19, f(v) = 2. So,

as v > 2, we have v = 2m2 for some m ≥ 2. Notice also that if m = 2, then

vf2(v) = 32, and so vf2(v)f(u) > 64 gives f(u) > 1.

If m ≥ 11, then as uf(u) ≥ 9 by Remark 25(c), Inequality (111) gives

w′2 < 16

(
1

9 · 2
+

1

4m2

)(
1 +

64

8m2 − 64

)
=

1004

1017
< 1,

which is a contradiction. So we need only consider 2 ≤ m ≤ 10. First consider

u = 3 and u = 9. The numbers v = 2m2 with 2 ≤ m ≤ 10 and gcd(u, v) = 1

are given by m = 2, 4, 5, 7, 8, 10. For u = 3 and m = 2, 4, 5, 7, 8, 10, the values of
16

f(3+2m2) ( 1
9·2 + 1

3·4m2 )(1 + 64
8m2·3−64 ) are respectively

1

3
,

1

30
,

4

201
,

4

417
,

1

138
,

1

219
.

As these values are all less than 1, we obtain a contradiction from Inequality (110).

Now, let u = 9. Here f(u) = 1 and so, as we observed at the beginning of this
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proof, m > 2. For m = 4, 5, 7, 8, 10, the values of 16
f(9+2m2) ( 1

9·2 + 1
4m2 )(1 + 64

8m2−64 )

are, respectively,
1

18
,

4

153
,

4

369
,

1

126
,

1

207
.

As these values are all less than 1, we again obtain a contradiction from Inequal-

ity (110).

From what we have just shown, we may suppose that u ≥ 5 and u 6= 9, so

uf(u) ≥ 25, by Remark 25(c). If m ≥ 5, then Inequality (111) gives

w′2 < 16

(
1

25 · 2
+

1

4 · 25

)(
1 +

64

8 · 25− 64

)
=

12

17
< 1,

which is a contradiction. It remains to treat the cases m = 2, 3, 4 for u ≥ 5 and

u 6= 9.

If u = 5, then for m = 2, 3, 4, the values of 16
f(5+2m2) ( 1

25·2 + 1
5·4m2 )(1 + 64

8m2·5−64 )

are respectively 1
15 ,

4
185 ,

1
90 , which is impossible by Inequality (110). Similarly, if

u = 25, then for m = 3, 4, the values of 16
f(25+2m2) ( 1

25·2 + 1
4m2 )(1 + 64

8m2−64 ) are

respectively 4
25 ,

1
50 , which is again impossible by Inequality (110). For m = 2 we do

not need to consider u = 25 as f(25) = 1 and as we observed at the beginning of

this proof, f(u) > 1 for m = 2. Thus for m = 2, 3, 4, we may assume that u > 5

and u 6= 25.

For m = 4 with u > 5 and u 6= 25, we have uf(u) ≥ 49 by Remark 25(c), so

Inequality (111) gives

w′2 < 16

(
1

49 · 2
+

1

64

)(
1 +

64

64 · 2− 64

)
=

81

98
< 1,

which is a contradiction.

It therefore remains to treat the cases m = 2, 3 for u ≥ 7 and u 6= 25. First let

m = 2. Then as we saw at the beginning of the proof, f(u) ≥ 3. If f(u) ≥ 5, then

as uf(u) ≥ 49, Inequality (111) gives

w′2 < 16

(
1

49 · 2
+

1

16 · 5

)(
1 +

64

32 · 5− 64

)
=

89

147
< 1,

which is a contradiction. If f(u) = 3, then u is divisible by 3, so u+ v = u+ 8 ≡ 2

(mod 3), and hence u + v is not a square, and neither is it divisible by 3. So

f(u+v) 6= 1, and consequently f(u+v) ≥ 5. Thus, using uf(u) ≥ 49 and f(u) = 3,

Inequality (110) gives

w′2 <
16

5

(
1

49 · 2
+

1

16 · 3

)(
1 +

64

32 · 3− 64

)
=

73

245
< 1,

which is a contradiction. So the case m = 2 is also impossible.
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Finally, let m = 3. If f(u) ≥ 3, then as uf(u) ≥ 49, Inequality (111) gives

w′2 < 16

(
1

49 · 2
+

1

36 · 3

)(
1 +

64

72 · 3− 64

)
=

412

931
< 1,

which is a contradiction. If f(u) = 1, then u is a square, so u+ v = u+ 18 is not a

square. Thus f(u + v) 6= 1. Furthermore, u is not divisible by 3 since v = 18 and

gcd(u, v) = 1. So u + 18 is not divisible by 3. Hence, f(u + v) ≥ 5. Furthermore,

as uf(u) ≥ 49 and f(u) = 1, we have u ≥ 49. Thus Inequality (110) gives

w′2 <
16

5

(
1

u · 2
+

1

36

)(
1 +

64

72− 64

)
=

4(u+ 18)

5u
.

As w′ ≥ 1, we obtain u < 72, and so as u is an odd square with u ≥ 49, we have

u = 49. But then f(u+ v) = 57 and Inequality (110) gives a contradiction, as

w′2 <
16

67

(
1

49 · 2
+

1

36

)(
1 +

64

72− 64

)
=

4

49
< 1.

This completes the proof of the lemma.

Lemma 22. We have y′′ 6= 1.

Proof. Suppose y′′ = 1, so by the above lemma, u = 1. In this case, Equation (108)

gives

f(1 + v)w′2(vf2(v)− 64) = 16(z′′2 + f(v)). (114)

From Lemma 19, f(v) = 2, so v has the form v = 2m2 for some m. Then Equa-

tion (114) gives f(1 + v)w′2(8m2 − 64) = 16z′′2 + 32, so

f(1 + 2m2)w′2(m2 − 8) = 2z′′2 + 4. (115)

Notice that the 2-adic order is exactly 2, since on the right hand side it is 1 or

2 and on the left hand side at least 2. So z′′ is even, say z′′ = 2z′′′. Suppose

that m is even and write m = 2m′. After replacing and dividing by 4 one gets

f(1 + 8m′2)w′2(m′2 − 2) = 2z′′′2 + 1, so w′ and m′ are both odd. Observed modulo

8 this gives a contradiction, since the LHS is −1 and the RHS is 1 or 3 modulo 8.

Hence, m must be odd and thus, from Equation (115), w′ is necessarily even, say

w′ = 2w′′, giving

f(1 + 2m2)w′′2(m2 − 8) = 2z′′′2 + 1. (116)

From Inequality (107), we have m > z′′′. Thus, Equation (116) gives

w′′2 <
2m2 + 1

f(1 + 2m2)(m2 − 8)
. (117)

Notice that from Equation (116), we have m2 > 8, so m ≥ 3 and is odd. If m = 3,

then Inequality (117) gives w′′2 < 19
19 = 1, a contradiction. If f(1 + 2m2) = 3, then
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2m2+1
3(m2−8) ≤ 1 for m ≥ 5, which is another contradiction. Finally, if f(1 + 2m2) = 1

then w′′2 < 2m2+1
m2−8 ≤ 3 for m ≥ 5 and so w′′ = 1. Replacing each of f(1 + 2m2) and

w′′ by the value 1 in Equation (116) gives m2 = 2z′′2 + 9, which modulo 3 implies

either 1 ≡ 0 or 1 ≡ 2.

Lemma 23. If v = 2, then u = 1.

Proof. Suppose that v = 2 and u > 1. So by Remark 25(c), uf(u) ≥ 9. From the

previous lemma, y′′ ≥ 2. Assume for the moment that y′′ = 2. By Inequality (109),

vf2(v)f(u)y′′2 > 64, which gives f(u) > 2, so f(u) ≥ 3. Now, from Inequality (107),

we have uf(u)z′′2 < vf(v)y′′2 = 16. So uf(u) ≥ 9 gives z′ = 1, and then uf(u) < 16

and f(u) ≥ 3 give u = 3. Then f(u+ v) = 5 and so Inequality (110) gives

w′2 <
16

5

(
1

9 · 2
+

1

4 · 3

)(
1 +

64

8 · 3 · 4− 64

)
=

4

3
< 2,

so w′ = 1. But then, by Equation (108), 5(8 · 3 · 4− 64) = 16(3z′′2 + 8), which has

no integer solution for z′′. So y′′ ≥ 3.

Note that if f(u) ≥ 7, then u ≥ 7 and by Inequality (111)

w′2 < 16

(
1

49 · 2
+

1

4 · 7

)(
1 +

64

8 · 7 · 9− 64

)
=

324

385
< 1,

which is a contradiction. So it suffices to deal with the three cases f(u) = 1, 3, 5.

First suppose f(u) = 5. So uf(u) ≥ 25. As f(u) = 5 and v = 2, we have u+ v ≡ 2

(mod 5) and hence u + v is not a square. So f(u + v) ≥ 3. Hence, by Inequality

(110)

w′2 <
16

3

(
1

25 · 2
+

1

4 · 5

)(
1 +

64

8 · 5 · 9− 64

)
=

84

185
< 1,

which is a contradiction. So f(u) 6= 5. Now, suppose f(u) = 3. So uf(u) ≥ 9. We

have u + v ≡ 2 (mod 3) and hence u + v is not a square. So f(u + v) ≥ 3. But

f(u + v) 6= 3, because u + v ≡ 2 (mod 3). So f(u + v) ≥ 5. Hence, by Inequality

(110),

w′2 <
16

5

(
1

9 · 2
+

1

4 · 3

)(
1 +

64

8 · 3 · 9− 64

)
=

12

19
< 1,

which is a contradiction. So f(u) 6= 3. Finally, suppose f(u) = 1. Then Equa-

tion (108) gives

f(u+ v)w′2(y′′2 − 8) = 2(z′′2 + 2y′′2). (118)

As f(u) = 1, so u is an odd square, say u = n2. Thus, as u > 1 by hypothesis,

u ≥ 9. As u is a square, u+ 2 is not a square, so f(u+ v) ≥ 3. By Inequality (110),

w′2 <
16

3

(
1

9 · 2
+

1

4

)(
1 +

64

8 · 9− 64

)
=

44

3
< 15.
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So w′ = 1, 2 or 3. Suppose for the moment that y′′ = 3. Then as f(u + v) is

odd, w′ must be even, by Equation (118), so w′ = 2. Then Equation (118) gives

2f(u + v) = z′′2 + 18. It follows that z′′ must be even and hence f(u + v) ≥ 11.

But then Inequality (110) gives

w′2 <
16

11

(
1

9 · 2
+

1

4

)(
1 +

64

8 · 9− 64

)
= 4,

contradicting w′ = 2. Hence, y′′ ≥ 4.

Note that for y′′ ≥ 4, if f(u+ v) ≥ 11, then Inequality (110) would give

w′2 <
16

11

(
1

9 · 2
+

1

4

)(
1 +

64

8 · 16− 64

)
=

8

9
< 1,

which is a contradiction. So, as f(u + v) is square-free, f(u + v) = 3, 5 or 7. But

then u + v would be divisible by 3, 5, 7, respectively. Since there is no n for which

n2 + 2 ≡ 0 modulo 5 or 7, we conclude that f(u + v) = 3. Thus n2 + 2 = u + v is

divisible by 3 and hence n2 ≡ 1 (mod 3). Thus, for u > 1 we have n > 3 and thus

u ≥ 25. Then Inequality (110) gives

w′2 <
16

3

(
1

25 · 2
+

1

4

)(
1 +

64

8 · 16− 64

)
=

72

25
< 3.

So w′ = 1. But then Equation (118) would give 3(y′′2 − 8) = 2(z′′2 + 2y′′2), so

0 = 24 + 2z′′2 + y′′2, which is obviously impossible. Hence, u = 1.

Lemma 24. If u = 1, then v = 2.

Proof. Suppose that u = 1 and v > 2. So by Remark 25, v ≥ 8, vf(v) ≥ 16 and

vf2(v) ≥ 32. By Lemma 22, y′′ ≥ 2. Then Inequality (111) gives

w′2 < 16

(
1

2
+

1

16

)(
1 +

64

32 · 4− 64

)
= 18,

so w′ = 1, 2, 3 or 4. Lemma 19 and Equation (108) give

f(1 + v)w′2(vy′′2 − 16) = 4(z′′2 + 2y′′2), (119)

while, setting v = 2m2, Inequality (107) gives

(2m)2y′′2 > z′′2. (120)

Let us first dispense with the case v = 8. Suppose v = 8. Then f(1 + v) = 1 and

substituting in Equation (119), the four possibilities for w′ give:

• w′ = 1: 2(y′′2 − 2) = z′′2 + 2y′′2, so −4 = z′′2, which is obviously impossible.
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• w′ = 2: 8(y′′2 − 2) = z′′2 + 2y′′2, so 6y′′2 − 16 = z′′2, which is impossible

modulo 3.

• w′ = 3: 18(y′′2 − 2) = z′′2 + 2y′′2, so (4y)′′2 = z′′2 + 62, which is impossible

as there is no such Pythagorean triple.

• w′ = 4: 32(y′′2 − 2) = z′′2 + 2y′′2, so 30y′′2 − 64 = z′′2, which is impossible

modulo 3.

So v > 8 and hence v ≥ 18, vf(v) ≥ 36 and vf2(v) ≥ 72. Then Inequality (111)

gives

w′2 < 16

(
1

2
+

1

36

)(
1 +

64

72 · 4− 64

)
=

76

7
< 11,

so w′ = 1, 2 or 3. Substituting w′ = 3 in Equation (119) for v = 18 and 32 gives

respectively

19 · 9(9y′′2 − 8) = 2(z′′2 + 2y′′2) and 33 · 9(8y′′2 − 4) = z′′2 + 2y′′2.

However, neither of these equations has a solution modulo 64. So w′ = 1 or 2 for

v = 18 and 32. For v > 32 we have v ≥ 50 and Inequality (111) gives

w′2 < 16

(
1

2
+

1

100

)(
1 +

64

200 · 4− 64

)
=

204

23
< 9,

so w′ = 1 or 2. Thus we have w′ = 1 or 2 for all v ≥ 18.

First suppose w′ = 2. Note that if f(1 + 2m2) ≥ 3, then Inequality (120) and

Equation (119) give

12(m2y′′2 − 8) ≤ 4f(1 + 2m2)(m2y′′2 − 8) = 2(z′′2 + 2y′′2) < (8m2 + 4)y′′2,

so (m2 − 1)y′′2 < 24. But for v ≥ 18, we have m ≥ 3. So (m2 − 1)y′′2 < 24 gives

y′′2 < 3, hence y′′ = 1, contrary to Lemma 22. We conclude that f(1 + 2m2) = 1.

Thus Equation (119) gives 4(m2y′′2 − 8) = 2(z′′2 + 2y′′2), so

2(m2 − 1)y′′2 = z′′2 + 16.

Since f(1 + 2m2) = 1, we have that 1 + 2m2 is a square, say 1 + 2m2 = n2. But

investigations show that the simultaneous equations 2(m2 − 1)y′′2 = z′′2 + 16 and

1 + 2m2 = n2 have no integer solution modulo 128. Hence, w′ = 2 is impossible.

Finally, suppose w′ = 1. Note that if f(1+2m2) ≥ 11, then Inequality (120) and

Equation (119) give:

11(m2y′′2 − 8) ≤ f(1 + 2m2)(m2y′′2 − 8) = 2(z′′2 + 2y′′2) < (8m2 + 4)y′′2,
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so (3m2 − 4)y′′2 < 88. But for v ≥ 18, we have m ≥ 3 and so (3m2 − 4)y′′2 < 88

gives y′′2 < 88/23 < 4, hence y′′ = 1, contrary to Lemma 22. So f(1+2m2) = 1, 3, 5

or 7.

For f(1 + 2m2) = 7, Equation (119) gives 7(m2y′′2 − 8) = 2(z′′2 + 2y′′2), which

has no solution modulo 49. So f(1 + 2m2) 6= 7.

For f(1 + 2m2) = 5, Equation (119) gives 5(m2y′′2 − 8) = 2(z′′2 + 2y′′2), which

has no solution modulo 25. So f(1 + 2m2) 6= 5.

For f(1 + 2m2) = 1 and 3, the calculation is slightly more complicated. For

f(1 + 2m2) = 1 we consider the pair of the simultaneous equations m2y′′2 − 8 =

2(z′′2 + 2y′′2) and 1 + 2m2 = n2, while for f(1 + 2m2) = 3 we consider the pair of

the simultaneous equations 3(m2y′′2 − 8) = 2(z′′2 + 2y′′2) and 1 + 2m2 = 3n2. In

both cases one finds that the pair of equations has no solution modulo 64. Thus

w′ = 1 is also impossible.

Given the above lemmas, it remains to treat the case where u = 1, v = 2 and

y′′ ≥ 2. By Inequality (109), vf2(v)f(u)y′′2 − 64 > 0, so y′′2 > 8. Thus y′′ ≥ 3.

Then Inequality (110) gives

w′2 <
16

3

(
1

2
+

1

4

)(
1 +

64

8 · 9− 64

)
= 36,

so w′ ≤ 5. Equation (108) gives

3w′2(y′′2 − 8) = 2(z′′2 + 2y′′2), (121)

One finds that for w′ = 1, 3 and 5, Equation (121) has no solution modulo 64. So

w′ = 2 or 4.

For w′ = 4, Inequality (107) and Equation (121) give 48(y′′2 − 8) = 2(z′′2 +

2y′′2) < 12y′′2, so 3y′′2 < 32. Thus, as y′′ ≥ 3, we have y′′ = 3, and Equation (121)

gives z′′2 = 6, which is obviously impossible. So w′ = 2.

Finally, for w′ = 2, Equation (121) has a unique positive integer solution:

y′′ = z′′ = 4. From the definitions, for u = 1, v = 2, we have Σ = 2f(u +

v)f(u)vf(v)w′2/4 = 6w′2 = 24. Consequently, Σ′ = uΣ/v = 12. This is the

required case 2 solution.

Case 3. Assume u is even, v is odd, and the 2-adic order of u is even.

We will show that in this case, (Σ,Σ′) = (10, 40) and (18, 32) are the only two

possibilities.

As x is an integer, from Equation (92) we can write Σ = 2f(u + v)f(u)w2.

Note v divides Σ, so v divides w2, and hence f(v)s(v) divides w. Thus, setting

w = f(v)s(v)w′ we may write Σ = 2f(u + v)f(u)f(v)vw′2. Then Equation (91)

gives

f(u+ v)f(u)f(v)vw′2(vf(u)y′2 − 16) = 4(z2 + vf(u)y′2). (122)
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Thus vf(u) divides 16z2, so f(v)s(v)f(u) divides z, say z = f(v)s(v)f(u)z′. So

Inequality (90) gives vy′ > s(u)f(v)s(v)f(u)z′ and hence

s(v)y′ > f(u)s(u)z′, (123)

and Equation (122) gives

f(u+ v)f(v)w′2(vf(u)y′2 − 16) = 4(f(v)f(u)z′2 + y′2). (124)

Hence, f(v) divides y′. Let y′ = f(v)y′′. Then Inequality (123) gives f(v)s(v)y′′ >

f(u)s(u)z′ and so

vf(v)y′′2 > uf(u)z′2, (125)

and Equation (124) gives

f(u+ v)w′2(vf2(v)f(u)y′′2 − 16) = 4(f(u)z′2 + f(v)y′′2). (126)

Remark 26. Note that v, f(v), f(u) and f(u + v) are all odd. It follows from

Equation (126) that w′y′′ is even.

Note that from the left-hand side of Equation (126), we have

vf2(v)f(u)y′′2 > 16. (127)

Furthermore, Inequality (125) and Equation (126) give

uf(u+ v)w′2(vf2(v)f(u)y′′2 − 16) < 4(v + u)f(v)y′′2.

Hence,

w′2 <
4

f(u+ v)

(
1

uf(u)f(v)
+

1

vf(v)f(u)

)(
1 +

16

vf2(v)f(u)y′′2 − 16

)
(128)

and consequently

w′2 < 4

(
1

uf(u)f(v)
+

1

vf(v)f(u)

)(
1 +

16

vf2(v)f(u)y′′2 − 16

)
. (129)

Remark 27. Note that as u is even and the 2-adic order of u is even, we have

u ≥ 4. The first twelve possible values of u are the same as the v values shown in

Table 8.

Lemma 25. The following conditions hold.

(a) If f(u) > 1, then v = 1 and y′′ ≥ 7.

(b) f(u) ≤ 3.

(c) If y′′ ≥ 2, then f(v) = 1.
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Proof. (a). Suppose f(u) > 1, so f(u) ≥ 3, u ≥ 12 and uf(u) ≥ 36. Suppose also

that v ≥ 3, so vf(v) ≥ 9. Then for y′′ ≥ 1, Inequality (129) would give

w′2 < 4

(
1

9 · 3
+

1

36

)(
1 +

16

9 · 3− 16

)
=

7

11
< 1,

which is a contradiction. So v = 1. Then Inequality (125) gives y′′2 > uf(u)z′2 ≥
36, so y′′ ≥ 7.

(b). If f(u) > 3, then f(u) ≥ 5, u ≥ 20 and uf(u) ≥ 100. Then for y′′ ≥ 7,

Inequality (129) would give

w′2 < 4

(
1

20
+

1

5

)(
1 +

16

5 · 72 − 16

)
=

1029

1145
< 1,

which is a contradiction.

(c). Suppose y′′ ≥ 2 and f(v) ≥ 3, so vf(v) ≥ 9. For all u ≥ 4, Inequality (129)

gives

w′2 < 4

(
1

9
+

1

4 · 3

)(
1 +

16

27 · 4− 16

)
=

21

23
< 1,

which is a contradiction.

Lemma 26. We have f(u) = 1.

Proof. Suppose f(u) > 1. By Lemma 25, y′′ ≥ 7, v = 1 and f(u) = 3, and so

u ≥ 12. Now, Inequality (129) gives

w′2 < 4

(
1

3 · 12
+

1

3

)(
1 +

16

3 · 72 − 16

)
=

637

393
< 2,

so w′ = 1. Hence, Equation (126) gives

f(u+ v)(3y′′2 − 16) = 4(3z′2 + y′′2).

Modulo 3 we have y′′2 ≡ −f(u + v). In particular, f(u + v) = 1 is impossible. So

as u+ v is odd and gcd(u, u+ v) = 1, we have f(u+ v) ≥ 5. Then Inequality (128)

gives

w′2 <
4

5

(
1

3 · 12
+

1

3

)(
1 +

16

3 · 72 − 16

)
=

637

1965
< 1,

which is a contradiction.

Lemma 27. The following conditions hold.

(a) Either u = 4 or u = 16.

(b) If u = 4, then v = 1.
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(c) If u = 16, then v = 9.

Proof. (a). By Lemma 26, u is an even square, say u = 4n2. Suppose n ≥ 3, so u ≥
36. First suppose that y′′ = 1. Then Inequality (125) gives vf(v) > uf(u)z′2 ≥ 36.

Then Inequality (129) gives

w′2 < 4

(
1

36
+

1

36

)(
1 +

16

36− 16

)
=

2

5
< 1,

which is a contradiction. Hence, y′′ ≥ 2 and so by Lemma 25(c), f(v) = 1. Suppose

for the moment that v = 1. Then Inequality (125) gives y′′2 > uf(u)z′2 ≥ 36. So

y′′ ≥ 7. Moreover, u + v = 4n2 + 1 is not a square, and is not divisible by 3. So

f(u+ v) ≥ 5. Then Inequality (128) gives

w′2 <
4

5

(
1

36
+

1

1

)(
1 +

16

72 − 16

)
=

1813

1485
< 2,

so w′ = 1. Then Inequality (128) gives

f(u+ v) < 4

(
1

36
+

1

1

)(
1 +

16

72 − 16

)
=

1813

297
< 7,

so, as f(u+v) is odd and f(u+v) ≥ 5, we have f(u+v) = 5. Then Equation (126)

gives y′′2 = 4z′2+80. But we saw above that Inequality (125) gives y′′2 > uf(u)z′2 ≥
36z′2. So we have 4z′2 + 80 ≥ 36z′2 and hence 2z′2 < 5. Thus z′2 = 1. But then

y′′2 = 4z′2 + 80 has no integer solution for y′′. Consequently, v = 1 is not possible.

As f(v) = 1, we now have v ≥ 9. But then as y′′ ≥ 2, Inequality (129) gives

w′2 < 4

(
1

36
+

1

9

)(
1 +

16

9 · 4− 16

)
= 1,

which is a contradiction. We conclude that u = 4n2 with n ≤ 2.

(b). Let u = 4 and assume v > 1. First suppose that y′′ = 1. Then Inequal-

ity (125) gives vf(v) > uf(u)z′2 ≥ 4. Hence, vf(v) ≥ 9. Also, Inequality (127)

gives vf2(v)f(u)y′′2 > 16, so vf2(v) > 16. So v 6= 9, and consequently either

f(v) ≥ 3 or v is an odd square with v ≥ 25. In either case, vf2(v) ≥ 25.

First suppose that v is an odd square with v ≥ 25. Then u + v = 4 + v is

not a square, so f(u + v) > 1. Moreover, as v is a square 4 + v 6≡ 0 (mod 3), so

f(u+ v) 6= 3. Hence, f(u+ v) ≥ 5. Then Inequality (128) gives

w′2 <
4

5

(
1

4
+

1

25

)(
1 +

16

25− 16

)
=

29

45
< 1,

which is a contradiction.

Now, suppose f(v) ≥ 3. Then Inequality (129) gives

w′2 < 4

(
1

4 · 3
+

1

9

)(
1 +

16

33 − 16

)
=

21

11
< 2.
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So w′ = 1. But as y′′ = 1, this contradicts Remark 26. We conclude that y′′ = 1 is

not possible.

We now consider y′′ ≥ 2. By Lemma 25(c), f(v) = 1. Suppose v > 1. Since

f(v) = 1, v is an odd square. So 4 + v is not a square, and hence f(u + v) ≥ 3.

Then as v ≥ 9, Inequality (128) gives

w′2 <
4

3

(
1

4
+

1

9

)(
1 +

16

9 · 4− 16

)
=

13

15
< 1,

which is a contradiction. Hence, v = 1, as required.

(c). Let u = 16 and assume v 6= 9. First suppose that y′′ = 1 and that f(v) = 1.

Then Inequality (125) gives vf(v) > uf(u)z′2 ≥ 16. As f(v) = 1, it follows that v

is an odd square, and hence v ≥ 25. Then Inequality (129) gives

w′2 < 4

(
1

16
+

1

25

)(
1 +

16

25− 16

)
=

41

36
< 2,

so w′ = 1. But as y′′ = 1, this contradicts Remark 26.

Now, suppose that y′′ = 1 and that f(v) > 1. So f(v) ≥ 3. If v = 3, then

Inequality (129) gives

w′2 < 4

(
1

16 · 3
+

1

9

)(
1 +

16

27− 16

)
=

57

44
< 2,

so w′ = 1. Once again, this contradicts Remark 26.

If v > 3 then we have v ≥ 5 and so for f(v) ≥ 3, Inequality (129) gives

w′2 < 4

(
1

16
+

1

15

)(
1 +

16

45− 16

)
=

93

116
< 1,

which is a contradiction. We conclude that y′′ = 1 is not possible.

We now consider y′′ ≥ 2. By Lemma 25(c), f(v) = 1. So v is an odd square.

Note that if v ≥ 25, then Inequality (129) gives

w′2 < 4

(
1

16
+

1

25

)(
1 +

16

25 · 4− 16

)
=

41

84
< 1,

which is a contradiction. So it remains to eliminate the possibility that v = 1.

Let v = 1. Then Inequality (125) gives y′′2 > uf(u)z′2 ≥ 16, so y′′ ≥ 5. Also

f(u+ v) = 17. Then Inequality (128) gives

w′2 <
4

17

(
1

16
+

1

1

)(
1 +

16

25− 16

)
=

25

36
< 1,

which is a contradiction. Hence, v = 9, as required.
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By the previous lemma, we have u = 4, v = 1 or u = 16, v = 9. Consider the

first case. Here Inequality (127) gives y′′2 > 16, so y′′ ≥ 5. Then as f(u + v) = 5,

Inequality (128) gives

w′2 <
4

5

(
1

4
+

1

1

)(
1 +

16

25− 16

)
=

25

9
< 3,

so w′ = 1. Equation (126) gives 5(y′′2 − 16) = 4(z′2 + y′′2), so y′′2 = 4z′2 + 80,

which has the solution y′′ = 12, z′ = 4. From the definitions, w = f(v)s(v)w′ = w′.

Then Σ = 2f(u + v)f(u)w2 = 10, and Σ′ = u
vΣ = 4Σ = 40, which is one of the

desired solutions.

Now, consider the second case, u = 16, v = 9. Here Inequality (127) gives

9y′′2 > 16, so y′′ ≥ 2. Then Inequality (129) gives

w′2 < 4

(
1

16
+

1

9

)(
1 +

16

9 · 4− 16

)
=

5

4
< 2,

so w′ = 1. Equation (126) gives (9y′′2 − 16) = 4(z′2 + y′′2), so 5y′′2 = 4z′2 + 16.

This has infinitely many solutions. From the definitions, w = f(v)s(v)w′ = 3w′ = 3.

Then Σ = 2f(u + v)f(u)w2 = 18, and Σ′ = u
vΣ = 16Σ/9 = 32, which is the other

desired Case 3 solution.

Case 4. Assume u is even, v is odd, and the 2-adic order of u is odd.

We will show that in this case, (Σ,Σ′) = (12, 24) is the only possibility.

As x is an integer, from Equation (92) we can write 2Σ = f(u + v)f(u)w2.

Note v divides Σ, so v divides w2, and hence f(v)s(v) divides w. Thus, setting

w = f(v)s(v)w′ we may write 2Σ = f(u + v)f(u)f(v)vw′2. Then Equation (91)

gives

f(u+ v)f(u)f(v)vw′2(vf(u)y′2 − 16) = 16(z2 + vf(u)y′2). (130)

Thus vf(u) divides 16z2, so f(v)s(v) f(u)
2 divides z, say 2z = f(v)s(v)f(u)z′. So

Inequality (90) gives 2vy′ > s(u)f(v)s(v)f(u)z′ and hence

2s(v)y′ > f(u)s(u)z′, (131)

and Equation (130) gives

f(u+ v)f(v)w′2(vf(u)y′2 − 16) = 4(f(v)f(u)z′2 + 4y′2). (132)

Hence, f(v) divides y′. Let y′ = f(v)y′′. Then Inequality (131) gives 2f(v)s(v)y′′ >

f(u)s(u)z′ and so

4vf(v)y′′2 > uf(u)z′2, (133)

and Equation (132) gives

f(u+ v)w′2(vf2(v)f(u)y′′2 − 16) = 4(f(u)z′2 + 4f(v)y′′2). (134)



INTEGERS: 23 (2023) 83

Note that from the left-hand side of Equation (134), we have

vf2(v)f(u)y′′2 > 16. (135)

Furthermore, Inequality (133) and Equation (134) give

uf(u+ v)w′2(vf2(v)f(u)y′′2 − 16) < 16(v + u)f(v)y′′2.

Hence,

w′2 <
16

f(v + u)

(
1

uf(u)f(v)
+

1

vf(v)f(u)

)(
1 +

16

vf2(v)f(u)y′′2 − 16

)
(136)

and consequently

w′2 < 16

(
1

uf(u)f(v)
+

1

vf(v)f(u)

)(
1 +

16

vf2(v)f(u)y′′2 − 16

)
. (137)

Lemma 28. The following conditions hold.

(a) f(v) ≤ 5.

(b) If f(v) > 1, then f(u) = 2.

(c) If f(v) = 3, then either v = 3 or u = 2.

Proof. (a). Suppose that f(v) ≥ 7. So vf(v) ≥ 72 and vf2(v) ≥ 73. Also, as the

2-adic order of u is odd, we have f(u) ≥ 2, so u ≥ 2 and uf(u) ≥ 4. Then for all

y′′ ≥ 1, Inequality (137) gives

w′2 < 16

(
1

4 · 7
+

1

72 · 2

)(
1 +

16

73 · 2− 16

)
=

252

335
< 1,

which is a contradiction.

(b). Suppose that f(v) ≥ 3 and f(u) > 2. Then f(u) ≥ 6, and so uf(u) ≥ 36.

And vf(v) ≥ 9 and vf2(v) ≥ 27. Then for all y′′ ≥ 1, Inequality (137) gives

w′2 < 16

(
1

36 · 3
+

1

9 · 6

)(
1 +

16

27 · 6− 16

)
=

36

73
< 1,

which is a contradiction.

(c). Suppose that f(v) = 3 and that v > 3 and u > 2. As f(v) = 3, v has the

form v = 3m2, for some odd m. By Part (b), f(u) = 2, so u has the form u = 2n2,

for some integer n. So v ≥ 27 and u ≥ 8. Then Inequality (137) gives

w′2 < 16

(
1

16 · 3
+

1

34 · 2

)(
1 +

16

35 · 2− 16

)
=

21

47
< 1,

which is a contradiction.
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Lemma 29. We have f(v) = 1.

Proof. By Lemma 28(a), f(v) ≤ 5. First suppose f(v) = 5. By Lemma 28(b),

f(u) = 2. If u > 2, then u ≥ 8 and uf(u) ≥ 16. Then Inequality (137) gives

w′2 < 16

(
1

16 · 5
+

1

25 · 2

)(
1 +

16

53 · 2− 16

)
=

5

9
< 1,

which is a contradiction. So u = 2. But v has the form v = 5m2, for some odd m,

so u + v = 2 + 5m2, and this cannot be a square as 2 + 5m2 ≡ 3 (mod 4). Hence,

f(u+ v) ≥ 3. Then Inequality (136) gives

w′2 <
16

3

(
1

4 · 5
+

1

25 · 2

)(
1 +

16

53 · 2− 16

)
=

140

351
< 1,

which is a contradiction. So f(v) 6= 5.

Now, suppose f(v) = 3, so v has the form v = 3m2, for some odd m. By

Lemma 28(b), f(u) = 2, so u has the form u = 2n2, for some integer n. By

Lemma 28(c), either v = 3 or u = 2. We claim that in both cases, u + v is not

a square. Indeed, if v = 3, then u + v = 2n2 + 3 is not a square since modulo 8,

2n2 + 3 is either 3 or 5, according to whether n is even or odd, but the quadratic

residues modulo 8 are 0, 1 and 4. Similarly, if u = 2, then u + v = 2 + 3m2 is not

a square as 2 + 3m2 ≡ 2 (mod 3). Thus, in both cases, f(u + v) > 1 and so, as

gcd(u+ v, v) = 1, we have f(u+ v) ≥ 5. Then Inequality (136) gives

w′2 <
16

5

(
1

4 · 3
+

1

2 · 32

)(
1 +

16

33 · 2− 16

)
=

12

19
< 1,

which is a contradiction.

Lemma 30. If y′′ > 1, then v = 1.

Proof. By the previous lemma, f(v) = 1, so v is an odd square, say v = m2.

Suppose y′′ ≥ 2 and that v ≥ 9. First suppose that f(u) > 2. Then f(u) ≥ 6 and

Inequality (137) give

w′2 < 16

(
1

36
+

1

9 · 6

)(
1 +

16

9 · 6 · 4− 16

)
=

4

5
< 1,

which is a contradiction. So f(u) = 2. Hence, u has the form u = 2n2, for some

integer n.

Now, suppose for the moment that v ≥ 25 and that u ≥ 18. Then uf(u) ≥ 36

and Inequality (137) gives

w′2 < 16

(
1

36
+

1

25 · 2

)(
1 +

16

25 · 2 · 4− 16

)
=

172

207
< 1,
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which is a contradiction. So either v = 9 or u < 18. First consider the case where

u < 18 and v ≥ 25. There are two possibilities: either u = 2 or u = 8. If u = 8, then

u+ v = 8 +m2 cannot be a square for m > 1. So f(u+ v) ≥ 3. Then uf(u) = 16,

and Inequality (136) gives

w′2 <
16

3

(
1

16
+

1

25 · 2

)(
1 +

16

25 · 2 · 4− 16

)
=

11

23
< 1,

which is a contradiction. If u = 2, then uf(u) = 4, and u + v = 2 + m2 cannot be

a square. So f(u+ v) ≥ 3. Then Inequality (136) gives

w′2 <
16

3

(
1

4
+

1

25 · 2

)(
1 +

16

25 · 2 · 4− 16

)
=

36

23
< 2,

so w′ = 1. But then Inequality (137) gives

f(u+ v) < 16

(
1

4
+

1

25 · 2

)(
1 +

16

25 · 2 · 4− 16

)
=

108

23
< 5.

So f(u+ v) = 3. Then Equation (134) gives 3(2vy′′2 − 16) = 4(2z′2 + 4y′′2), so

(3v − 8)y′′2 = 4z′2 + 24.

So as v is odd, y′′ must be even, say y′′ = 2y′′′, so (3v − 8)y′′′2 = z′2 + 6. But it is

easy to see that as v is an odd square, this equation has no solution modulo 8.

We conclude from the above that v = 9. In this case, for u ≥ 2, Inequality (137)

gives

f(u+ v)w′2 < 16

(
1

4
+

1

9 · 2

)(
1 +

16

9 · 2 · 4− 16

)
=

44

7
< 7.

Notice that f(u+ v) 6= 3 since gcd(u+ v, v) = 1. So we have three possibilities:

(a) f(u+ v) = 1 and w′ = 1,

(b) f(u+ v) = 1 and w′ = 2,

(c) f(u+ v) = 5 and w′ = 1.

In these cases, Equation (134) gives respectively

y′′2 = 4z′2 + 8, (138)

7y′′2 = z′2 + 8, (139)

37y′′2 = 4z′2 + 40. (140)

However, one finds that Equation (138) has no solution modulo 16, Equation (139)

has no solution modulo 32, and Equation (140) has no solution modulo 25. This

completes the proof of the lemma.
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Lemma 31. If y′′ = 1, then v = 1.

Proof. By Lemma 29, f(v) = 1, so v is an odd square, say v = m2. Suppose y′′ = 1

and that v ≥ 9. First note that if f(u) > 2, then f(u) ≥ 6, and so uf(u) ≥ 36.

Then by Inequality (133), 4v > uf(u)z′2 ≥ uf(u) ≥ 36, so v > 9. Thus v ≥ 25 and

then Inequality (137) gives

w′2 < 16

(
1

36
+

1

25 · 6

)(
1 +

16

25 · 6− 16

)
=

124

201
< 1,

which is a contradiction. So f(u) = 2. Then Equation (134) gives

f(u+ v)w′2(m2 − 8) = 4(z′2 + 2). (141)

In particular, as m and f(u+ v) are odd, w′ must be even. For all u ≥ 2, Inequal-

ity (137) gives

f(u+ v)w′2 < 16

(
1

4
+

1

9 · 2

)(
1 +

16

9 · 2− 16

)
= 44.

So, as w′ is even and f(u+ v) is odd and square-free, we have three possibilities:

(a) w′ = 6 and f(u+ v) = 1; here Equation (141) gives 9m2 = z′2 + 74.

(b) w′ = 4 and f(u+ v) = 1; here Equation (141) gives 4(m2 − 8) = z′2 + 2.

(c) w′ = 2 and f(u+v) = 1, 3, 5, 7; Equation (141) gives f(u+v)(m2−8) = z′2+2.

However, in the first two cases, the equation has no solution modulo 4. In the third

case we find that for f(u+v) = 1 and 5, the equation f(u+v)(m2−8) = z′2 +2 also

has no solution modulo 4, while for f(u+ v) = 7, the equation f(u+ v)(m2 − 8) =

z′2 +2 has no solution modulo 8. So it remains to treat the case where f(u+v) = 3

and w′ = 2. So it remains to treat the case where f(u+v) = 3 and w′ = 2. Here the

equation is 3m2 = z′2 + 26, which actually does have integer solutions. However,

notice that for f(u + v) = 3, we have v 6= 9, since gcd(u + v, v) = 1, so v ≥ 25.

Hence, for u ≥ 2, Inequality (136) gives

w′2 <
16

3

(
1

4
+

1

25 · 2

)(
1 +

16

25 · 2− 16

)
=

36

17
< 3.

But this contradicts the assumption that w′ = 2.

By the two preceding lemmas, v = 1.

Lemma 32. We have y′′ > 1.

Proof. If y′′ = 1, then by Inequality (133), we have uf(u)z′2 < 4. But this is

impossible as uf(u) ≥ 4.
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Lemma 33. If f(u+ 1) > 1, then f(u) = 2.

Proof. By the previous lemma, we have y′′ ≥ 2. Suppose f(u + 1) > 1. Note that

if f(u) ≥ 10, then f(u+ 1) ≥ 3 and Inequality (136) gives

w′2 <
16

3

(
1

102
+

1

10

)(
1 +

16

10 · 4− 16

)
=

44

45
< 1,

which is a contradiction. Furthermore, if f(u) = 6 and y′′ ≥ 3, then as gcd(u, u +

1) = 1, we have f(u+ 1) 6= 3, so f(u+ 1) ≥ 5, and hence Inequality (136) gives

w′2 <
16

5

(
1

62
+

1

6

)(
1 +

16

6 · 9− 16

)
=

84

95
< 1,

which is a contradiction. Finally, suppose that f(u) = 6 and y′′ = 2. Then f(u +

1) ≥ 5 and Inequality (136) gives

w′2 <
16

5

(
1

62
+

1

6

)(
1 +

16

6 · 4− 16

)
=

28

15
< 2.

So w′ = 1. Then applying Inequality (136) again gives

f(u+ 1) < 16

(
1

62
+

1

6

)(
1 +

16

6 · 4− 16

)
=

28

3
< 10.

Thus, as f(u + 1) is odd and square-free and f(u + 1) ≥ 5, we have f(u + 1) = 5

or 7. Hence, from Equation (134) we have f(u+ 1) = 3z′2 + 8, which is impossible

for f(u+ 1) = 5 and 7.

Lemma 34. If f(u+ 1) = 1, then f(u) = 2.

Proof. Suppose f(u + 1) = 1, so u + 1 = r2 for some odd r. So u ≡ 0 (mod 8).

Suppose that f(u) > 2. Then f(u) ≥ 6 and as u is divisible by 8, u ≥ 24. So, as

y′′ ≥ 2 by Lemma 32, Inequality (137) gives

w′2 < 16

(
1

24 · 6
+

1

6

)(
1 +

16

6 · 4− 16

)
=

25

3
< 9.

So w′ = 1 or 2. First suppose w′ = 1. Then Equation (134) gives (f(u)− 16)y′′2 =

4f(u)z′2 + 16. In particular, f(u) > 16. Thus, as f(u) is even and square-free,

f(u) ≥ 22. So, as u is divisible by 8, u ≥ 88. But then Inequality (137) gives

w′2 < 16

(
1

88 · 22
+

1

22

)(
1 +

16

22 · 4− 16

)
=

89

99
< 1,

which is a contradiction. So w′ = 2. Then Equation (134) gives

(f(u)− 4)y′′2 = f(u)z′2 + 16. (142)
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By Inequality (133), we have 4y′′2 > uf(u)z′2 ≥ 24f(u)z′2. So Equation (142) gives

(f(u) − 4)y′′2 < 1
6y
′′2 + 16 and hence (6f(u) − 25)y′′2 < 96. But f(u) ≥ 6 and

y′′ ≥ 2, so in fact, as f(u) is even and square-free, the only possibility is f(u) = 6

and y′′ = 2. Then Equation (142) gives 8 = 6z′2 + 16, which is impossible.

Lemma 35. We have u = 2.

Proof. From the two preceding lemmas, we have v = 1 and f(u) = 2. So u has the

form u = 2n2 for some n. Suppose n > 1, so uf(u) ≥ 16. Equation (134) gives

f(u+ 1)w′2(y′′2 − 8) = 4(z′2 + 2y′′2). (143)

In particular, y′′2 > 8, so y′′ ≥ 3. By Inequality (133), we have 4y′′2 > uf(u)z′2 ≥
16z′2, so y′′ > 2z′. So when y′′ = 3 or 4, we obtain z′ = 1. Then when y′′ = 4,

Equation (143) gives 2f(u + 1)w′2 = 33, which is impossible modulo 2. When

y′′ = 3, Equation (143) gives f(u+ 1)w′2 = 4 · 19, which implies necessarily w′ = 2

and f(u+1) = 19. Moreover the smallest value of u with f(u) = 2 and f(u+1) = 19

is u = 18. But then uf(u) ≥ 36 and with y′′ = 3, Inequality (136) gives

f(u+ 1)w′2 < 16

(
1

36
+

1

2

)(
1 +

16

2 · 9− 16

)
= 76,

which gives a contradiction. So we have y′′ ≥ 5. Then for u ≥ 8, Inequality (136)

gives

f(u+ 1)w′2 < 16

(
1

16
+

1

2

)(
1 +

16

2 · 25− 16

)
=

225

17
< 14.

Notice also that Equation (143) can be rearranged to give (f(u + 1)w′2 − 8)y′′2 =

4z′2 +8f(u+1)w′2, so f(u+1)w′2 > 8. So 9 ≤ f(u+1)w′2 ≤ 13, and since f(u+1)

is odd and square-free, we have only the following possibilities:

(a) w′ = 1 and f(u+ 1) = 11, 13; here Equation (143) gives (f(u+ 1)− 8)y′′2 =

4z′2 + 8f(u+ 1).

(b) w′ = 2 and f(u+ 1) = 3; here Equation (143) gives y′′2 = z′2 + 24.

(c) w′ = 3 and f(u+ 1) = 1; here Equation (143) gives y′′2 = 4z′2 + 72.

In the first case, with f(u + 1) = 11, the equation is 3y′′2 = 4z′2 + 88, which

has no solution modulo 32. In the first case, with f(u + 1) = 13, the equation is

5y′′2 = 4z′2 + 104, which has no solution modulo 16. In the third case, the equation

is y′′2 = 4z′2 + 72 has no solution modulo 16.

It remains to deal with the second case, where the equation y′′2 = z′2 + 24 has

the solution y′′ = 5, z′ = 1. Note that in this case f(u + 1) = 3. But u = 2n2 and
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the smallest value of n > 1 for which f(u + 1) = 3 is n = 11. Here u = 242 and

Inequality (136) gives

f(u+ 1)w′2 < 16

(
1

242 · 2
+

1

2

)(
1 +

16

2 · 25− 16

)
=

24300

2057
< 12,

contradicting the assumption that w′ = 2 and f(u+ 1) = 3.

From the preceding lemmas, we have v = 1 and u = 2. By Inequality (135), we

have 2y′′2 > 16, so y′′ ≥ 3. We have f(u+ v) = 3 and so Inequality (136) gives

w′2 <
16

3

(
1

4
+

1

2

)(
1 +

16

2 · 9− 16

)
= 36,

so w′ ≤ 5. Moreover, Equation (134) gives

(3w′2 − 8)y′′2 = 4z′2 + 24w′2, (144)

so w′ ≥ 2. So there are four possibilities.

If w′ = 5, Equation (144) gives 67y′′2 = 4z′2+600, which has no solutions modulo

32.

If w′ = 4, Equation (144) gives 10y′′2 = z′2 + 96 (which has the solution y′′ =

4, z′ = 8). But by Inequality (133), we have y′′ > z′, so 10y′′2 = z′2 + 96 gives

9y′′2 < 96, giving y′′ ≤ 3. So, as y′′ ≥ 3, from above, we have y′′ = 3. But then

10y′′2 = z′2 + 96 has no integer solution for z′.

If w′ = 3, Equation (144) gives 19y′′2 = 4z′2 +216, which has no solution modulo

32.

Finally, if w′ = 2, Equation (144) gives y′′2 = z′2 + 24, which has the solution

y′′ = 5, z′ = 1. Note that in this case

Σ =
1

2
f(u+ v)f(u)vf(v)w′2 = 3w′2 = 12,

and Σ′ = u
vΣ = 24. This is our desired Case 4 solution.

Case 5. Assume u, v are both odd and the 2-adic order of u+ v is even.

We will show that there are no solutions in this case.

As x is an integer, from Equation (92) we can write Σ = 2f(u + v)f(u)w2,

for some w. Note v divides Σ, so v divides w2, and hence f(v)s(v) divides w.

Thus, setting w = f(v)s(v)w′ we may write Σ = 2f(u + v)f(u)f(v)vw′2. Then

Equation (91) gives

f(u+ v)f(u)f(v)vw′2(vf(u)y′2 − 16) = 4(z2 + vf(u)y′2). (145)

Thus vf(u) divides 4z2, so f(v)s(v)f(u) divides z, say z = f(v)s(v)f(u)z′. So

Inequality (90) gives vy′ > s(u)f(v)s(v)f(u)z′ and hence

s(v)y′ > f(u)s(u)z′, (146)
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and Equation (145) gives

f(u+ v)f(v)w′2(vf(u)y′2 − 16) = 4(f(v)f(u)z′2 + y′2). (147)

Hence, f(v) divides y′. Let y′ = f(v)y′′. Then Inequality (146) gives f(v)s(v)y′′ >

f(u)s(u)z′ and so

vf(v)y′′2 > uf(u)z′2, (148)

and Equation (147) gives

f(u+ v)w′2(vf2(v)f(u)y′′2 − 16) = 4(f(u)z′2 + f(v)y′′2). (149)

Now, Inequality (148) and Equation (149) give

uf(u+ v)w′2(vf2(v)f(u)y′′2 − 16) < 4(v + u)f(v)y′′2.

Hence,

w′2 <
4

f(v + u)

(
1

uf(u)f(v)
+

1

vf(v)f(u)

)(
1 +

16

vf2(v)f(u)y′′2 − 16

)
and consequently

w′2 < 4

(
1

uf(u)f(v)
+

1

vf(v)f(u)

)(
1 +

16

vf2(v)f(u)y′′2 − 16

)
. (150)

Remark 28. Note that using the hypothesis that the 2-adic order of u+ v is even,

one has

f(u) + f(v) ≡ u+ v ≡ 0 (mod 4).

In particular, f(u) and f(v) are not both 1.

Lemma 36. The following conditions hold.

(a) f(u) ≤ 19.

(b) f(v) ≤ 5.

(c) If y′′ > 1, then f(u) ≤ 7.

Proof. (a). For f(u) ≥ 21, we have uf(u) ≥ 212, so for all y′′ ≥ 1, Inequality (150)

gives

w′2 < 4

(
1

212
+

1

21

)(
1 +

16

21− 16

)
=

88

105
< 1,

which is a contradiction.
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(b). Suppose f(v) ≥ 7. Then Inequality (150) gives

w′2 < 4

(
1

49
+

1

7

)(
1 +

16

73 − 16

)
=

224

327
< 1,

which is a contradiction.

(c). Suppose y′′ ≥ 2 and f(u) > 7. As f(u) is a square-free odd number,

f(u) ≥ 11. Then Inequality (150) gives

w′2 < 4

(
1

112
+

1

11

)(
1 +

16

11 · 4− 16

)
=

48

77
< 1,

which is a contradiction.

Lemma 37. We have f(v) = 1.

Proof. Suppose f(v) > 3. By Lemma 36(b), f(v) = 5. Then by Remark 28,

f(u) ≡ 3 (mod 4), and in particular, f(u) ≥ 3 and so u ≥ 3. Then Inequality (150)

gives

w′2 < 4

(
1

25 · 3
+

1

5 · 9

)(
1 +

16

125 · 3− 16

)
=

160

1077
< 1,

which is a contradiction. So f(v) = 1 or 3. Suppose that f(v) = 3. So v ≥ 3. By

Remark 28, f(u) ≡ 1 (mod 4). Suppose for the moment that f(u) ≥ 5. Then u ≥ 5

and Inequality (150) gives

w′2 < 4

(
1

52 · 3
+

1

32 · 5

)(
1 +

16

33 · 5− 16

)
=

96

595
< 1,

which is a contradiction. So f(u) = 1.

As u, v are relatively prime, and as v is divisible by 3 since f(v) = 3, we have

u 6≡ 0 (mod 3). Furthermore, as f(u) = 1, u is a square. So u ≡ 1 (mod 3), and

thus u+ v ≡ 1 (mod 3), and hence f(u+ v) ≡ 1 (mod 3). By Inequality (150),

w′2 < 4

(
1

32
+

1

3

)(
1 +

16

33 − 16

)
=

48

11
< 5,

so w′ = 1 or 2. In particular, w′2 ≡ 1 (mod 3). Then using f(u) = 1 in Equa-

tion (149) gives f(u + v)w′2(9vy′′2 − 16) = 4(z′2 + 3y′′2), and modulo 3 we have

z′2 ≡ −1, which is impossible. So f(v) = 1.

Lemma 38. We have v = 1.
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Proof. By the previous lemma, f(v) = 1, so v is an odd square, v = m2 say. Suppose

that v > 1, so v ≥ 9. By Remark 28, f(u) ≡ 3 (mod 4). So f(u) ≥ 3. Note that if

f(u) ≥ 7, then u ≥ 7 and so Inequality (150) gives

w′2 < 4

(
1

72
+

1

7 · 9

)(
1 +

16

9 · 7− 16

)
=

64

329
< 1,

which is a contradiction. So if v > 1, then f(u) = 3. In this case, u is divisible

by 3 and so as u, v are relatively prime, by hypothesis, we have v ≥ 25. Then

Inequality (150) gives

w′2 < 4

(
1

32
+

1

3 · 25

)(
1 +

16

25 · 3− 16

)
=

112

177
< 1,

which is a contradiction. Thus v = 1.

Lemma 39. We have f(u) = 3.

Proof. From the previous lemma, v = 1. From Inequality (148) we have y′′ >

f(u)z′ ≥ 1. So from Lemma 36(c) we have f(u) ≤ 7. Suppose f(u) = 7. Then

u ≥ 7 and from Inequality (148) we have y′′ > 7z′ ≥ 7. So y′′ ≥ 8. Then

Inequality (150) gives

w′2 < 4

(
1

72
+

1

7

)(
1 +

16

7 · 82 − 16

)
=

128

189
< 1,

which is a contradiction. So f(u) ≤ 5 and since f(u) ≡ 3 (mod 4), we have f(u) =

3.

From the above lemmas, we have v = 1 and f(u) = 3. From Inequality (148),

we have y′′ > f(u)z′ ≥ 3. Then by Inequality (150),

w′2 < 4

(
1

32
+

1

3

)(
1 +

16

33 − 16

)
=

48

11
< 5,

so w′ = 1 or 2. In particular, w′2 ≡ 1 (mod 3). As f(u) = 3, we have that u is

divisible by 3. So u+v ≡ 1 (mod 3), and hence f(u+v) ≡ 1 (mod 3). Substituting

v = 1, f(u) = 3 in Equation (149) gives f(u + v)w′2(3y′′2 − 16) = 4(3z′2 + y′′2),

and thus modulo 3 we obtain y′′2 ≡ −1, which is impossible. So there there are no

solutions in Case 5.

Case 6. Assume u, v are both odd and the 2-adic order of u+ v is odd.

We will show that in this case, one of the following holds:

(a) (Σ,Σ′) = (9, 9) or (16, 16),

(b) (Σ,Σ′) = (m2, 1), for some integer m satisfying the equations m2 + 1 = 2n2

and (m2 − 8)Y 2 = 1 + 8Z2 for some integers n, Y, Z,
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(c) (Σ,Σ′) = (5m2, 5), for some integer m satisfying the equations m2 + 1 = 10n2

and (5m2 − 8)Y 2 = 5 + 8Z2 for some integers n, Y, Z.

As x is an integer, from Equation (92) we can write 2Σ = f(u + v)f(u)w2.

Note v divides Σ, so v divides w2, and hence f(v)s(v) divides w. Thus, setting

w = f(v)s(v)w′ we may write 2Σ = f(u + v)f(u)f(v)vw′2. Then Equation (91)

gives

f(u+ v)f(u)f(v)vw′2(vf(u)y′2 − 16) = 16(z2 + vf(u)y′2). (151)

Thus vf(u) divides 16z2, so f(v)s(v)f(u) divides z, say z = f(v)s(v)f(u)z′. So

Inequality (90) gives vy′ > s(u)f(v)s(v)f(u)z′ and hence

s(v)y′ > f(u)s(u)z′, (152)

and Equation (151) gives

f(u+ v)f(v)w′2(vf(u)y′2 − 16) = 16(f(v)f(u)z′2 + y′2). (153)

Hence, f(v) divides y′. Let y′ = f(v)y′′. Then Inequality (152) gives f(v)s(v)y′′ >

f(u)s(u)z′ and so

vf(v)y′′2 > uf(u)z′2, (154)

and Equation (153) gives

f(u+ v)w′2(vf2(v)f(u)y′′2 − 16) = 16(f(u)z′2 + f(v)y′′2). (155)

Note that from the left-hand side of Equation (155), we have

vf2(v)f(u)y′′2 > 16. (156)

Furthermore, Inequality (154) and Equation (155) give

uf(u+ v)w′2(vf2(v)f(u)y′′2 − 16) < 16(v + u)f(v)y′′2.

Hence,

w′2 <
16

f(u+ v)

(
1

uf(u)f(v)
+

1

vf(v)f(u)

)(
1 +

16

vf2(v)f(u)y′′2 − 16

)
(157)

and consequently, as f(u+ v) ≥ 2,

w′2 < 8

(
1

uf(u)f(v)
+

1

vf(v)f(u)

)(
1 +

16

vf2(v)f(u)y′′2 − 16

)
. (158)

Remark 29. As the 2-adic order of u+ v is odd, one has

f(u) + f(v) ≡ u+ v ≡ 2 (mod 4).
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Lemma 40. The following conditions hold.

(a) f(u) ≤ 23.

(b) f(v) ≤ 7.

(c) If y′′ > 1, then f(u) ≤ 11.

Proof. (a). If f(u) > 23, then as f(u) is square-free, f(u) ≥ 29, so for all y′′ ≥ 1,

Inequality (158) gives

w′2 < 8

(
1

292
+

1

29

)(
1 +

16

29− 16

)
=

240

377
< 1,

which is a contradiction.

(b). If f(v) > 7, then as f(v) is square-free, f(v) ≥ 11, and Inequality (158)

gives

w′2 < 8

(
1

121
+

1

11

)(
1 +

16

113 − 16

)
=

1056

1315
< 1,

which is a contradiction.

(c). If y′′ ≥ 2 and f(u) ≥ 13, then Inequality (158) gives

w′2 < 8

(
1

132
+

1

13

)(
1 +

16

13 · 4− 16

)
=

112

117
< 1,

which is a contradiction.

Lemma 41. We have f(v) = 1.

Proof. By Lemma 40(b), f(v) ≤ 7. First suppose f(v) = 7. Then by Remark 29,

f(u) ≡ 3 (mod 4), and in particular, f(u) ≥ 3 and so u ≥ 3. Then Inequality (158)

gives

w′2 < 8

(
1

49 · 3
+

1

7 · 9

)(
1 +

16

73 · 3− 16

)
=

560

3039
< 1,

which is a contradiction. So f(v) ≤ 5.

Now, suppose that f(v) = 5. Then by Remark 29, f(u) ≡ 1 (mod 4). Suppose

for the moment that f(u) > 1. Then as u, v are relatively prime and v is divisible

by 5, we have f(u) ≥ 13. So Inequality (158) gives

w′2 < 8

(
1

132 · 5
+

1

52 · 13

)(
1 +

16

53 · 13− 16

)
=

720

20917
< 1,
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which is a contradiction. So f(u) = 1. Hence, u is an odd square. Suppose for the

moment that u > 1. Then u ≥ 9 and Inequality (158) gives

w′2 < 8

(
1

9 · 5
+

1

52

)(
1 +

16

53 − 16

)
=

560

981
< 1,

which is a contradiction. So u = 1. Notice that as f(v) = 5 we have v = 5m2 for

some odd m and so u + v = 1 + 5m2. In particular, f(u + v) 6= 2 as otherwise

1 + 5m2 = 2r2 for some r. But this equation has no solution modulo 5. So, as the

2-adic order of u+ v is odd, we have f(u+ v) ≥ 6. Then Inequality (157) gives

w′2 <
16

6

(
1

5
+

1

52

)(
1 +

16

53 − 16

)
=

80

109
< 1,

which is a contradiction. So f(v) 6= 5.

Now, suppose that f(v) = 3. By Remark 29, f(u) ≡ 3 (mod 4). So as u, v are

relatively prime, and as v is divisible by 3, we have f(u) 6= 3, so f(u) ≥ 7. Then

Inequality (158) gives

w′2 < 8

(
1

72 · 3
+

1

32 · 7

)(
1 +

16

33 · 7− 16

)
=

240

1211
< 1,

which is a contradiction. So f(v) = 1.

Lemma 42. If v = 1, then f(u) = 1.

Proof. Suppose v = 1. From Inequality (154) we have y′′ > f(u)z′ ≥ 1. Thus from

Lemma 40(c) we have f(u) ≤ 11. Moreover, as v = 1, we have f(u) ≡ 1 (mod 4),

by Remark 29. Thus, as f(u) is square-free, f(u) ≤ 5. Suppose f(u) = 5. Then

from Inequality (154) we have y′′ > 5z′ ≥ 5. So y′′ ≥ 6. Then Inequality (158)

gives

w′2 < 8

(
1

52
+

1

5

)(
1 +

16

5 · 62 − 16

)
=

432

205
< 3.

So w′ = 1. Then Equation (155) gives f(u+ v)(5y′′2 − 16) = 16(5z′2 + y′′2), so

(5f(u+ v)− 16)y′′2 = 80z′2 + 16f(u+ v) > 0.

So f(u + v) > 16/5. Thus, as u + v is even and square-free, f(u + v) ≥ 6. Hence,

Inequality (157) gives

w′2 <
16

6

(
1

52
+

1

5

)(
1 +

16

5 · 62 − 16

)
=

144

205
< 1,

which is a contradiction. So f(u) < 5 and since f(u) ≡ 1 (mod 4), we have f(u) =

1.
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Lemma 43. If v = 1, then u = 1 and w′ = 3 or 4.

Proof. Suppose v = 1. By the previous lemma, f(u) = 1. Then Equation (155)

gives f(u+ v)w′2(y′′2 − 16) = 16(z′2 + y′′2), and so

(f(u+ v)w′2 − 16)y′′2 = 16(z′2 + f(u+ v)w′2). (159)

From Inequality (156), we have y′′ > 4. Thus y′′ ≥ 5. So Inequality (157) gives

f(u+ v)w′2 < 16

(
1

u
+ 1

)(
1 +

16

25− 16

)
=

16 · 25

9

(
1

u
+ 1

)
. (160)

In particular, as w′ ≥ 1 and u ≥ 1, this gives f(u+v) < 16·25·2
9 = 800

9 , so f(u+v) ≤
88. Moreover, f(u + v) is even and square-free, and furthermore, as u is an odd

square, say u = n2, and n2 + 1 = f(u+ v)m2, where m = s(u+ v), we have that −1

is a quadratic residue modulo f(u+ v). Hence, as f(u+ v) is square-free, f(u+ v)

cannot be divisible by a prime congruent to 3 modulo 4. It follows that the only

possible values of f(u+ v) are:

2, 10, 26, 34, 58, 74, 82.

Notice also that by Equation (159), we have f(u + v)w′2 > 16, so w′ ≥ 2 for

f(u+ v) = 10 and w′ ≥ 3 for f(u+ v) = 2.

Let us assume for the moment that u > 1. So, as f(u) = 1, we have u ≥ 9. Then

from Inequality (154), we have y′′2 > uz′2 ≥ 9z′2. Moreover, Inequality (160) gives

f(u+ v) < 16·25
9 ( 1

9 + 1) = 4000
81 < 50, so f(u+ v) ≤ 34. For the resulting four cases

of f(u+ v) we have:

(a) If f(u + v) = 34, then Inequality (160) gives w′2 < 16·25
34·9 ( 1

9 + 1) = 2000
1377 < 2,

so w′ = 1. Then Equation (159) gives 9y′′2 = 8(z′2 + 34), which is impossible

modulo 3.

(b) If f(u+ v) = 26, then Inequality (160) gives w′2 < 16·25
26·9 ( 1

9 + 1) = 2000
1053 < 2, so

w′ = 1. Then Equation (159) gives 5y′′2 = 8(z′2 + 26). So as y′′2 > 9z′2, we

have 45z′′2 < 8(z′2 + 26); i.e., z′′2 < 8·26
37 , so z′′ ≤ 2. But 5y′′2 = 8(z′2 + 26)

has no integer solution for y′′ when z′ = 1 or z′ = 2.

(c) If f(u+ v) = 10, then Inequality (160) gives w′2 < 16·25
10·9 ( 1

9 + 1) = 400
81 < 5, so

w′ ≤ 2. But w′ ≥ 2 for f(u+ v) = 10, as we observed above, so w′ = 2. Then

Equation (159) gives 3y′′2 = 2(z′2 + 40), which is impossible modulo 3.

(d) If f(u + v) = 2, then Inequality (160) gives w′2 < 16·25
2·9 ( 1

9 + 1) = 2000
81 < 25,

so w′ ≤ 4. But w′ ≥ 3 for f(u+ v) = 2, as we observed above, so w′ = 3 or 4.

(i) If w′ = 3, then Equation (159) gives y′′2 = 8(z′2 + 18). But then y′′2 >

9z′2 gives z′2 < 8 ·18, so z′ ≤ 11. But for none of these values does y′′2 =

8(z′2 + 18) have an integer solution for y′′. So this case is impossible.
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(ii) If w′ = 4, then Equation (159) gives y′′2 = z′2 + 32. But then y′′2 > 9z′2

gives z′2 < 4, so z′ = 1. However then y′′2 = z′2 + 32 has no integer

solution for y′′. So this case is also impossible.

We conclude from the above that u = 1. So f(u + v) = 2 and Inequality (160)

gives w′2 < 16·25·2
2·9 = 400

9 < 45, so w′ ≤ 6. But w′ ≥ 3 for f(u + v) = 2, as we

observed above, so w′ = 3, 4, 5 or 6. We will now eliminate the possibilities that

w′ = 5 or 6.

(a) If w′ = 5, then Equation (159) gives 17y′′2 = 8(z′2 + 50). From Inequal-

ity (154), y′′2 > uz′2 ≥ z′2. So 9z′′2 < 8 · 50 and hence z′′ ≤ 6. But for none

of these values does 17y′′2 = 8(z′2 + 50) have an integer solution for y′′. So

this case is impossible.

(b) If w′ = 6, then Equation (159) gives 7y′′2 = 2(z′2 + 72), which is impossible

modulo 7.

Lemma 44. If v > 1, then u = 1, w′ = 1 and either f(u+v) = 2 or f(u+v) = 10.

Proof. By the previous lemma, f(v) = 1, so v is an odd square, v = m2 say.

Suppose m ≥ 3. Note that f(u) ≡ 1 (mod 4), by Remark 29. If f(u) ≥ 5, then

Inequality (158) gives

w′2 < 8

(
1

52
+

1

5 · 9

)(
1 +

16

9 · 5− 16

)
=

112

145
< 1,

which is a contradiction. So f(u) < 5 and since f(u) ≡ 1 (mod 4), we have f(u) =

1.

First suppose that v = 9. Substituting v = 9, f(u) = 1 in Equation (155) gives

f(u+ v)w′2(9y′′2 − 16) = 16(z′2 + y′′2), and so

(9f(u+ v)w′2 − 16)y′′2 = 16(z′2 + f(u+ v)w′2).

From Inequality (156), we have 9y′′2 > 16. Thus y′′ ≥ 2. So Inequality (157) gives

f(u+ v)w′2 < 16

(
1

u
+

1

9

)(
1 +

16

9 · 4− 16

)
=

16 · 9
5

(
1

u
+

1

9

)
. (161)

Let us assume for the moment that u > 1. So, as f(u) = 1 and gcd(u, v) = 1, we

have u ≥ 25. Then w′ ≥ 1 and Inequality (161) give f(u + v) < 16·9
5 ( 1

25 + 1
9 ) =

544
125 < 5 so, as f(u + v) is even and square-free, f(u + v) = 2. Then we have

m2 + 9 = 2n2 for some n. But considering this equation modulo 3, it follows

that n,m are both divisible by 3, contradicting the hypothesis that gcd(u, v) = 1.
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So u = 1. Thus, f(u + v) = u + v = 10. Furthermore, Inequality (161) gives

w′2 < 16·9
10·5 (1 + 1

9 ) = 16
5 < 4, so w′ = 1, as required.

Now, suppose that v > 9, so v ≥ 25. As f(u) = 1, so u, v are both odd squares.

First suppose that if u ≥ 49. Then since v ≥ 25, Inequality (157) gives

f(u+ v)w′2 < 16

(
1

49
+

1

25

)(
1 +

16

25− 16

)
=

1184

441
< 3.

So necessarily f(u + v) = 2 and w′ = 1. Then Equation (155) gives vy′′2 − 16 =

8(z′2 + y′′2), so as v is odd, y′′ is divisible by 4. But then Inequality (158) gives

w′2 < 8

(
1

49
+

1

25

)(
1 +

16

25 · 42 − 16

)
=

74

147
< 1,

which is a contradiction. Hence, u = 1, 9 or 25. If u = 25, then since u, v are

relatively prime, we have v ≥ 49 and thus Inequality (158) gives

w′2 < 8

(
1

25
+

1

49

)(
1 +

16

49− 16

)
=

592

825
< 1,

which is a contradiction. Hence, u = 1 or 9.

Suppose u = 9. Then u + v = 9 + m2, and if f(u + v) = 2, then u + v = 2r2,

for some r, and thus 9 + m2 = 2r2. Modulo 3 this would give m ≡ 0 (mod 3),

contradicting the assumption that u, v are relatively prime. Hence, f(u + v) > 2.

In this case, using again the fact that u, v are relatively prime, we would have

f(u+ v) ≥ 10. Thus, if v ≥ 49, then Inequality (157) would give

w′2 <
16

10

(
1

9
+

1

49

)(
1 +

16

49− 16

)
=

464

1485
< 1,

which is a contradiction. Hence, v = 25. But in this case, f(u + v) = 34 and

Inequality (157) gives

w′2 <
16

34

(
1

9
+

1

25

)(
1 +

16

25− 16

)
=

16

81
< 1,

which is a contradiction. So u 6= 9.

Finally, suppose u = 1. Thus Equation (155) gives

f(u+ v)w′2(vy′′2 − 16) = 16(z′2 + y′′2). (162)

First suppose that v = 25. Then f(1+v) = 26. Note that if y′′ > 1, then Inequality

(157) gives

w′2 <
16

26

(
1

1
+

1

25

)(
1 +

16

25 · 4− 16

)
=

16

21
< 1,
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which is a contradiction. So y′′ = 1. Then Inequality (157) gives

w′2 <
16

26

(
1

1
+

1

25

)(
1 +

16

25− 16

)
=

16

9
< 2,

so w′ = 1. Substituting in Equation (162) gives 8z′′2 = 109, which has no integer

solution. Hence, v > 25 and thus v ≥ 49.

For v ≥ 49, Inequality (158) gives

w′2 < 8

(
1

1
+

1

49

)(
1 +

16

49− 16

)
=

400

33
< 13,

so w′ ≤ 3. Suppose for the moment that y′′ is odd. Then working modulo 4, as v is

odd and f(u+v) ≡ 2 (mod 4), we conclude from Equation (162) that w′ is even. So

w′ ≤ 3 gives w′ = 2. Then Equation (162) gives f(u+ v)(vy′′2− 16) = 4(z′2 + y′′2),

and working modulo 4 again gives a contradiction. Thus y′′ is even, say y′′ = 2y′′′,

and Equation (162) gives

f(u+ v)w′2(vy′′′2 − 4) = 4(z′2 + 4y′′′2). (163)

As y′′ = 2y′′′ ≥ 2, Inequality (158) gives

w′2 < 8

(
1

1
+

1

49

)(
1 +

16

49 · 4− 16

)
=

80

9
< 9,

so w′ ≤ 2.

Note that if f(u+ v) ≥ 18, then for y′′ ≥ 2, Inequality (157) would give

w′2 <
16

18

(
1

1
+

1

49

)(
1 +

16

49 · 4− 16

)
=

80

81
< 1,

which is a contradiction. So as f(u+ v) is even and square-free, f(u+ v) = 2, 6, 10

or 14. But u + v = 1 + m2 and −1 is not a quadratic residue modulo 6 or 14. So

f(u+ v) = 2 or 10. If f(u+ v) = 10, then Inequality (157) gives

w′2 <
16

10

(
1

1
+

1

49

)(
1 +

16

49 · 4− 16

)
=

16

9
< 2,

so w′ = 1. We will show that one also has w′ = 1 when f(u+v) = 2. Indeed, suppose

f(u+ v) = 2 and w′ = 2. Then Equation (163) gives 2(vy′′′2 − 4) = z′2 + 4y′′′2. As

f(u+ v) = 2, we have v = m2 = 2n2 − 1 for some n. So we have

2(2n2 − 3)y′′′2 − 8 = z′2.

However, this equation has no solution for n, y′′′, z′ modulo 64. So w′ = 1.
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If v = 1, then from Lemma 43, u = 1 and w′ = 3 or 4. Then Equation (155)

gives w′2(y′′2 − 16) = 8(z′2 + y′′2).

(a) If w′ = 3, then we have y′′2 = 8(z′2 + 18). This equation has infinitely many

solutions. Here Σ = 1
2f(u + v)f(u)vf(v)w′2 = 9, and Σ′ = Σ. So this is one

of our desired solutions.

(b) If w′ = 4, then we have y′′2 = z′2 + 32. This has two solutions (y′′ = 6, z′ = 2

and y′′ = 9, z′ = 7). Here Σ = 1
2f(u+ v)f(u)vf(v)w′2 = 16, and Σ′ = Σ. So

this is another one of our desired solutions.

If v > 1, then from Lemma 41, f(v) = 1 so v = m2 for some odd m, and

from Lemma 44, u = 1, w′ = 1 and either f(u + v) = 2 or f(u + v) = 10. Then

Equation (155) gives (f(u + v)m2 − 16)y′′2 = 16f(u + v) + 16z′2. Then as m is

odd and f(u + v) = 2 or 10, we have that y′′ is divisible by 4, say y′′ = 4Y . So

(f(u+v)m2−16)Y 2 = f(u+v)+z′2. Working modulo 8 we see that Y is necessarily

odd and z′2 ≡ 0, so z′ is divisible by 4, say z′ = 4Z. So we have

(f(u+ v)

2
m2 − 8

)
Y 2 =

f(u+ v)

2
+ 8Z2. (164)

Furthermore, Σ = 1
2f(u+ v)f(u)vf(v)w′2 = f(u+v)

2 m2, and Σ′ = u
vΣ = f(u+v)

2 .

Thus when f(u+ v) = 2, we have (Σ,Σ′) = (m2, 1). Furthermore, there exists n

such that

m2 + 1 = 2n2 and (m2 − 8)Y 2 = 1 + 8Z2, (165)

where the latter equation comes from Equation (164). Similarly, when f(u+v) = 10,

there exists n such that

m2 + 1 = 10n2 and (5m2 − 8)Y 2 = 5 + 8Z2. (166)

So these are the two desired families of solutions. This completes the proof of

Theorem 4.

Remark 30. Consider the integers m for which there exists n with m2 + 1 = 10n2,

as in (166). It is easy to see that m is necessarily divisible by 3. The numbers

m/3 are well known; see entry A097314 of [37]. The first eight values of m are:

3, 117, 4443, 168717, 6406803, 243289797, 3079535161, 116941239519.

Remark 31. Suppose that in the case u = 1, v = m2 at the end of the above

proof, we have a solution m,n, Y, Z to (165) or (166). From Equation (92), as

y = y′ = y′′ = 4Y , and u+ v = 1 +m2 = f(u+ v)n2 and Σ = f(u+v)
2 m2, we have

x =

√
y′2f(u)(u+ v)Σ

8
= f(u+ v)mnY.
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Moreover, z = f(v)s(v)f(u)z′ = mz′ = 4mZ and from Definition 5, x = a+ b, y =

a− c, z = c− b.
For f(u+ v) = 2, we have x = 2mnY and solving gives, using d = a+ b− c,

a = (mn+ 2)Y + 2mZ, b = (mn− 2)Y − 2mZ,

c = (mn− 2)Y + 2mZ, d = (mn+ 2)Y − 2mZ.

Notice that as m <
√

2n, we have Σ = m2 < 4mn = 8a+b
a−c . Hence, by Remark 18,

all such extangential LEQs (if any exist) are necessarily convex.

Similarly, for f(u+ v) = 10, we have x = 10mnY and solving gives

a = (5mn+ 2)Y + 2mZ, b = (5mn− 2)Y − 2mZ,

c = (5mn− 2)Y + 2mZ, d = (5mn+ 2)Y − 2mZ.

Notice that as m <
√

10n, we have Σ = 5m2 < 20mn = 8a+b
a−c . Hence, by Re-

mark 18, all such extangential LEQs are necessarily convex.

Remark 32. Note that we now have all the ingredients for the proof of Corollary 3

from the introduction. The proof for the LEQs of Theorem 3 Parts (b) and (c)

are given in the previous remark. The proof for the LEQs of Theorem 3 Part

(a) were given in Subsection 3.3; see Remark 19 and the analysis of LEQs with

(Σ, T ) = (18, 50).

Remark 33. We mention that in the case m = 3 of (166), the equation (5m2 −
8)Y 2 = 5 + 8Z2 gives 37Y 2 = 5 + 8Z2, which is equivalent to Equation (83) in

Subsection 3.3; the connection is given by setting W = 111Y + 52Z.

Example 5. We now exhibit an extangential LEQ corresponding to the case m =

117 of (166). This is the case n = 37 in Theorem 3(b). According to [6], the

smallest solution to (5 · 1172 − 8)Y 2 = 5 + 8Z2 is

Y = 34884218483995340806373, Z = 3226483779786979759026161.

The formulas from Remark 31 give

a = 1510135881993200406047678005, b = 1936178957897460209165,

c = 1509996345119264424684452513, d = 141473052893878823434657.

Let

A = (640848245491383541211578005, 1367415046112187810865469000),

B = (640849067137238673279485480, 1367416799305572965277883040),

C = (60036158873125939312368, 128102631990427959679265).
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It is easy to verify that the points O,A,B,C form the vertices of an extangential

LEQ with side lengths a, b, c, d as given above (see the explanation below). This

LEQ has (Σ, T ) = (5 · 1172, 5 + 5 · 1172). Note that the perimeter is a+ b+ c+ d ∼=
3.0 · 1027.

Let us briefly explain how the above vertices were determined. First factor a

and note that each prime factor is congruent to 1 modulo 4. Then for each factor

α of a, consider all ways of writing α as a sum of two squares: α = α2
1 + α2

2,

where α1 > α2 > 0, and using the Pythagorean formula, consider the points Aα =
a
α (α2

1−α2
2, 2α1α2) and A∗α = a

α (2α1α2, α
2
1−α2

2). Let Pa denote the union over α of

all the sets {Aα, A∗α}. Similarly, construct Pb, Pc and Pd. Then search for members

Sa, Sb, Sc, Sd in Pa, Pb, Pc, Pd, respectively, such that Sa + Sb = Sc + Sd, and set

A = Sa, B = Sa + Sb, C = Sc. By construction, the resulting quadrilateral OABC

has side lengths a, b, c, d. The extangential condition, a + b = c + d, is verified

directly from the above values of a, b, c, d. Finally, check that

det[Sa, Sb] > 0 and det[Sc, Sd] > 0,

which shows that OABC is positively oriented and has no self-intersection, and

check that the equability condition is satisfied, i.e.,

a+ b+ c+ d =
1

2

(
det[Sa, Sb] + det[Sc, Sd]

)
.

3.6. Comments on the Open Problem

In this subsection we make some comments on the Open Problem stated in the Intro-

duction. Suppose we have integers m,n, Y, Z such that the following two equations

hold:

m2 = 2n2 − 1, (167)

(m2 − 8)Y 2 = 1 + 8Z2. (168)

For convenience, set M = m2 − 8. We first make some elementary observations:

1. From Equation (167), m is odd. Then working modulo 4, as m2 = 2n2 − 1

and m odd, n is also odd, and hence from Equation (168), Y and M are also

odd.

2. Working modulo 3, 2n2 − 1 ≡ ±1. So from Equation (167), m is not divisible

by 3. Thus m2 ≡ 1, so from Equation (167) again, n is not divisible by 3.

Hence, M ≡ 2. Thus, from Equation (168), Y is necessarily divisible by 3,

and Z is not divisible by 3.

3. Working modulo 7, the quadratic residues are 0, 1, 2 and 4. So 2n2−1 is 0,±1

or 3. So as m2 = 2n2 − 1, we conclude that m2 is 0 or 1. Then M ≡ −1 or 0.
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i µi Factorization of Mi = 49µ2
i − 8 Factors mod 8

0 1 41 1
1 199 23·239·353 7·7·1
2 39401 79·103·599·15607 7·7·7·7
3 7801199 47·6771937·9369319 7·1·7
4 1544598001 41·45245801·63018038201 1·1·1
5 305822602999 41·71·239·424577·865087·17934071 1·7·7·1·7·7
6 60551330795801 223·2297·37223·302663·3553471·8761009 7·1·7·7·7·1

Table 10: The first 7 solutions to m2 = 2n2 − 1 with m ≡ 0 (mod 7).

But if M ≡ 0 then Equation (168) gives Z2 ≡ −1, which is impossible. So m

is divisible by 7.

4. The prime divisors of m2−8 are all congruent to 1 modulo 8. Indeed, suppose

p is a prime divisor of m2−8. Then 8 ≡ m2 (mod p). But it is well known that

8 is a quadratic residue modulo an odd prime p if and only if p is congruent to

1 or 7 modulo 8. So p is congruent to 1 or 7 modulo 8. But by Equation (168),

p is also a prime divisor of 1 + 8Z2, so −2 ≡ (4Z)2 (mod p). But it is well

known that −2 is a quadratic residue modulo an odd prime p if and only if p

is congruent to 1 or 3 modulo 8. Hence, p is congruent to 1 modulo 8.

Let m = 2r+ 1. Then m2 = 2n2 − 1 gives 4r2 + 4r+ 2 = 2n2, so r2 + (r+ 1)2 =

n2. So the solutions (m,n) to Equation (167) correspond to Pythagorean triangles

(r, r + 1, n) whose base and height differ by 1. These triangles are well known; see

entry A001652 of [37]. In particular, it is well known that the solutions r0, r1, r2, . . .

satisfy ri = 6ri−1 − ri−2 + 2 with r0 = 0, r1 = 3. Let us denote the corresponding

values of m by mi = 2ri + 1. So mi = 6mi−1 −mi−2 with m0 = 1,m1 = 7. As we

saw in observation 3 above, we are only interested in values of m that are divisible

by 7. Note that modulo 7, mi ≡ −mi−1 −mi−2, so mi+1 ≡ −mi −mi−1 ≡ mi−2.

So, as m0 ≡ 1,m1 ≡ 0,m2 ≡ −1, we are only interested in the values m1+3i. Set

µi := 1
7m1+3i. The sequence µ0, µ1, µ2, . . . is also well known; see entry A097732

of [37]. In particular, it is known to satisfy the relation µi = 198µi−1 − µi−2, with

µ0 = 1, µ1 = 199.

Table 10 shows the first 7 values of µi and the prime divisors of the corresponding

values of Mi = 49µ2
i − 8. Notice that only for µ0 = 1 and µ4 = 1544598001 is every

prime divisor of Mi congruent to 1 modulo 8, as required by Observation 4 above.

So the other cases of Table 10 cannot be solutions to Equation (168).

Notice that for MY 2 = 1 + 8Z2 we have 2MY 2 = X2 + 2, for X = 4Z. By [30,

Theorem 5], 2MY 2 = X2 + 2 has no solution if the continued fraction expansion of√
2M has odd period length. In fact, this is the case for m = 7µ0 = 7 (M = 41); the

continued fraction expansion of
√

82 is 9, 18, which has odd period length `(
√

82) =
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1. This shows that for m = 7, Equation (168) has no solutions. Another proof that

Equation (168) has no solutions for m = 7 is given by using [40, Theorem 8] or [43].

According to these results, MY 2 − 2W 2 = 1 has no solution if R2 − 2MS2 = −1

has a solution. And in fact, for M = 41 (m = 7), R2−2MS2 = −1 has the solution

R = 9, S = 1.

From Table 10, we see that the next potential solution would be for m = 7µ4.

Here, already, the numbers are very large, and we have been unable to determine

the continued fraction expansion of
√

2M4. To see that there are no solutions for

m = 7µ4, we require a deeper result, due to Wei. As we observed above, if we have

a solution M,Y,Z to Equation (168), then 2MY 2 = X2 + 2, where X = 4Z.

Proposition 11 ([41, Prop. 4.4]). Suppose that M = p1p2 . . . pj, where pi ≡ 1

(mod 8) for each i. If the equation 2MY 2 = X2 + 2 has an integer solution X,Y ,

then
j∏
i=1

(
2

pi

)
4

= 1,

where
( ·
·
)

4
denotes the quartic residue symbol (see [27, Chap. 5]).

Recall that
(

2
pi

)
4

= ±1 and
(

2
pi

)
4
≡ 2(pi−1)/4 (mod pi). From Table 10, we

have M4 = p1p2p3, where p1 = 41, p2 = 45245801, p3 = 63018038201. Calculations

show that
(

2
pi

)
4

= −1 for i = 1, 2, 3. Hence, by Wei’s Proposition, there are no

solutions to Equation (168) for m = 7µ4.

In fact, calculations show that for 7 ≤ i ≤ 155, Mi has a prime divisor congru-

ent to 7 modulo 8, so these cases also cannot be solutions to Equation (168). In

establishing this, the only difficulty is in factorizing Mi. Once a factor congruent

to 7 modulo 8 has been found, it is easy to verify that it is indeed a factor. To

substantiate our claim, for each i with 7 ≤ i ≤ 155 we exhibit an explicit prime

divisor of Mi congruent to 7 modulo 8. Consider the following set of 62 primes

congruent to 7 modulo 8:

P = {23, 47, 71, 79, 103, 167, 191, 223, 239, 263, 311, 359, 431, 479, 607, 719, 887,

983, 1031, 1103, 1279, 1399, 1487, 1511, 1823, 1879, 2671, 2767, 3271, 3559, 4903,

4943, 6823, 7583, 8231, 23447, 39551, 53527, 72559, 153511, 167911, 255511,

625111, 869951, 1471271, 2593399, 10808983, 13980671, 39556927, 108732031,

125448527, 160812623, 209110079, 627025159, 9707524087, 181155438071,

291814585319, 3072313317767, 15238519898992991, 39834495682679591,

15327739968951498750119, 110095018941508669324502008759}.
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Now, consider the set

R = {40, 9, 1, 4, 21, 1, 6, 5, 4, 15, 19, 55, 2, 1, 10, 9, 1, 48, 11, 2, 50, 4, 9, 8, 1, 41, 9, 1,

13, 4, 34, 22, 14, 9, 4, 1, 9, 59, 1, 61, 9, 5, 2, 9, 56, 26, 1, 4, 43, 1, 9, 32, 16, 46, 9, 4, 33,

1, 2, 58, 1, 9, 6, 5, 9, 2, 17, 27, 1, 28, 54, 1, 7, 4, 18, 5, 49, 15, 9, 1, 5, 2, 1, 29, 20, 9, 4, 37,

2, 6, 1, 30, 5, 1, 4, 36, 9, 5, 44, 4, 60, 1, 10, 3, 1, 62, 9, 4, 39, 5, 8, 2, 1, 9, 5, 1, 23, 9, 24,

51, 4, 57, 11, 1, 9, 4, 1, 2, 38, 31, 35, 5, 42, 4, 1, 52, 53, 1, 3, 45, 47, 9, 12, 5, 25, 1, 4, 8, 1},

and let ri denote the i-th member of R. The enthusiastic reader will easily verify

that for each 1 ≤ i ≤ 149, the ri-th member of P is a divisor of Mi+6.

It follows from the above that the smallest possible value of m for which there

could potentially be a solution to Equations (167) and (168) would have m ≥ 7µ156.

We do not know if there is a solution for m = 7µ156. In particular, we have been

unable to find any factors of M156, which is unsurprising as M156
∼= 1.8 · 10718.

Remark 34. Note that if a solution to Equations (167) and (168) exists, and there

is an extangential LEQ corresponding to case (c) of Theorem 3, with sides a, b, c, d,

then by Remark 31, its perimeter would be

2(a+ b) = 4mnY > 4mn > 2
√

2m2.

In particular, if there is an extangential LEQ corresponding to m = 7µ156, then the

perimeter would be at least 5.0 · 10718.
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[26] M. Josefsson and M. Dalćın, New characterizations of tangential quadrilaterals, Int. J. Geom.
9 (2020), 52–68.

[27] F. Lemmermeyer, Reciprocity Laws. From Euler to Eisenstein, Springer Monographs in Math-
ematics. Springer-Verlag, Berlin, 2000.

[28] D. A. Lind, The quadratic field Q(
√

5) and a certain Diophantine equation, Fibonacci Quart.
6 (1968), no. 3, 86–93.

https://www.mathunion.org/fileadmin/ICM/Proceedings/ICM1920/ICM1920.ocr.pdf
https://www.mathunion.org/fileadmin/ICM/Proceedings/ICM1920/ICM1920.ocr.pdf


INTEGERS: 23 (2023) 107

[29] N. Minculete, Characterizations of a tangential quadrilateral, Forum Geom. 9 (2009), 113–
118.

[30] R. A. Mollin, A continued fraction approach to the Diophantine equation ax2 − by2 = ±1,
JP J. Algebra Number Theory Appl. 4 (2004), no. 1, 159–207.

[31] L. J. Mordell, Diophantine Equations, Academic Press, London-New York, 1969.

[32] I. Niven, H. S. Zuckerman and H. L. Montgomery, An Introduction to the Theory of Numbers,
Fifth edition, John Wiley & Sons, New York, 1991

[33] A. Ostermann and G. Wanner, Geometry by its History, Springer, Heidelberg, 2012.

[34] D. Pedoe, The most “elementary” theorem of Euclidean geometry, Math. Mag. 49 (1976),
no. 1, 40–42.

[35] J. Rushall, M. Guttierez and V. McCarty, On the complete tree of primitive Pythagorean
quadruples, Integers 20 (2020), Paper No. A73, 23 pp.
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